

NOTICE OF
ADOPTIONADOPTION NOTICE 1
09 August 1993
AS7459
19 February 1991

AS7459 was adopted on 09 August 1993 and is approved for use by the Department of Defense (DoD). Copies of this document are stocked at the Standardization Documents Order Desk, Building 4D, 700 Robbins Avenue, Philadelphia, PA 19111-5096, for issue to DoD activities only. All other requestors must obtain documents from:

Society of Automotive Engineers, Inc.
400 Commonwealth Drive
Warrendale, PA 15096-0001

Title of Document: BOLTS AND SCREWS, STEEL, LOW ALLOY,
HEAT RESISTANT, 195 000 PSI TENSILE
STRENGTH, HARDENED AND TEMPERED,
ROLL THREADED

Date of Specific Issue Adopted: 19 FEBRUARY 1991

Releasing Non-Government Standards Body: Society of Automotive
Engineers, Inc.

Custodians:

Army - AR
Air Force - 99
Navy - AS

Military Coordinating Activity:

DLA - IS
(Project 5306-1685)

Review Activities:

Army - AV
Air Force - 82

FSC 5306

DISTRIBUTION STATEMENT A. Approved for public release;
distribution is unlimited.

400 Commonwealth Drive, Warrendale, PA 15096-0001

AEROSPACE STANDARD

SAE AS7459

Issued 1991-02-19

Superseding AMS 7459C

Submitted for recognition as an American National Standard

BOLTS AND SCREWS, STEEL, LOW ALLOY, HEAT RESISTANT
195 000 psi Tensile Strength
Hardened and Tempered, Roll Threaded

FSC 5306

1. SCOPE:

1.1 Type:

This procurement specification covers aircraft premium quality bolts and screws made from a low alloy, heat resistant steel of the type identified under the Unified Numbering System as UNS K14675, having UNJ thread profile, and of 195 000 psi tensile strength at room temperature with maximum test temperature of parts at 900°F.

1.2 Application:

Primarily for aerospace propulsion system applications where high strength at temperatures up to approximately 900°F is required and the part is protected against corrosion.

1.3 Safety - Hazardous Materials:

While the materials, methods, applications, and processes described or referenced in this specification may involve the use of hazardous materials, this specification does not address the hazards which may be involved in such use. It is the sole responsibility of the user to ensure familiarity with the safe and proper use of any hazardous materials and to take necessary precautionary measures to ensure the health and safety of all personnel involved.

SAE Technical Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.

SAE AS7459

2. REFERENCES:

2.1 Applicable Documents:

The following publications form a part of this specification to the extent specified herein. The latest issue of SAE publications shall apply. The applicable issue of other documents shall be the issue in effect on the date of the purchase order.

2.1.1 SAE Publications: Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001.

2.1.1.1 Aerospace Material Specifications:

AMS 2416 Plating, Nickel-Cadmium, Diffused
AMS 2640 Magnetic Particle Inspection
AMS 2750 Pyrometry
AMS 6304 Steel Bars, forgings, and Tubing, Low Alloy, Heat Resistant 0.95Cr-0.55Mo-0.30V (0.40-0.50C)

2.1.1.2 Aerospace Standards:

AS1132 Design Parameters for Bolts and Screws, External Wrenching, Unified Thread Inch Series
AS3062 Bolts, Screws, and Studs, Screw Thread Requirements
AS3063 Bolts, Screws, and Studs, Geometric Control Requirements

2.1.2 U.S. Government Publications: Available from Standardization Documents Order Desk, Building 4D, 700 Robbins Avenue, Philadelphia, PA 19111-5094.

2.1.2.1 Military Specification:

MIL-S-8879 Screw Threads, Controlled Radius Root With Increased Minor Diameter; General Specification For

2.1.2.2 Military Standards:

MIL-STD-105 Sampling Procedures and Tables for Inspection by Attributes
MIL-STD-1312 Fasteners, Test Methods
MIL-STD-2073-1 DOD Materiel, Procedures for Development and Application of Packaging Requirements

2.1.3 ASTM Publications: Available from ASTM, 1916 Race Street, Philadelphia, PA 19103-1187.

ASTM E 8 Tension Testing of Metallic Materials
ASTM E 21 Elevated Temperature Tension Tests of Metallic Materials
ASTM E 139 Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials

SAE AS7459

2.1.4 ANSI Publication: Available from American National Standards Institute, 1430 Broadway, New York, NY 10018.

ANSI/ASME B46.1 Surface Texture (Surface Roughness, Waviness, and Lay)

2.2 Definitions:

PRODUCTION INSPECTION LOT: Shall be all finished parts of the same part number, made from a single heat of alloy, heat treated at the same time to the same specified condition, produced as one continuous run, and submitted for vendor's inspection at the same time.

2.3 Unit Symbols:

A	- ampere
°	- degree, angle
°F	- degree Fahrenheit
h	- hour
in	- inch
in ²	- square inch
min	- minute of time
%	- percent (1% = 1/100)
lbf	- pounds force
psi	- pounds force per square inch
sp gr	- specific gravity

3. TECHNICAL REQUIREMENTS:

3.1 Material:

Shall be AMS 6304 steel.

