TECHNICAL ISO/IEC
SPECIFICATION TS
30135-4

First edition
2014-11-15

Information technology — Digital
publishing — EPUB3 —

Part 4.
Open Container Format

Technologies de l'information’— Publications numériques — EPUB3 —

Partie 4: Format de conteneur ouvert

Reference number
ISO/IEC TS 30135-4:2014(E)

©|SO/IEC 2014

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

ISO/IEC TS 30135-4:2014(E)

! & COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any
means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission.
Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20
Tel. +412274901 11

Fax +41 2274909 47

E-mail copyright@iso.org

Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2014 — All rights reserved

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

ISO/IEC TS 30135-4:2014(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. 1ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental

technology, 1ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives; Part 2.
The main task of the joint technical committee is to prepare International Standards.~Draft Intern
Standards adopted by the joint technical committee are circulated to national bodies forvoting. Publica

an International Standard requires approval by at least 75 % of the national bodies_casting a vote.

In other circumstances, particularly when there is an urgent market requirement for such documents, th
technical committee may decide to publish an ISO/IEC Technical Specification (ISO/IEC TS),

publication if it is approved by 2/3 of the members of the committee casting a vote.

An ISO/IEC TS is reviewed after three years in order to decide whether it will be confirmed for a furthe|
years, revised to become an International Standard, or withdrawn. If the ISO/IEC TS is confirme
reviewed again after a further three years, at which time 4¢must either be transformed into an Intern
Standard or be withdrawn.

Attention is drawn to the possibility that some of the<lements of this document may be the subject of
rights. 1ISO and IEC shall not be held responsible, for identifying any or all such patent rights.

ISO/IEC TS 30135 series were prepared by “Korean Agency for Technology and Standards (as KS

series) with International Digital Publishing Forum and were adopted, under a special “fast-track proc
by Joint Technical Committee ISO/IEC JTC 1, Information technology, in parallel with its approval
national bodies of ISO and IEC.

ISO/IEC TS 30135 consists_of.the following parts, under the general title Information technology — Do
description and processingtanguages — EPUB 3:

— Part 1: Overview
— Part 2;-PUblications
— Part-3: Content Documents

- Part 4: Open Container Format

mation

ational

ion as

e joint
which

represents an agreement between the members of the joint technieal* committee and is accepted for

I three
l, it is
ational

patent

6070
pdure”,
by the

ument

—Part5-Media-Overay

— Part 6: Canonical Fragment Identifier

— Part 7: Fixed-Layout Documents

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

EPUB Open Container Format (OCF) 3.0

Recommended Specification 11 October 2011

THIS VERSION
http://www.idpf.org/epub/30/spec/epub30-ocf-20111011.html

LATEST VERSION

http://maww idpf arg/epub/30/spec/epub30-acf himl

PREVIOUS VERSION
http://www.idpf.org/epub/30/spec/epub30-ocf-20110908.html

A diff of changes from the previous draftis available at this link.
Please refer to the errata for this document, which may include some normative corrections.
Copyright © 2010, 2011 International Digital Publishing Forum™

All rights reserved. This work is protected under Title 17 of the United States ‘€Code. Reproduction and
dissemination of this work with changes is prohibited except with the written permission of the Internation
Digital Publishing Forum (IDPF).

EPUB is a registered trademark of the International Digital Publishing Forum.

Editors

James Pritchett, Learning Ally (formerly Recordingfor the Blind & Dyslexic)

Markus Gylling, DAISY Consortium

TasLE oF CONTENTS

1. Oveniew
1.1. Purpose and Scope
1.2. Terminology
1.3. Conforméance Statements
1.4. Conteft:Conformance
1.5. Reading System Conformance
2. OCF Abstract Container
2.1V Oveniew
2:2. File and Directory Structure
2.3. Relative IRIs for Referencing Other Components
2.4. File Names

25 ETASINF
2.5.1. Container — META-INF/container.xml
2.5.2. Encryption — META-INF/encryption.xm|
2.5.3. Manifest — META-INF/manifest.xml
2.5.4. Metadata — META-INF/metadata.xml
2.5.5. Rights Management — META-INF/rights .xml
2.5.6. Digital Signatures — META-INF/signatures.xml
3. OCF ZIP Container
3.1. Oveniew
3.2. ZIP File Requirements
3.3. OCF ZIP Container Media Type ldentification
4. Font Obfuscation

