

NFPA

415

AIRCRAFT FUELING RAMP DRAINAGE 1977

Copyright © 1977

All Rights Reserved

NATIONAL FIRE PROTECTION ASSOCIATION

470 Atlantic Avenue, Boston, MA 02210

Official Interpretations

The Committee responsible for this document will render official interpretations of the literal text and of the intent of the Committee when the text was adopted.

A request for an Official Interpretation shall be directed to the Chairman of the Committee concerned, at the National Fire Protection Association, 470 Atlantic Avenue, Boston, Massachusetts 02210, supplying five identical copies of a statement in which shall appear specific references to a single problem, and identifying the portion of the document (article, section, paragraph, etc.) for which the interpretation is requested. Such a request shall be on the business stationery of the requester and shall be duly signed. A request involving an actual field situation shall so state and all parties involved shall be named.

Licensing Provision — This document is copyrighted by the National Fire Protection Association (NFPA).

1. Adoption by Reference — Public authorities and others are urged to reference this document in laws, ordinances, regulations, administrative orders or similar instruments. Any deletions, additions and changes desired by the adopting authority must be noted separately. Those using this method are requested to notify the NFPA (Attention: Assistant Vice President — Standards) in writing of such use. The term "adoption by reference" means the citing of title and publishing information only.

2. Adoption by Transcription — **A.** Public authorities with law-making or rule-making powers only, upon written notice to the NFPA (Attention: Assistant Vice President — Standards), will be granted a royalty-free license to print and republish this document in whole or in part, with changes and additions, if any, noted separately, in laws, ordinances, regulations, administrative orders or similar instruments having the force of law, provided that: (1) due notice of NFPA's copyright is contained in each law and in each copy thereof; and, (2) that such printing and republication is limited to numbers sufficient to satisfy the jurisdiction's law-making or rule-making process. **B.** Public authorities with advisory functions and all others desiring permission to reproduce this document or its contents in whole or in part in any form shall consult the NFPA.

All other rights, including the right to vend, are retained by NFPA.

(For further explanation, see the Policy Concerning the Adoption, Printing and Publication of NFPA Documents which is available upon request from the NFPA.)

Statement on NFPA Procedures

This material has been developed under the published procedures of the National Fire Protection Association, which are designed to assure the appointment of technically competent Committees having balanced representation. While these procedures assure the highest degree of care, neither the National Fire Protection Association, its members, nor those participating in its activities accepts any liability resulting from compliance or noncompliance with the provisions given herein, for any restrictions imposed on materials or processes, or for the completeness of the text.

NFPA has no power or authority to police or enforce compliance with the contents of this document and any certification of products stating compliance with requirements of this document is made at the peril of the certifier.

See Official NFPA Definitions at the back of this pamphlet.

Standard on
Aircraft Fueling Ramp Drainage

NFPA 415 — 1977

1977 Edition of 415

This standard is the work of the NFPA Sectional Committee on Airport Facilities which reports to the Association through the NFPA Correlating Committee on Aviation. This 1977 edition was approved at the NFPA's Fall Meeting held in Atlanta, Georgia, Nov. 14-17, 1977. It is a reconfirmation of the last previous edition dated 1973. The 1977 text has been renumbered to conform to the NFPA Manual of Style, and SI units have been added.

Origin and Development of 415

In 1960, the Committee secured Tentative Adoption of this Standard and Official Adoption followed in 1961. In compliance with NFPA Regulations Governing Technical Committees, the 1961 edition was reviewed by the Committee for reconfirmation in 1966, a five-year period having passed. In 1966 one paragraph was added and two of the diagrams were redrawn to improve legibility. In 1973 the standard was revised to separate the mandatory ("shall") provisions from other recommendations which have been placed in the Appendix. This 1977 edition is a reconfirmation of the 1973 edition.