3.2 Design:

Finished (completely manufactured) parts shall conform to the following requirements:

- 3.2.1 Dimensions: The dimensions of finished parts, after all processing, including plating, shall conform to the part drawing. Dimensions apply after plating but before coating with dry film lubricants.
- 3.2.2 Surface Texture: Surface texture of finished parts, prior to plating or coating, shall conform to the requirements as specified on the part drawing, determined in accordance with ANSI/ASME B46.1.
- 3.2.3 Threads: Screw thread UNJ profile and dimensions shall be in accordance with MIL-S-8879, unless otherwise specified on the part drawing.

SAE AS7459

3.2.3.1 Incomplete Threads: Incomplete threads are permissible at the chamfered end and the juncture of the unthreaded portion of the shank or adjacent to the head as specified in AS3062.

3.2.3.2 Chamfer: The entering end of the thread shall be chamfered as specified on the part drawing.

3.2.4 Geometric Tolerances: Part features shall be within the geometric tolerances specified on the part drawing and, where applicable, controlled in accordance with AS3063.

3.3 Fabrication:

3.3.1 Blanks: Heads shall be formed by hot forging or cold forging; machined heads are not permitted, except lightening holes may be produced by any suitable method. Wrenching recesses may be forged or machined. Flash or chip clearance in machined recesses shall not cause recess dimensions to exceed the specified limits.

3.3.2 Heat Treatment: Headed blanks shall, before finishing the shank and the bearing surface of the head, cold working the head-to-shank fillet radius, and rolling the threads, be heat treated as follows:

3.3.2.1 Heating Equipment: Furnaces may be of any type ensuring uniform temperature throughout the parts being heated and shall be equipped with, and operated by, automatic controllers and data recorders conforming to AMS 2750. The heating medium or atmosphere shall cause neither surface hardening nor decarburization other than that permitted by 3.7.2.2 and 3.7.2.3..

3.3.2.2 Hardening: Blanks shall be uniformly heated to $1750^{\circ}\text{F} \pm 25$, held at heat for 60 to 90 min, and quenched in oil or water.

3.3.2.3 Tempering: Hardened blanks shall be tempered by heating uniformly to a temperature not lower than 1000°F , holding at heat for not less than 6 h, and cooling in air.

3.3.3 Oxide and Decarburization Removal: Surface oxide, oxide penetration, and decarburization except as permitted in 3.7.2.3, resulting from prior heat treatment, shall be removed from the full body diameter and bearing surface of the head of the heat treated blanks prior to cold working the under head fillet radius and rolling the threads. The removal process shall produce no intergranular attack or corrosion of the blanks. The metal removed from the bearing surface of the head and the full body diameter of the shank shall be as little as practicable to obtain a clean, smooth surface and, in no case, shall be so great as to produce more cutting of flow lines in the head-to-shank junction than shown in Figure 1B.

SAE AS7459

3.3.4 Cold Working of Fillet Radius: After removal of oxide and decarburization as in 3.3.3, the head-to-shank fillet radius of parts having the radius complete throughout the circumference of the part shall be cold worked sufficiently to remove all visual evidence of grinding or tool marks. Distortion due to cold working shall conform to Figure 2, unless otherwise specified on the part drawing. It shall not raise metal more than 0.002 in above the contour at "A" or depress metal more than 0.002 in below the contour at "B" as shown in Figure 2; distorted areas shall not extend beyond "C" as shown in Figure 2. In configurations having an undercut associated with the fillet radius, the cold working will be required only for 90° of fillet arc, starting at the point of tangency of the fillet radius and the bearing surface of the head. In addition to cold working the head-to-shank fillet radius, shouldered bolts having an unthreaded shank diameter larger than the thread major diameter and having an undercut associated with a fillet between the threaded shank and the shoulder of the unthreaded shank, the cold working will be required only for 90° of fillet arc, starting at the point of tangency of the fillet radius and the shouldered surface of the unthreaded shank. For parts with compound fillet radii between head and shank, cold work only the radius that blends with the head.

3.3.5 Thread Rolling: Threads shall be formed on the heat treated and finished blanks by a single rolling process after removal of oxide and decarburization as in 3.3.3.

3.4 Product Marking:

Each part shall be identification marked as specified on the part drawing. The markings may be formed by forging or stamping, raised or depressed not more than 0.010 in maximum, with rounded root form on depressed characters.

3.5 Plating:

Where AS7459 is specified, any protective treatment shall be as specified on the part drawing. Where AS7459-1 is specified, parts shall be nickel-cadmium plated in accordance with AMS 2416.