<idpf>

jal

file:///K:/KERIS%20Documents/2013%EB%85%84%20%ED%91%9C%EC%A4%80%ED%92%88%EC%A7%88%EA%B0%9C%EB%B0%9C%EB%B6%80/%EA%B5%AD%EC%A0%9C%ED%91%9C%EC%A4%80%ED%99%9C%EB%8F%99%20%EA%B4%80%EB%A0%A8/JTC1.SC34/JWG-EPUB3/Final%20TS%20Documents/Part4_Open_Container_Format/version/epub30-ocf-20111011.html
file:///K:/KERIS%20Documents/2013%EB%85%84%20%ED%91%9C%EC%A4%80%ED%92%88%EC%A7%88%EA%B0%9C%EB%B0%9C%EB%B6%80/%EA%B5%AD%EC%A0%9C%ED%91%9C%EC%A4%80%ED%99%9C%EB%8F%99%20%EA%B4%80%EB%A0%A8/JTC1.SC34/JWG-EPUB3/Final%20TS%20Documents/Part4_Open_Container_Format/epub30-ocf.html
file:///K:/KERIS%20Documents/2013%EB%85%84%20%ED%91%9C%EC%A4%80%ED%92%88%EC%A7%88%EA%B0%9C%EB%B0%9C%EB%B6%80/%EA%B5%AD%EC%A0%9C%ED%91%9C%EC%A4%80%ED%99%9C%EB%8F%99%20%EA%B4%80%EB%A0%A8/JTC1.SC34/JWG-EPUB3/Final%20TS%20Documents/Part4_Open_Container_Format/version/epub30-ocf-20110908.html
http://code.google.com/p/epub-revision/source/diff?spec=svn3218&old=3183&r=3218&format=side&path=%2Ftrunk%2Fsrc%2Fspec%2Fepub30-ocf.xml
http://idpf.org/epub/30/spec/epub30-ocf-errata/epub30-ocf-errata.html
http://www.idpf.org/
https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

4.1. Introduction
4.2. Obfuscation Algorithm
4.3. Generating the Obfuscation Key
4.4. Specifying Obfuscated Resources
A. Schemas
A.1. Schema for container.xml
A.2. Schema for encryption.xm!
A.3. Schema for signatures.xm!
B. Example
C. The application/epubtzip Media Type
D. Acknowledgements and Contributors

Dok
INCTICTICIIVCS

> 1 Overview

> 1.1 Purpose and Scope

This section is informative

This specification, EPUB Open Container Format (OCF) 3.0, defines a file format and processing model
for encapsulating the sets of related resources that compriséone or more EPUB® Publications intg a
single-file container.

This specification is one of a family of related specifications that compose EPUB 3, the third major
revision of an interchange and delivery format for. digital publications based on XML and Web Standards. It
is meant to be read and understood in concert, with the other specifications that make up EPUB 3:

e The EPUB 3 Ovenview [EPUB3Ovweniew], which provides an informative oveniew of EPUB an(d a
roadmap to the rest of the EPUB"3 documents. The Ovenview should be read first.

 EPUB Publications 3.0 [Publications30], which defines publication-level semantics and
overarching conformance.réquirements for EPUB Publications.

 EPUB Content Docutnents 3.0 [ContentDocs30], which defines profiles of XHTML, SVG and|CSS
for use in the cantext of EPUB Publications.

 EPUB Media Owerlays 3.0 [MediaOverlays30], which defines a format and a processing model for
synchrofization of text and audio.

OCF is the required container technology for EPUB Publications. OCF may play a role in the followjng
workflows):

¢ During the preparation steps in producing an electronic Publication, OCF may be used as the
container format when exchanging in-progress Publications between different individuals andfor

different organizations.

* When providing an electronic Publication from publisher or conversion house to the distribution or
sales channel, OCF is the recommended container format to be used as the transport format.

* When delivering the final Publication to an EPUB Reading System or User, OCF is the required
format for the container that holds all of the assets that make up the Publication.

The OCF specification defines the rules for structuring the file collection in the abstract: the "abstract
container". It also defines the rules for the representation of this abstract container within a ZIP archive:
the "physical container". The rules for ZIP physical containers build upon the ZIP technologies used by
[ODF]. OCF also defines a standard method for obfuscating embedded fonts for those EPUB

Publications that require this functionality.