Aviation Correlating Committee

James J. Brenneman, Chairman

Fire Protection Engineer
United Airlines, San Francisco International Airport
San Francisco, CA 94128

James J. Brenneman, Chairman,
Sectional Committee on Aircraft Rescue and
Fire Fighting

Oscar W. Bush, Vice-Chairman,
Sectional Committee on Aircraft Fuel
Servicing

F. P. DeGiovanni, Vice-Chairman,
Sectional Committee on Airport Facilities

B. V. Hewes, Vice-Chairman,
Sectional Committee on Aircraft Rescue
and Fire Fighting

J. A. O'Donnell, Chairman,
Sectional Committee on Aircraft Fuel
Servicing

Calvin E. Smith, Chairman,
Sectional Committee on Airport Facilities

Kenneth A. Zuber, Chairman,
Sectional Committee on Aircraft Maintenance
Operations

Sectional Committee on Airport Facilities

Calvin E. Smith, Chairman

Director, Facilities Engineering and Development
Metropolitan Air Facilities Division, Pan American World Airways
Teterboro Airport, Teterboro, N.J. 07608

F. P. DeGiovanni, Vice-Chairman

Project Manager, Facilities
American Airlines, 633 Third Avenue, New York, N.Y. 10017

Arthur E. Cote, Secretary (Nonvoting)

National Fire Protection Assn., 470 Atlantic Ave., Boston, MA 02210

H. T. Anderson, Asst. for Fire Protection
Engineering, U. S. Department of the
Navy, Naval Facilities Engineering
Command

Donald S. Armstrong, Air Canada, Air
Canada Base, Montreal International
Airport

Charles F. Averill, Grinnell Fire Protection
Systems Co., Inc. (rep. National
Automatic Sprinkler & Fire Control Association)

Gene E. Benzenberg, Alison Controls Inc.
James J. Brenneman, Fire Protection
Engineer, United Airlines

R. G. Canning, Office of the Canadian
Forces Fire Marshal, Canadian Forces
Headquarters, National Defence Head-
quarters

J. Walter Coon, Burns & McDonnell

J. M. Dewey, Kemper Insurance Cos.,
HPR Department (rep. American Mutual
Insurance Alliance)

Donald A. Diehl, Senior Fire Protection
Engineer, Pyrotronics, Inc. (rep. National
Electrical Manufacturers Association)

Herbert W. Eisenberg, Eisenberg, Hayen,
Smith Associates, Inc. (rep. American
Institute of Architects)

Stanley D. Granberg, Corporate Chief of
Fire Protection Engineering, The Boeing
Company

Stuart C. Hand, J. S. Frelinghuysen Cor-
poration

D. C. Hanson, Director Process Engineering, Trans World Airlines, Inc., Kansas City International Airport
E. B. Hoge, Facilities Engineering, Eastern Airlines, Miami International Airport
R. L. Jackson, Exxon Company, USA, (rep. American Petroleum Institute)
L. M. Krasner, Factory Mutual Engineering Corporation
Thomas J. Lett, U.S. Department of the Air Force, Hq. Air Force Contract Management Division (AFSC), Kirtland AFB

Fred Linde, National Foam System, Inc.
A. J. Mercurio, Industrial Risk Insurers (Hartford)
John W. MacDonald, Fire Protection Manager, British Airways
Eugene Schafran, The Port Authority of New York & New Jersey (rep. Airport Operators Council International)
Eugene Stauffer, The Ansul Co. (rep. Fire Equipment Manufacturers Association, Inc.)

Alternates

K. J. Brewer, Office of the Canadian Forces Fire Marshal, Canadian Forces Headquarters (Alternate to R. G. Canning)

James D. Dick, Kemper Insurance Cos., HPR Department (Alternate to J. M. Dewey)

Roger B. Jones, Walter Kidde & Co., Inc. (Alternate to D. A. Diehl)

Donald Maddock, The Ansul Company (Alternate to Eugene Stauffer)

Joseph H. Priest, Grinnell Fire Protection Systems Co., Inc. (Alternate to Charles F. Averill)

V. G. Pyrpyris, The Port Authority of New York & New Jersey (Alternate to Eugene Schafran)

William F. Schacht, Industrial Risk Insurers (Chicago) (Alternate to A. J. Mercurio)

Richard Southers, American Petroleum Institute (Alternate to R. L. Jackson)

Nonvoting

James Hammack, Consultant, San Pedro, CA

Jerome Lederer, President Emeritus, Flight Safety Foundation, Laguna Hills, CA

This list represents the membership at the time the Committee was balloted on the text of this edition. Since that time, changes in the membership may have occurred.

Contents

Chapter 1 General	415- 5
1-1 Definitions and Units	415- 5
1-2 Scope	415- 6
Chapter 2 Design	415- 6
2-1 Aircraft Fueling Ramp Slope and Drain Design	415- 6
Chapter 3 Maintenance	415- 7
3-1 Drain and Separator Maintenance	415- 7
Appendix A Explanatory Material to Text Paragraphs Whose Numbers Are Followed by an Asterisk(*)	415- 8
Appendix B References	415-11

NOTICE

An asterisk (*) following the number or letter designating a paragraph indicates explanatory material on that paragraph in Appendix A.