3.6 Mechanical Properties:

Parts shall conform to the requirements of 3.6.1, 3.6.2, 3.6.3, 3.6.4, and 3.6.5. Threaded members of gripping fixtures for tensile, fatigue, and stress-rupture tests shall be of sufficient size and strength to develop the full strength of the part without stripping the thread. The loaded portion of the shank shall have a minimum of three full thread turns from the thread runout exposed between the loading fixtures during the tensile, fatigue, and stress-rupture tests. Finished parts shall be tested in accordance with the following applicable test methods:

- a. Hardness: MIL-STD-1312-6
- b. Room Temperature Ultimate Tensile Strength: MIL-STD-1312-8
- c. Stress-Rupture Strength at 900°F: MIL-STD-1312-10
- d. Fatigue Strength: MIL-STD-1312-11
- e. Ultimate Tensile Strength at 900°F: MIL-STD-1312-18

SAE AS7459

3.6.1 Ultimate Tensile Strength at Room Temperature:

3.6.1.1 Finished Parts: Parts shall have an ultimate tensile load not lower than that specified in Table 2 and shall be tested to failure, first measuring and recording the maximum tensile load achieved. If the size or shape of the part is such that failure would occur outside the threaded section but the part can be tested satisfactorily, such as parts having a shank diameter equal to or less than the thread root diameter or having an undercut, parts shall conform to only the ultimate tensile requirements of 3.6.1.2; for such parts, the diameter of the area on which stress is based shall be the actual measured minimum diameter of the part. Tension fasteners with either standard double hexagon or hexagon-type heads having a minimum metal condition in the head equal to the design parameters specified in AS1132 shall not fracture in the head-to-shank fillet radius except when this radius is associated with an undercut or with a shank diameter less than the minimum pitch diameter of the thread.

3.6.1.2 Machined Test Specimens: If the size or shape of the part is such that a tensile test cannot be made on the part, tensile tests shall be conducted in accordance with ASTM E 8 on specimens prepared as in 4.5. Such specimens shall meet the following requirements:

- a. Ultimate Tensile Strength, minimum: 195 000 psi
- b. Elongation in 4D, minimum: 10%
- c. Reduction of Area, minimum: 30%

3.6.1.2.1 When permitted by purchaser, hardness tests on the end of parts may be substituted for tensile tests of machined specimens.

3.6.2 Ultimate Tensile Strength at 900°F:

3.6.2.1 Finished Parts: Finished parts, heated to $900^{\circ}\text{F} \pm 3$, held at heat for 30 min before testing, and tested at $900^{\circ}\text{F} \pm 3$, shall have an ultimate tensile load not lower than that specified in Table 2 and shall be tested to failure, first measuring and recording the maximum tensile load achieved. If the size or shape of the part is such that failure would occur outside the threaded section but the part can be tested satisfactorily, such as parts having a shank diameter equal to or less than the thread root diameter or having an undercut, parts shall conform to only the tensile strength requirements of 3.6.2.2; for such parts, the diameter of the area on which stress is based shall be the actual measured minimum diameter of the part. Tension fasteners with either standard double hexagon or hexagon type heads having a minimum metal condition in the head equal to the design parameters specified in AS1132 shall not fracture in the head-to-shank fillet radius except when this radius is associated with an undercut or with a shank diameter less than the minimum pitch diameter of the thread.

SAE AS7459

3.6.2.2 **Machined Test Specimens:** If the size or shape of the part is such that a tensile test cannot be made on the part, tensile tests shall be conducted on specimens prepared as in 4.5 shall meet the following requirements when heated to $900^{\circ}\text{F} \pm 3$, held at heat for 30 min before testing, and tested in accordance with ASTM E 21 at $900^{\circ}\text{F} \pm 3$:

- a. Ultimate Tensile Strength at 900°F , minimum: 145 000 psi
- b. Elongation in 4D, minimum: 10%
- c. Reduction of Area, minimum: 30%

3.6.3 **Hardness:** Shall be uniform within the range 42 to 46 HRC, but hardness of the threaded section and of the head-to-shank fillet area may be higher as a result of the cold working operations.

3.6.4 **Fatigue Strength:** Finished parts tested in tension-tension fatigue at room temperature with maximum load as specified in Table 2 and minimum load equal to 10% of maximum load shall have an average life of not less than 65 000 cycles with no part having life less than 45 000 cycles. Tests need not be run beyond 130 000 cycles. Life of parts which do not fail in less than 130 000 cycles shall be taken as 130 000 cycles for purposes of computing average life. If the shank diameter of the part is less than the minimum pitch diameter of the thread, parts shall withstand fatigue testing as above using loads sufficient to produce a maximum stress of 100 000 psi and a minimum stress of 10 000 psi. The above requirements apply only to parts 0.138 in and larger in nominal thread size with round, square, hexagonal, or double hexagonal heads designed for tension applications and not having an undercut and having a head-to-shank fillet radius equal to or larger than that specified in AS1132; for all parts to which the above requirements do not apply, fatigue test requirements shall be as specified on the part drawing.

3.6.5 **Stress-Rupture Properties at 900°F :**

3.6.5.1 **Finished Parts:** Parts, maintained at $900^{\circ}\text{F} \pm 3$ while the load specified in Table 2 is applied continuously, shall not rupture in less than 100 h. If the shank diameter of the part is less than the maximum minor (root) diameter of the thread but the part can be tested satisfactorily, parts shall conform to the requirements of 3.6.5.1.1.

3.6.5.1.1 Parts having a shank diameter less than the maximum minor (root) diameter of the thread shall be tested as in 3.6.5.1 except that the load shall be as specified in 3.6.5.2. The diameter of the area on which stress is based shall be the actual measured minimum diameter of the part.