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

This specification supersedes Open Container Format (OCF) 2.0.1 [OCF2]. Refer to [EPUB3Changes] for
information on differences between this specification and its predecessor.

> 1.2 Terminology
EPUB Publication (or Publication)

A logical document entity consisting of a set of interrelated resources and packaged in an
EPUB Container, as defined by this specification and its sibling specifications.

PublicationR

A resource that contains content or instructions that contribute to the logic and rendering of
the EPUB Publication. In the absence of this resource, the Publication might not rendern as

intended by the Author. Examples of Publication Resources include the Package Document,
EPUB Content Documents, EPUB Style Sheets, audio, video, images, embedded fonts| and
scripts.

With the exception of the Package Document itself, Publication Resources must be listed in
the manifest [Publications30] and must be bundled in the EPUB container file unless
specified otherwise in Publication Resource Locations [Publications30].

Examples of resources that are not Publication ResourCes’include those identified by the
Package Document link [Publications30] element and those identified in outbound hyperlinks
that resolve outside the EPUB Container (e.g., referenced from an [HTML5] a element hief

attribute).

EPUB Content Document

A Publication Resource that conforms.t6 one of the EPUB Content Document definition
(XHTML or SVG).

o

An EPUB Content Document i§*a Core Media Type, and may therefore be included in the
EPUB Publication without the provision of fallbacks [Publications30].

XHTML Content Document

An EPUB Content Document conforming to the profile of [HTML5] defined in XHTML Comtent
Documents [ContentDocs30].

XHTML Content Documents use the XHTML syntax of [HTMLS5].

SVG Contet-Document

An EPUB Content Document conforming to the constraints expressed in SVG Content
Documents [ContentDocs30].

Core Media Type

A tBubticationR P — —— S Ubfication
Resources [Publications30] for more information.

Package Document

A Publication Resource carrying bibliographical and structural metadata about the EPUB
Publication, as defined in Package Documents [Publications30].

Manifestation

The digital (or physical) embodiment of a work of intellectual content. Changes to the content
such as significant revision, abridgement, translation, or the realization of the content in a
different digital or physical form result in a new manifestation. There may be many individual

http://idpf.org/epub/30/spec/epub30-publications.html#sec-manifest-elem
http://idpf.org/epub/30/spec/epub30-publications.html#sec-resource-locations
http://idpf.org/epub/30/spec/epub30-publications.html#sec-link-elem
http://www.w3.org/TR/html5/Overview.html#the-a-element
http://idpf.org/epub/30/spec/epub30-publications.html#sec-fallback-processing-flow
http://idpf.org/epub/30/spec/epub30-contentdocs.html#sec-xhtml
http://www.w3.org/TR/html5/Overview.html#the-xhtml-syntax
http://idpf.org/epub/30/spec/epub30-contentdocs.html#sec-svg
http://idpf.org/epub/30/spec/epub30-publications.html#sec-publication-resources
http://idpf.org/epub/30/spec/epub30-publications.html#sec-package-documents
https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

but identical copies of a manifestation, termed 'instances' or items'. The ISBN is an example
of a manifestation identifier, and is shared by all instances of that manifestation.

All instances of a manifestation need not be bit-for-bit identical, as minor corrections or
revisions are not judged to create a new manifestation or work.

Unique Identifier

The Unique Identifier is the primary identifier for an EPUB Publication, as identified by the
unique-identifier attribute. The Unique Identifier may be shared by one or many
Manifestations of the same work that conform to the EPUB standard and embody the same
content, where the differences between the Manifestations are limited to those changes that

take account of differences between EPUB Reading Systems (and which themselves may
require changes in the ISBN).

The Unique Identifier is less granular than the ISBN. However, significant revision,
abridgement, etc. of the content requires a new Unique Identifier.

EPUB Style Sheet (or Style Sheet)

A CSS Style Sheet conforming to the CSS profile defined in EPUB Style Sheets
[ContentDocs30].

Viewport

The region of an EPUB Reading System in which the content of an EPUB Publication ig
rendered visually to a User.

EPUB Container (or Container)

The ZIP-based packaging and distributiofxformat for EPUB Publications defined in OCF|ZIP
Container.