Standard on
Aircraft Fueling Ramp Drainage

NFPA 415 — 1977

Chapter 1 General

1-1 Definitions and Units.

1-1.1 An Aircraft Fueling Ramp, as used herein, is any outdoor area at an airport, including aprons and hardstands, on which aircraft are normally fueled or defueled.

1-1.2 Units. Metric units of measurement in this standard are in accordance with the modernized metric system known as the International System of Units (SI). Two units (litre and bar), outside of but recognized by SI, are commonly used in international fire protection. These units are listed in Table 1-1.2 with conversion factors.

1-1.2.1 If a value for measurement as given in this standard is followed by an equivalent value in other units, the first stated is to be regarded as the requirement. A given equivalent value may be approximate.

1-1.2.2 The conversion procedure for the SI units has been to multiply the quantity by the conversion factor and then round the result to the appropriate number of significant digits.

Table 1-1.2

Name of Unit	Unit Symbol	Conversion Factor
litre	<i>l</i>	1 gal = 3.785 <i>l</i>
litre per minute per square metre	<i>l/min.m²</i>	1 gpm/ft ² = 40.746 <i>l/min.m²</i>
cubic decimetre	dm ³	1 gal = 3.785 dm ³
pascal	Pa	1 psi = 6894.757 Pa
bar	bar	1 psi = 0.0689 bar
bar	bar	1 bar = 10 ⁶ Pa

For additional conversions and information see ASTM E380-76, *Standard for Metric Practice* (see Appendix B).

1-2 Scope.

1-2.1 The requirements specified herein provide standards for the design of the water drainage system of an aircraft fueling ramp to control the flow of fuel which may be spilled on a ramp and to minimize the resultant possible danger therefrom. Such a drainage system is intended:

- (a) To limit spread of the fuel spill to aircraft loading walkways, structures, passenger loading fingers, or concourses which might result in the liquid or vapors therefrom reaching a source of ignition or might result in the accumulation of dangerous or toxic vapors therein. See Standards on *Aircraft Fuel Servicing*, NFPA 407 (ANSI); *Aircraft Loading Walkways*, NFPA 417; *Aircraft Hangars*, NFPA 409 (ANSI); and *Airport Terminal Bldgs.*, NFPA 416 (ANSI). (See Appendix B.)
- (b) To limit spread of the fuel spill over large areas of the ramp surface and the transmission of vapors by the drainage system which may expose a number of aircraft or other equipment parked or operating on the ramp.
- (c) To limit continued exposure of the spilled liquids to the air and the uncontrolled vaporization of the fuel on ramp surfaces which might result in the creation of serious fire hazard exposure conditions or the release of uncontrolled quantities of vapors creating potential hazards to life and property.
- (d) To provide for the safe disposal of fuel spillage (see also 2-1.3).

Chapter 2 Design

2-1 Aircraft Fueling Ramp Slope and Drain Design.

2-1.1* Aircraft fueling ramps shall slope away from terminal building, fingers, aircraft hangars, aircraft loading walkways, or other structures, with a minimum grade of one percent (1:100) for the first 50 feet (15.2 m). Beyond this distance, the slope to drainage inlets may be reduced to a minimum of 0.5 percent (1:200). Drainage inlets, where provided, shall be a minimum of 50 feet (15.2 m) from such structures.

2-1.2* Effective aircraft fueling ramp drainage as specified herein may be accomplished by any one or a combination of the following methods:

- (a) Use of drain inlets with connected piping.
- (b) Use of open grate trenches as a collection means with connected piping.
- (c) Sloping of the ramp.

2-1.3 The water drainage system of any aircraft fueling ramp shall be so arranged that the fuel or its vapor cannot normally enter into the drainage system of: buildings, areas utilized for automobile parking, public or private streets, or the public side of airport terminal or aircraft hangar structures. In no case shall the design allow fuel to collect on the aircraft fueling ramp or adjacent ground surfaces where it may constitute a fire hazard, or result in a hazardous subsurface accumulation of such fuel.

2-1.4* Aircraft loading walkways shall not be located over any drainage inlet.

2-1.5 The final separator or interceptor for the entire airport drainage system shall be adequate to prevent disposal of combustible quantities of flammable liquids into adjoining properties or waterways.