3.6.5.2 **Machined Test Specimens:** If the size or shape of the part is such that a stress-rupture test cannot be made on the part, a test specimen prepared as in 4.5, maintained at $900^{\circ}\text{F} \pm 3$ while a load sufficient to produce an initial axial stress of 105 000 psi is applied continuously, shall not rupture in less than 100 h. Tests shall be conducted in accordance with ASTM E 139.

SAE AS7459

3.7 Quality:

Parts shall be uniform in quality and condition, clean, sound, smooth, and free from burrs and foreign materials, and from imperfections detrimental to usage of the parts.

3.7.1 Macroscopic Examination: Parts or sections of parts, as applicable, shall be etched in a solution consisting of approximately 50% hydrochloric acid (sp gr 1.19), and 50% water for sufficient time to reveal flow lines but not longer than 15 min, and then be examined at a magnification of approximately 20X to determine conformance to the requirements of 3.7.1.1, 3.7.1.2, and 3.7.1.3, except that examination for thread imperfections as specified in 3.7.1.3 should be made by microscopic examination of specimens polished and etched as in 3.7.2.

3.7.1.1 Flow Lines:

3.7.1.1.1 Head-to-Shank: Examination of a longitudinal section through the part shall show flow lines in the shank, head-to-shank fillet, and bearing surface which follow the contour of the part as shown in Figure 1A, except that slight cutting of flow lines by the oxide and decarburization removal process of 3.3.3 is permissible, as shown in Figure 1B; excessive cutting of flow lines in the shank, head-to-shank fillet, and bearing surface, as shown in Figure 1C, is not permissible except when an undercut is associated with the fillet radius. The head style shown in Figures 1A through 1C is for illustrative purposes only but other symmetrical head styles shall conform to the above requirements. Flow lines in upset heads on parts having special heads, such as Dee- or Tee-shaped heads or thinner than AS1132 standard heads, shall be as agreed upon by purchaser and vendor.

3.7.1.1.2 Threads: Flow lines in threads shall be continuous, shall follow the general thread contour, and shall be of maximum density at root of thread (see Figure 3).

3.7.1.2 Internal Defects: Examination of longitudinal sections of the head and shank and of the threads shall reveal no cracks, laps, or porosity except laps in threads as permitted in 3.7.1.3.3 and 3.7.1.3.4. The head and shank section shall extend not less than $D/2$ from the bearing surface of the head and the threaded section shall extend not less than $D/2$ beyond the thread runout where "D" is the nominal diameter of the shank after heading. If the two sections would overlap, the entire length of the part shall be sectioned and examined as a whole.

3.7.1.3 Threads:

3.7.1.3.1 Root defects such as laps, seams, notches, slivers, folds, roughness, and oxide scale are not permissible (see Figure 4).

3.7.1.3.2 Multiple laps on the flanks of threads are not permissible regardless of location. Single laps on the flanks of threads that extend toward the root are not permissible (see Figures 5 and 6).

SAE AS7459

3.7.1.3.3 There shall be no laps along the flank of the thread below the pitch diameter (see Figure 7). A single lap is permissible along the flank of the thread above the pitch diameter on either the pressure or nonpressure flank (one lap at any cross-section through the thread) provided it extends toward the crest and generally parallel to the flank (see Figure 7).

3.7.1.3.4 Crest craters, crest laps, or a crest lap in combination with a crest crater are permissible provided that the imperfections do not extend deeper than 20% of the basic thread height (see Table 1) as measured from the thread crest when the thread major diameter is at minimum size (see Figure 8). The major diameter of the thread shall be measured prior to sectioning. As the major diameter of the thread approaches maximum size, values for depth of crest crater and crest lap imperfections listed in Table 1 may be increased by one-half of the difference between the minimum major diameter and the actual major diameter as measured on the part.

3.7.2 Microscopic Examination: Specimens cut from parts shall be polished, etched in 2% Nital, and examined at a magnification not lower than 100X to determine conformance to the requirements of 3.7.1.3, 3.7.2.1, 3.7.2.2., and 3.7.2.3.

3.7.2.1 Microstructure: Parts shall have microstructure of tempered martensite.

3.7.2.2 Surface Hardening: Parts shall have no change in hardness from core to surface except as produced during cold working of the head-to-shank fillet radius and during rolling of threads. There shall be no evidence of carburization, recarburization, or nitriding. In case of dispute over results of the microscopic examination, microhardness testing shall be used as a referee method; a Vickers hardness reading within 0.003 in of an unrolled surface which exceeds the reading in the core by more than 30 points shall be evidence of nonconformance to this requirement.

3.7.2.3 Decarburization:

3.7.2.3.1 The bearing surface of the head, the head-to-shank fillet radius, the shank, and the threads shall be free from decarburization.

3.7.2.3.2 Depth of decarburization on those surfaces of the head which are the original surfaces of the bar shall be not greater than that permitted by the applicable material specification for the size of stock used to make the part.

3.7.2.3.3 Depth of decarburization on the OD of the head of cylindrical head parts is not restricted.

3.7.2.3.4 Depth of decarburization at any point on the surface not covered by 3.7.2.3.1, 3.7.2.3.2, or 3.7.2.3.3 shall not exceed 0.002 in.

3.7.3 Magnetic Particle Inspection: Parts shall be subject to magnetic particle inspection in accordance with AMS 2640; any method may be used but resolution of disputed rejections shall be based upon the wet, continuous, fluorescent suspension method using amperages shown in 3.7.3.3.