OCF Processor
A software application that processes EPUB Containers according to this specification.
Author

The person(s) or organization responsible for the creation of an EPUB Publication, which is
not necessarilysthe creator of the content and resources it contains.

User
An individual that consumes an EPUB Publication using an EPUB Reading System.
EPUB Reading System (or Reading System)

A system that processes EPUB Publications for presentation to a User in a manner
conformant with this specification and its sibling specifications.

> 1.3 Conformance Statements

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described
in [RFC2119].

All sections of this specification are normative except where identified by the informative status label
"This section is informative". The application of informative status to sections and appendices applies to
all child content and subsections they may contain.

All examples in this specification are informative.

http://idpf.org/epub/30/spec/epub30-publications.html#attrdef-package-unique-identifier
http://idpf.org/epub/30/spec/epub30-contentdocs.html#sec-css
https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

> 1.4 Content Conformance

» An OCF Abstract Container must meet the conformance constraints defined in OCF Abstract

Container.

» An OCF ZIP Container (also referred to as an EPUB Container) must meet the conformance

constraints defined in OCF ZIP_Container.

> 1 5 Reading System Conformance

An EPUB Reading System must meet all of the following criteria:

» It must process the OCF ZIP Container in conformance with all Reading System conformar
constraints expressed in OCF ZIP Container.

» If it has a Viewport, it must support deobfuscation of fonts as defined in Fonht Obfuscation.

> 2 OCF Abstract Container

ce

> 2.1 Overview
This section is informative

An OCF Abstract Container defines a file systém model for the contents of the container. The file s
model uses a single common root directoryfor all of the contents of the container. All (non-remote)
resources for embedded Publications are Iocated within the directory tree headed by the container’s
directory, although no specific file system structure is mandated for this. The file system model als
includes a mandatory directory named META-INF that is a direct child of the container's root directory
is used to store the following spegcial files:

container.xml [required]

Identifies the file:that is the point of entry for each embedded Publication.
signatures.xml foptional]

Contains digital signatures for various assets.

encrypiion. xml [optional]

Contains information about the encryption of Publication resources. (This file is required if fot

ystem

5 root
D
and

=
—

)

obfuseation-is—tsed)
metadata.xml [optional]

Used to store metadata about the container.
rights.xml [optional]

Used to store information about digital rights.
manifest.xml [allowed]

A manifest of container contents as allowed by Open Document Format [ODF].

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

Complete conformance requirements for the various files in META-INF are found in META-INF.

> 2.2 File and Directory Structure

The virtual file system for the OCF Abstract Container must have a single common root directory for all of

the contents of the container.

The OCF Abstract Container must include a directory named META-INF that is a direct child of the

container's root directory. Requirements for the contents of this directory are described in META-INF.

OCF ZIP Container.

All other files within the OCF Abstract Container may be in any location descendant from thelconta
root directory except within the META-INF directory.

It is recommended that the contents of each of the individual Publications be storedwithin its own
dedicated directory under the container's root.

> 2.3 Relative IRIs for Referencing Other Components

Files within the OCF Abstract Container must reference each othervia Relative IRl References
([RFC3987] and [RFC3986]). For example, if a file named chapteri.htm| references an image file na
image1.jpg that is located in the same directory, then chaptesS.html might contain the following as f
its content:

For Relative IRI References, the Base IRl [RFC3986] is determined by the relevant language

specifications for the given file formats. For example, the CSS specification defines how relative IRI
references work in the context 6f CSS style sheets and property declarations. Note that some lang
specifications reference RF@s that preceded RFC3987, in which case the earlier RFC applies for cq
in that particular language:

Unlike most language\specifications, the Base IRIs for all files within the meTa-INF directory use the
directory for the Abstract Container as the default Base IRI. For example, if META-INF/container.xml
the following content:

<?xnll Jversion="1.0"?2>
<eontainer version="1.0"
xmlns="urn:oasis:names:tc:opendocument:xmlns:container">

P _ o ; . o ov-OEF-ZP-Gontainers: (i i

In

ner's

med
art of

uage
ntent

root
has

rootfiles

<rootfile full-path="OEBPS/Great Expectations.opf"
media-type="application/ocebps-package+xml" />
</rootfiles>
</container>

then the path 0e8PS/Great Expectations.opf is relative to the root directory for the OCF Abstract Container

and not relative to the META-INF directory.

