

ADOPTION NOTICE

AMS 4959, "Titanium Alloy Wire 13.5V- 11Cr - 3Al SpringTemper" was adopted on 10 January 1994 for use by the Department of Defense (DoD). Proposed changes by DoD activities must be submitted to the DoD Adopting Activity: ASC/ENOSD, Building 125,2335 Seventh Street, Suite 6, Wright-Patterson AFB OH 45433-7809, DoD activities may obtain copies of this standard from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094. The private sector and other Government agencies may purchase copies from the Society of Automotive Engineers Inc., 400 Commonwealth Drive, Warrendale, PA 15096-0001.

Custodians:
Army - MR
Navy - AS

Adopting Activity:
Air Force - 11
(Proj No. 9505-0280)

FSC 9505

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

400 Commonwealth Drive, Warrendale, PA 15096-0001

AEROSPACE MATERIAL SPECIFICATION

Submitted for recognition as an American National Standard

AMS 4959C

Issued 1 JUL 1976

Revised 1 OCT 1993

Superseding AMS 49596B

TITANIUM ALLOY WIRE
13.5V - 11Cr - 3Al
Spring Temper

UNS R58010

1. SCOPE:

1.1 Form:

This specification covers a titanium alloy in the form of cold drawn wire.

1.2 Application:

This wire has been used typically for springs requiring corrosion resistance and high tensile strength, but usage is not limited to such applications.

1.2.1 Certain processing procedures and service conditions may cause this wire to become subject to stress-corrosion cracking; ARP982 recommends practices to minimize such conditions.

1.3 Classification:

Wire shall be classified as follows:

Type 1 - Centerless ground

Type 2 - As drawn

1.3.1 Either Type 1 or Type 2 may be supplied unless a specific type is ordered.

2. APPLICABLE DOCUMENTS:

The following publications form a part of this specification to the extent specified herein. The latest issue of SAE publications shall apply. The applicable issue of other publications shall be the issue in effect on the date of the purchase order.

SAE Technical Standards Board Rules provide that: 'This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.'

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.

2.1 SAE Publications:

Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001.

AMS 2241 Tolerances, Corrosion and Heat Resistant Steel, Iron Alloy, Titanium, and Titanium Alloy Bars and Wire

MAM 2241 Tolerances, Metric, Corrosion and Heat Resistant Steel, Iron Alloy, Titanium, and Titanium Alloy Bars and Wire

AMS 2249 Chemical Check Analysis Limits, Titanium and Titanium Alloys

AMS 2809 Identification, Titanium and Titanium Alloy Wrought Products

ARP982 Minimizing Stress-Corrosion Cracking in Wrought Titanium Alloy Products

2.2 ASTM Publications:

Available from ASTM, 1916 Race Street, Philadelphia, PA 19103-1187.

ASTM E 8 Tension Testing of Metallic Materials

ASTM E 8M Tension Testing of Metallic Materials (Metric)

ASTM E 120 Chemical Analysis of Titanium and Titanium Alloys

ASTM E 1409 Determination of Oxygen in Titanium and Titanium Alloys by the Inert Gas Fusion Technique

ASTM E 1447 Determination of Hydrogen in Titanium and Titanium Alloys by the Inert Gas Fusion Thermal Conductivity Method

2.3 U. S. Government Publications:

Available from DODSSP, Subscription Services Desk, Building 4D, 700 Robbins Avenue, Philadelphia, PA 19111-5094.

MIL-STD-163 Steel Mill Products, Preparation for Shipment and Storage

3. TECHNICAL REQUIREMENTS:**3.1 Composition:**

(R)

Shall conform to the percentages by weight shown in Table 1, determined by analytical methods in accordance with ASTM E 120, ASTM E 1409, or ASTM E 1447, by spectrochemical methods, or by other analytical methods acceptable to purchaser.