SAE AS7459

3.7.3.1 The following conditions shall be cause for rejection of parts inspected.

3.7.3.1.1 Discontinuities transverse to grain flow (i.e., at an angle of more than 10° to the axis of the shank), such as grinding checks and quench cracks.

3.7.3.1.2 Longitudinal indications (i.e., at an angle of 10° or less to the axis of the shank) due to imperfections other than seams, forming laps, and nonmetallic inclusions.

3.7.3.2 The following conditions shall be considered acceptable on parts inspected.

3.7.3.2.1 Parts having longitudinal indications (i.e., at an angle of 10° or less to the axis of the shank) of seams, forming laps, and nonmetallic inclusions parallel to the grain flow that are within the limits specified in 3.7.3.2.2 through 3.7.3.2.5 provided the separation between indications in all directions is not less than 0.062 in.

3.7.3.2.2 Sides of Head: There shall be not more than six indications or subsurface indications per head. The length of each indication may be the full height of the surface but no indication shall break over either edge to a depth greater than 0.031 in or the equivalent of the basic thread height (see Table 1), whichever is less.

3.7.3.2.3 Shank or Stem: There shall be not more than 10 subsurface and hairline surface indications. The length of any indication may be the full length of the surface but the total length of all indications shall not exceed twice the length of the surface. No indication shall break into a fillet or over an edge.

3.7.3.2.4 Threads: There shall be no indications, except as permitted in 3.7.1.3.

3.7.3.2.5 Top of Head and End of Stem: The number of indications is not restricted, but the depth of any individual indication shall not exceed 0.010 in, as shown by sectioning representative samples. No indication, except those of 3.7.3.2.2, shall break over an edge.

3.7.3.3 Procedures:

3.7.3.3.1 Circular Magnetization: 800 to 1000 A/in² of contact area passed through the part longitudinally.

3.7.3.3.2 Longitudinal Magnetization: Sufficient to produce 5000 A-turns per inch of shank diameter with the part placed in a standard solenoid of appropriate size.

4. QUALITY ASSURANCE PROVISIONS:

4.1 Responsibility for Inspection:

The vendor of parts shall supply all samples and shall be responsible for performing all required tests. Purchaser reserves the right to perform such confirmatory testing as deemed necessary to ensure that the parts conform to the requirements of this specification.

SAE AS7459

4.2 Classification of Tests:

The inspection and testing of parts are classified as follows:

- a. Acceptance tests which are to be performed on each production inspection lot. A summary of acceptance tests is specified in Table 3.
- b. Periodic tests which are to be performed periodically on production lots at the discretion of the vendor or purchaser. Ultimate tensile strength test at 900°F in 3.6.2, fatigue strength test in 3.6.4, and stress-rupture test in 3.6.5 are classified as periodic tests and shall be performed at a frequency selected by the vendor unless frequency of testing is specified by purchaser.

4.3 Acceptance Test Sampling:

- 4.3.1 Nondestructive Test - Visual and Dimensional: A random sample will be selected from each production inspection lot; the size of the sample to be as specified in Table 4. The classification of defects for parts shall be as specified in Table 5. Defects not classified in Table 5 shall be classified as Minor B defects. All dimensional characteristics are considered defective when out of tolerance.
- 4.3.2 Hardness Test (See 3.6.3): A random sample shall be selected from each production inspection lot; the size of the sample shall be as specified in Table 6, Column A. The sample units may be selected from those that have been subjected to and passed the visual and dimensional inspection, with additional units selected at random from the production inspection lot as necessary.
- 4.3.3 Magnetic Particle Inspection: A random sample shall be selected from each production inspection lot; the size of the sample shall be as specified in Table 4 and the AQL shall be as specified in Table 5. The sample units may be selected from those that have been subjected to and passed the visual and dimensional inspection, with additional units selected at random from the production inspection lot as necessary.
- 4.3.4 Destructive Tests: A random sample shall be selected from each production inspection lot; the size of the sample shall be as specified in Table 6, Column B. The sample units may be selected from those that have been subjected to and passed the nondestructive tests and the magnetic particle inspection, with additional units selected at random from the production inspection lot as necessary.
- 4.3.5 Acceptance Quality: The acceptance quality level (AQL) and acceptance number of defectives for the acceptance tests shall be as specified in Tables 4 and 6.

4.4 Periodic Tests Sampling:

As agreed upon by purchaser and vendor.

SAE AS7459

4.5 Test Specimens:

Specimens for tensile and stress-rupture testing of machined test specimens shall be of standard proportions in accordance with ASTM E 8 with either 0.250 in diameter at the reduced parallel gage section or smaller specimens proportional to the standard when required. Specimens shall be machined from finished parts or coupons of the same lot of alloy and be processed together with the parts they represent. Specimens shall be machined from the center of parts 0.750 in and under in diameter, from the center of coupons 0.800 in and under in nominal diameter or distance between parallel sides, and from mid-radius of larger parts or coupons.