2-1.6 Grates and drain covers shall be removable to facilitate cleaning and flushing.

2-1.7 If open grate drainage trenches are used as a collection means, such open trenches, including branches, shall not be over 125 feet (38.1 m) in length with a minimum interval of 6 feet (1.8 m) between open trench sections to act as fire stops. Each 125-foot (38.1-m) section shall be individually drained through underground piping. Open trenches shall not be used where they are in line of pedestrian or passenger traffic.

2-1.8 Underground piping and components used in drainage systems shall be noncombustible and inert to fuel.

Chapter 3 Maintenance

3-1 Drain and Separator Maintenance.

3-1.1* Periodic maintenance checks shall be conducted of all ramp drainage systems and interceptors to assure that they are clear of obstructions and function properly.

3-1.2 Large volume flushing with water shall be conducted through appropriate drainage elements after any large fuel spill on the aircraft fueling ramp enters the drainage system.

Appendix A Explanatory Material

This Appendix is not a part of this NFPA Standard on Aircraft Fueling Ramp Drainage but is included for information purposes only.

The following notes, bearing the same number as the text of the *Standard on Aircraft Fueling Ramp Drainage* to which they apply, contain useful explanatory material and references to standards.

A-2-1.1 Consideration should be given to the hydraulic problem in disposal of surface water, safe disposal of fuel which might be spilled on the ramp, and the gradient to be overcome in the movement of aircraft. A ratio of 40,000 square feet (3716 m^2) per drainage inlet should not be exceeded with minimum flow distances to drains but with drain inlets located so as not to endanger aircraft placements within the ramp area so described.

A-2-1.2 The use of slopes alone on aircraft fueling ramps is the least desirable method. The use of slopes and open grate trenches as a collection means with connected piping to dispose of fuel spills is preferable to the use of slopes alone, but is not as desirable for major airports as the use of slopes and drain inlets with connected piping. Figures A-2-1.2 (a) and (b) diagrammatically illustrate two possible fueling ramp drainage arrangements.

A-2-1.4 It is recommended that personnel responsible for locating the aircraft during fueling be informed on the purposes of the drainage system used and the importance of properly locating aircraft with respect to the drainage system provided.

A-3-1.1 It is suggested that maintenance checks be conducted at least four times a year and more often if climatic or other local conditions dictate. Observations made during rain storms may serve as a suitable check for satisfactory operation of the drainage system.

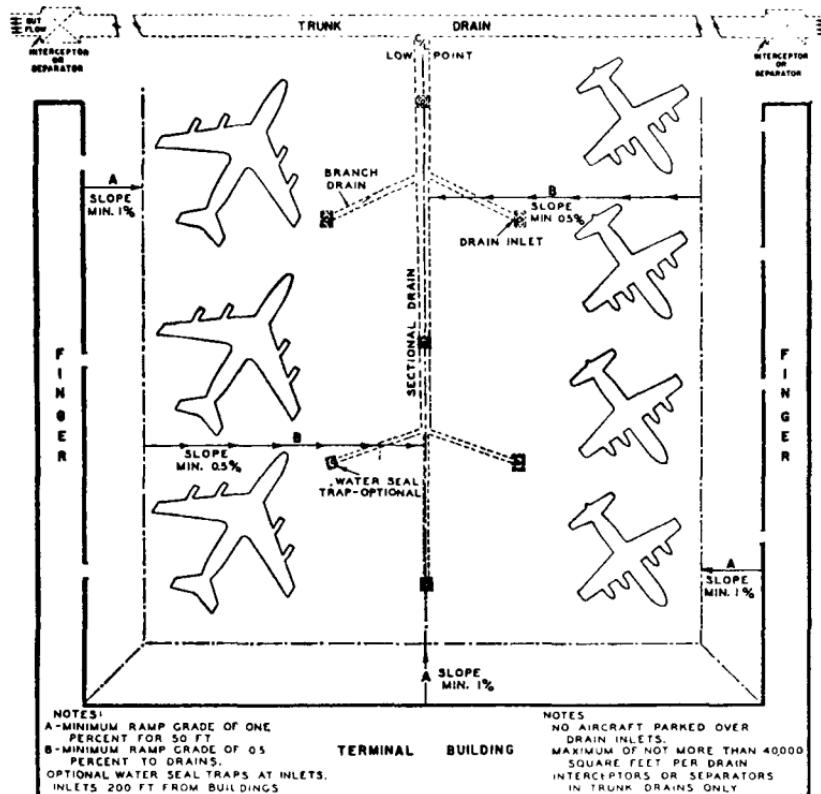


Figure A-2-1.2(a) One possible arrangement of an aircraft fueling ramp drainage system using the optional trapped drain inlets.