TABLE 1 - Composition

Element	Min	Max
Vanadium	12.50	14.50
Chromium	10.00	12.00
Aluminum	2.50	3.50
Iron	--	0.35
Oxygen	--	0.17
Carbon	--	0.05
Nitrogen	--	0.050 (500 ppm)
Hydrogen	--	0.030 (300 ppm)
Yttrium (3.1.1)	--	0.005 (50 ppm)
Residual Elements, each (3.1.1)	--	0.10
Residual Elements, total (3.1.1)	--	0.40
Titanium	remainder	

3.1.1 Determination not required for routine acceptance.

3.1.2 Check Analysis: Composition variations shall meet the requirements of AMS 2249.

3.2 Melting Practice:

(R) Alloy shall be multiple melted. Melting cycle(s) prior to the final melting cycle shall be made using consumable electrode, nonconsumable electrode, electron beam, or plasma arc melting practice(s). The final melting cycle shall be made under vacuum using consumable electrode practice with no alloy additions permitted.

3.2.1 The atmosphere for nonconsumable electrode melting shall be vacuum or shall be argon and/or helium at an absolute pressure not higher than 1000 mm of mercury.

3.2.2 The electrode tip for nonconsumable electrode melting shall be water-cooled copper.

3.3 Condition:

Spring temper, cold drawn to required size. When Type 1 is supplied, wire shall be centerless ground to size after the final cold drawing operation.

3.3.1 Wire ordered in coil form shall be coated with a lubricant suitable for use on automatic spring winding machines.

3.4 Properties:

Wire shall conform to the following requirements:

3.4.1 As Cold Drawn:

3.4.1.1 Wrapping: Wire shall withstand, without cracking, wrapping at room temperature one full turn around a diameter equal to the nominal diameter of the wire.

3.4.1.2 Coiling: Wire shall show a uniform pitch with no splits or fractures when wound in a tightly closed coil on an arbor having a diameter as specified in Table 2 and the resultant coil stretched to a permanent set of four times its wound length.

TABLE 2A - Coiling Parameters, Inch/Pound Units

Nominal Diameter (D) Inch	Arbor Diameter Inch
Up to 0.034, incl	0.102
Over 0.034 to 0.045, incl	0.145
Over 0.045 to 0.055, incl	0.212
Over 0.055 to 0.125, incl	0.250
Over 0.125	2D

TABLE 2B - Coiling Parameters, SI Units

Nominal Diameter (D) mm	Arbor Diameter mm
Up to 0.86, incl	2.59
Over 0.86 to 1.14, incl	3.68
Over 1.14 to 1.40, incl	5.38
Over 1.40 to 3.18, incl	6.35
Over 3.18	2D

3.4.2 After Aging: Wire shall have the following properties after being aged by heating to $800^{\circ}\text{F} \pm 10$ ($427^{\circ}\text{C} \pm 6$), holding at heat for 10 hours ± 0.25 , and cooling in air:

3.4.2.1 Tensile Properties: Shall be as specified in Table 3, determined in accordance with ASTM E 8 or ASTM E 8M.

TABLE 3A - Minimum Tensile Properties, Inch/Pound Units

Nominal Diameter Inch	Tensile Strength ksi	Elongation in 4D %	Reduction of Area %
Up to 0.065, incl	250 - 300	4	17
Over 0.065 to 0.100, incl	240 - 290	5	17
Over 0.100 to 0.160, incl	230 - 280	5	18
Over 0.160 to 0.225, incl	220 - 270	6	18
Over 0.225 to 0.376, incl	210 - 260	6	20
Over 0.225 to 0.376, incl	200 - 240	6	20
Over 0.500 to 0.561, incl	180 - 220	6	20

TABLE 3B - Minimum Tensile Properties, SI Units

Nominal Diameter mm	Tensile Strength MPa	Elongation in 4D %	Reduction of Area %
Up to 1.65, incl	1724 - 2069	4	17
Over 1.65 to 2.54, incl	1655 - 2000	5	17
Over 2.54 to 4.06, incl	1586 - 1931	5	18
Over 4.06 to 5.72, incl	1517 - 1862	6	18
Over 5.72 to 9.55, incl	1448 - 1793	6	20
Over 9.55 to 12.70, incl	1379 - 1655	6	20
Over 12.70 to 14.25, incl	1241 - 1517	6	20

3.5 Quality:

Wire, as received by purchaser, shall be uniform in quality and condition, sound, and free from foreign materials and from imperfections detrimental to usage of the wire.

3.5.1 The surface of the wire shall have a smooth finish free from pits and abrasions, and shall be cylindrical, clean, and free from kinks, twists, laps, seams, scrapes, splits, and other imperfections.

3.6 Tolerances:

(R) Wire shall conform to all applicable requirements of AMS 2241 or MAM 2241.