4.6 Reports:

The vendor of parts shall furnish with each shipment a report stating that the chemical composition of the parts conforms to the applicable material specification, showing the results of tests to determine conformance to the room temperature tensile strength requirements, and stating that the parts conform to the other technical requirements of this specification. This report shall include the purchase order number, AS7459, lot number, contractor, or other direct supplier of material, part number, nominal size, and quantity.

4.7 Resampling and Retesting:

If any part or specimen used in the tests fails to meet the specified requirements for design as in 3.2, mechanical properties and quality as in 3.6 and 3.7, disposition of parts may be based on the results of testing three additional parts or specimens for each original nonconforming part or specimen. Failure of any retest part or specimen to meet the specified requirement shall be cause for rejection of the parts represented and no additional testing shall be permitted. Results of all tests shall be reported.

5. PREPARATION FOR DELIVERY:

5.1 Packaging and Identification:

5.1.1 Parts having different part numbers shall be packed in separate containers.

5.1.2 Each container of parts shall be marked to show not less than the following information:

FASTENERS, STEEL, LOW ALLOY, HEAT RESISTANT
AS7459
PART NUMBER
PURCHASE ORDER NUMBER
QUANTITY
MANUFACTURER'S IDENTIFICATION

5.1.3 Threaded fasteners shall be suitably protected from abrasion and chafing during handling, transportation, and storage.

SAE AS7459

5.1.4 Containers of parts shall be prepared for shipment in accordance with commercial practice and in compliance with applicable rules and regulations pertaining to the handling, packaging, and transportation of the product to ensure carrier acceptance and safe delivery.

5.1.5 For direct U.S. Military procurement, packaging shall be in accordance with MIL-STD-2073-1, industrial packaging, unless Level A is specified in the request for procurement.

6. ACKNOWLEDGMENT:

A vendor shall mention this specification number in all quotations and when acknowledging purchase orders.

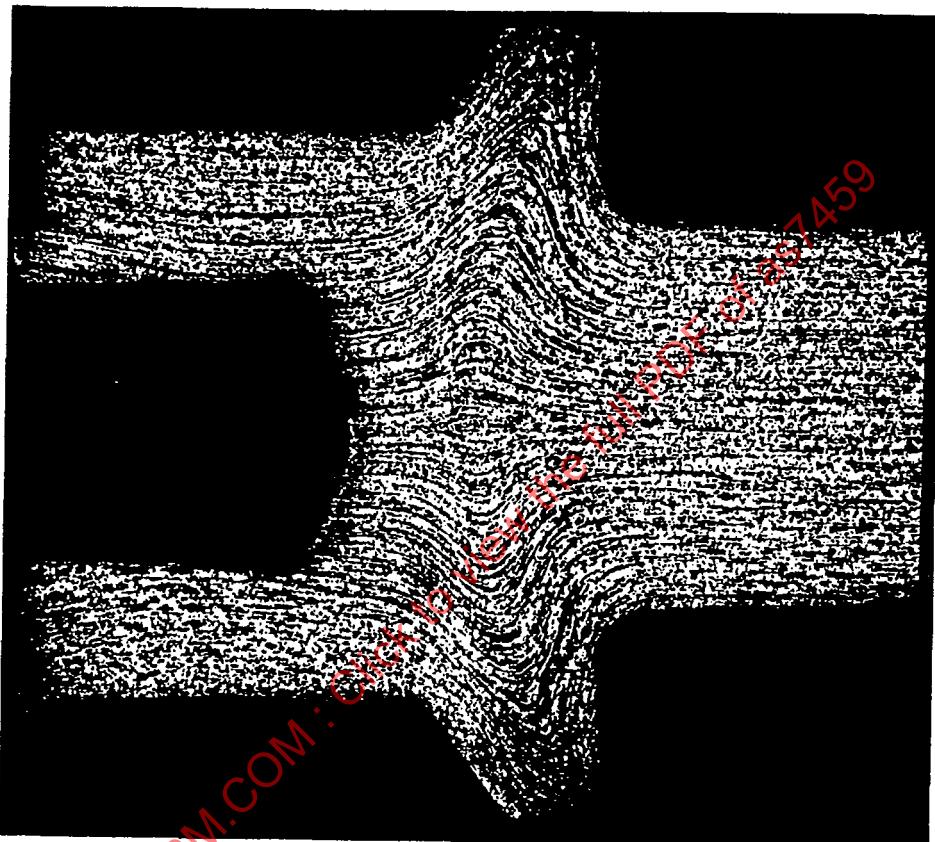
7. REJECTIONS:

Parts not conforming to this specification, or to modifications authorized by purchaser, will be subject to rejection.