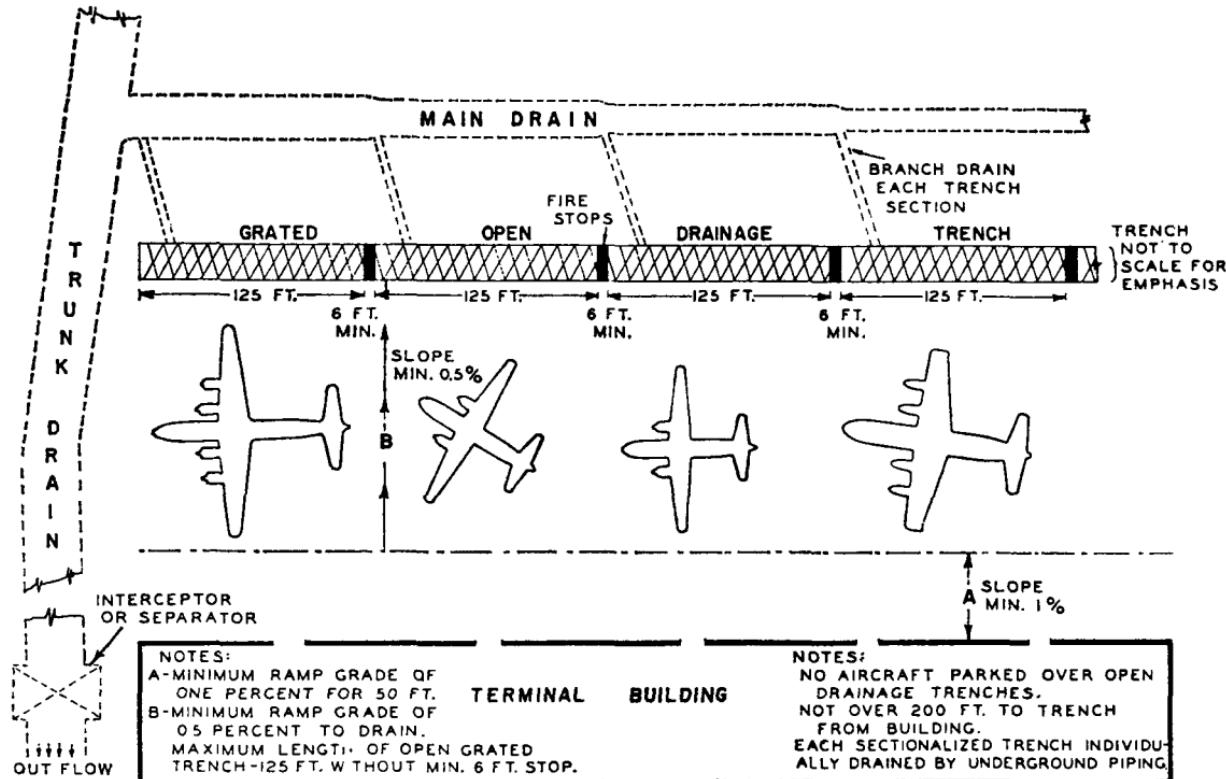


Figure A-2-1.2(b) Another possible arrangement of an aircraft fueling ramp drainage system using a grated open drainage trench.

Appendix B References

This Appendix is not a part of this NFPA Standard, but is included for information purposes only.

B-1 Reference Publications.

B-1-1 NFPA Standards. This publication makes reference to the following NFPA codes and standards and the year dates shown indicate the latest editions available

- (a) NFPA 407-1975, *Aircraft Fuel Servicing*.
- (b) NFPA 409-1975, *Aircraft Hangars*.
- (c) NFPA 416-1975, *Airport Terminal Bldgs*.
- (d) NFPA 417-1977, *Aircraft Loading Walkways*.

B-1-2 The publication makes reference to the following codes and standards and the year dates shown indicate the latest editions available.

Publication designated ASTM is available from the American Society for Testing and Materials, 1916 Race Street, Philadelphia, Pennsylvania 19103.

- (a) ASTM E380-1976, *Standard for Metric Practice*.