8. NOTES:

8.1 Direct U.S. Military Procurement:

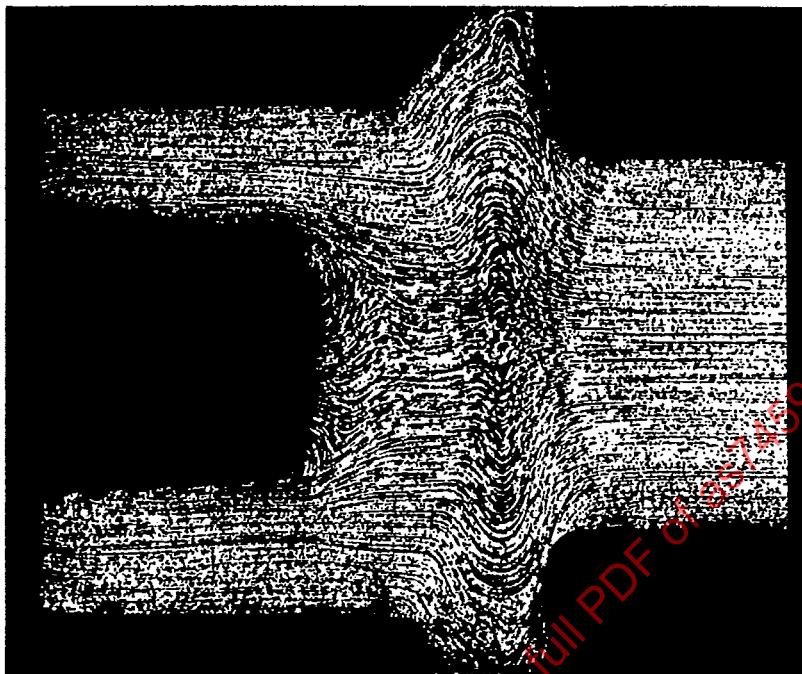
Purchase documents should specify the following:


Title, number, and date of this specification
Part number of parts desired
Quantity of parts desired
Level A packaging, if required (see 5.1.5)

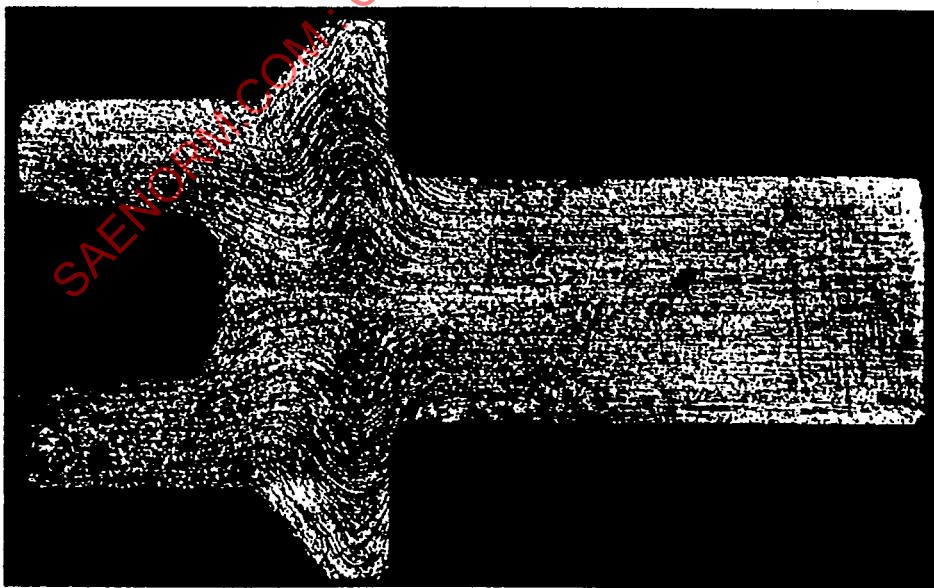
8.2 Key Words:

Bolts, screws, procurement specification

PREPARED BY SAE COMMITTEE E-25,
GENERAL STANDARDS FOR AEROSPACE PROPULSION SYSTEMS

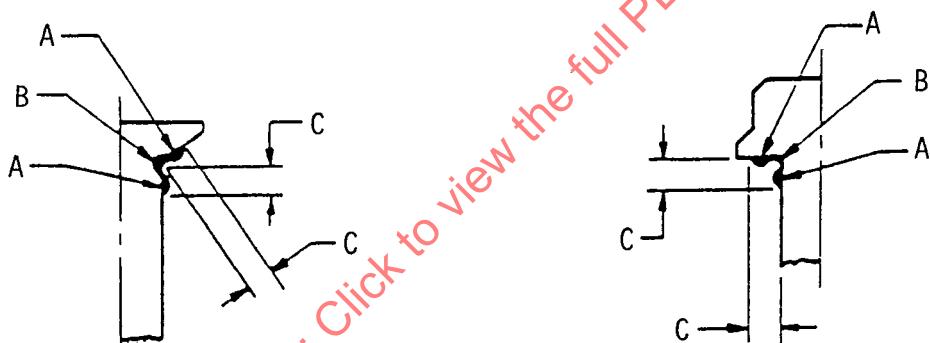

SAE AS7459

NOTE: Showing a smooth, well formed grain flow following the contour of the under head fillet radius.


FIGURE 1A - Satisfactory Grain Flow

SAE AS7459

NOTE: Showing maximum permissible cutting of grain flow after machining to remove contamination oxide.


FIGURE 1B - Minimum Acceptable Standard

NOTE: Showing excessive cutting of grain flow in the shank, fillet, and bearing surface which is not permissible.

FIGURE 1C - Unacceptable Grain Flow

SAE AS7459

Nominal Bolt Diameter
inch

C, maximum
inch

Up to 0.3125, excl	0.062
0.3125 and 0.375	0.094
0.4375 to 0.625, incl	0.125
0.750 to 1.000, incl	0.156
Over 1.000	0.188

FIGURE 2 - Permissible Distortion From Fillet Working

SAE AS7459

FIGURE 3 - Flow Lines, Rolled Thread

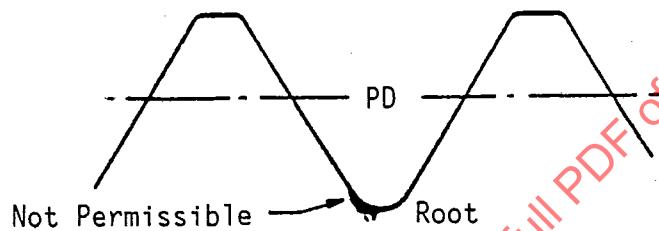


FIGURE 4 - Root Defects, Rolled Thread

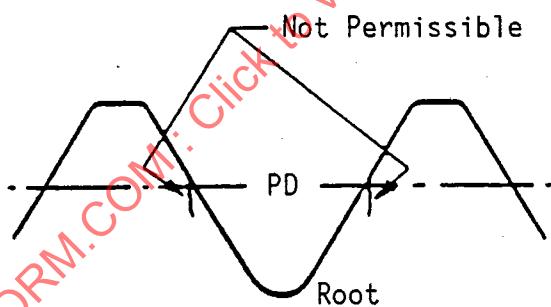


FIGURE 5 - Laps Below PD Extending Toward Root, Rolled Thread

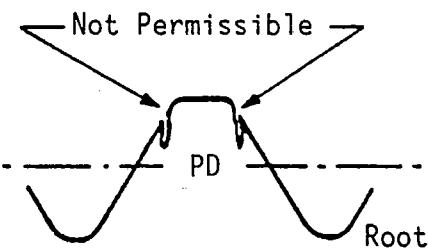


FIGURE 6 - Laps Above PD Extending Toward Root, Rolled Thread

SAE AS7459

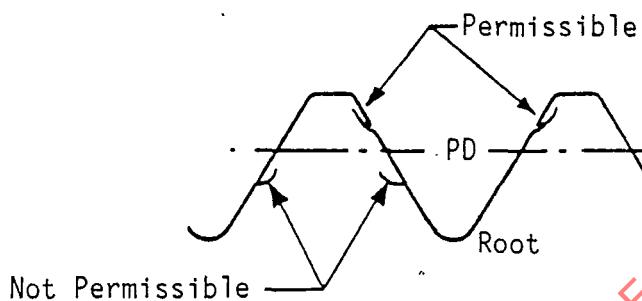
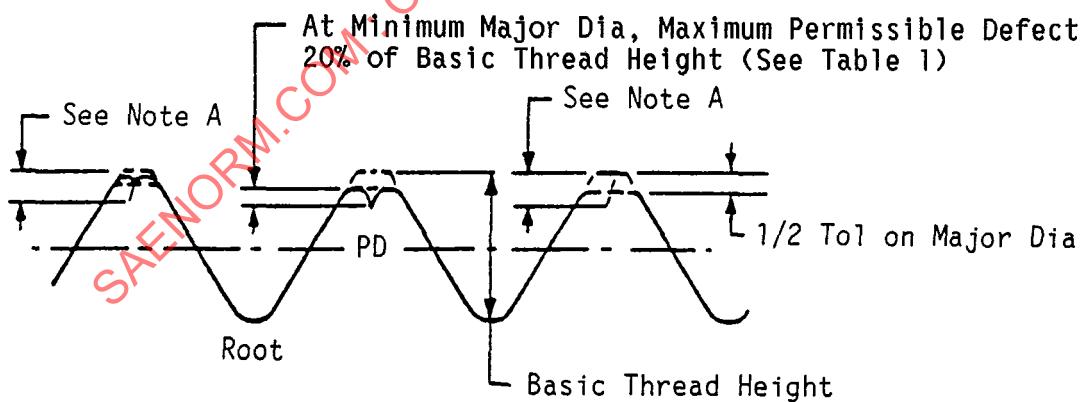



FIGURE 7 - Laps Extending Towards Crest, Rolled Thread

Note A: Depth of defect equals 20% of basic thread height plus 1/2 the difference of the actual major diameter and minimum major diameter.

FIGURE 8 - Crest Craters and Crest Laps, Rolled Thread

SAE AS7459

TABLE 1 - Thread Height

Thread Pitches Per Inch n	Basic Thread Height Ref (See Note 1) inch	20% Basic Thread Height inch
80	0.0081	0.0016
72	0.0090	0.0018
64	0.0102	0.0020
56	0.0116	0.0023
48	0.0135	0.0027
44	0.0148	0.0030
40	0.0163	0.0033
36	0.0181	0.0036
32	0.0203	0.0041
28	0.0232	0.0046
24	0.0271	0.0054
20	0.0325	0.0065
18	0.0361	0.0072
16	0.0406	0.0081
14	0.0464	0.0093
13	0.0500	0.0100
12	0.0542	0.0108
11	0.0591	0.0118
10	0.0650	0.0130
9	0.0722	0.0144
8	0.0813	0.0163

Note 1: Basic thread height is defined as being equivalent to 0.650 times the pitch, where pitch equals 1/n.