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

> 2.4 File Names

The term File Name represents the name of any type of file, either a directory or an ordinary file withi
directory within an OCF Abstract Container.

na

For a given directory within the OCF Abstract Container, the Path Name is a string holding all directory File

Names in the full path concatenated together with a / (U+002F) character separating the directory Fil

e

Names. For a given file within the Abstract Container, the Path Name is the string holding all directory

File Names concatenated together with a / character separating the directory File Names, followed
/ character and then the File Name of the file.

The File Name restrictions described below are designed to allow Path Names and File Names{o’f
used without modification on most commonly used operating systems. This specification does_not
specify how an OCF Processor that is unable to represent OCF File and Path Names would .compe
for this incompatibility.

by a

e

nsate

In the context of an OCF Abstract Container, File and Path Names must meet all.6f the following ciiteria:

» File Names must be UTF-8 [Unicode] encoded.

» File Names must not exceed 255 bytes.

» The Path Name for any directory or file within the AbstractcContainer must not exceed 65535

bytes.

» File Names must not use the following [Unicode] characters, as these characters might no
supported consistently across commonly-used operating systems:

SOLIDUS: / (u+002F)

QUOTATION MARK: " (U+0022)

ASTERISK: = (U+002A)

FULL STOP as the last character: . (U+002E)
COLON: : (U+003A)

LESS-THANSSIGN: < (U+003c)
GREATER-THAN SIGN: > (U+003E)
QUESTION MARK: 2 (U+003F)

REVERSE SOLIDUS: # (u+005C)

DEL (u+007F)

CO range (U+0000 - U+001F)

t be

C1 range (U+0080 --- U+009F)

Private Use Area (U+E000 - U+F8FF)

Non characters in Arabic Presentation Forms-A (U+FDD0 -+ U+FDEF)
Specials (U+FFFO - U+FFFF)

Tags and Variation Selectors Supplement (U+E0000 -+ U+EOFFF)
Supplementary Private Use Area-A (U+F0000 - U+FFFFF)

Supplementary Private Use Area-B (U+100000 -+ U+10FFFF)

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

» File Names are case sensitive.

» All File Names within the same directory must be unique following case normalization as
described in section 3.13 of [Unicode].

» All File Names within the same directory should be unique following NFC or NFD normalization
[TR15].

NOTE i

Some commercial ZIP tools do not support the full Unicode range and may support only the ASCII
range for File Names. Content creators who want to use ZIP tools that have these restrictions may

find it is best to restrict their File Names to the ASCII range. If the names of files cannot be
preserved during the unzipping process, it will be necessary to compensate for any name
translation which took place when the files are referenced by URI from within the content.

> 2.5 META-INF

All OCF Abstract Containers must include a directory called neTA-INF. Jhis directory contains the files
specified below. Files other than the ones defined below may be included in the MeTA-INF directory; |OCF
Processors must not fail when encountering such files.

> 2.5.1 Container — META-INF/container.x m{

All OCF Containers must include a file called contajner.xm! within the META-INF directory. The
container.xml file must identify the media type of,.'and paths to, the root files for the EPUB Publicatjons
included within the container.

The container.xml file must not be encrypted.

The schema for container . xnl files iStavailable in Schema for container.xml; container.xml files mugt be
valid according to this schema after removing all elements and attributes from other namespaces
(including all attributes and contents of such elements).

The rootfiles element must contain one or more rootfile elements, each of which must uniquely
reference a Package-Document representing a single Publication. The Publications stored in an OGF
should be different renditions of the same Manifestation.

An OCF Proceessor must consider the first root fi Ie element within the rootfiles element to represent the
default rendition for the contained Publication. Reading Systems are not required to use any renditipn
exceptthe default one.

The following exanple shows a sanple container . xml| foran EPUB Publication with the root file 0EBPS/My Craz
Life.opf (the Package Document):

<?xml version="1.0"?2>
<container version="1.0"
xmlns="urn:oasis:names:tc:opendocument:xmlns:container">
<rootfiles>
<rootfile full-path="OEBPS/My Crazy Life.opf"
media-type="application/oebps-package+xml" />
</rootfiles>
</container>

The following exanple shows SVG and XHTML renditions of The Sandman bundled in the same container:

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

<?xml version="1.0"?2>
<container version="1.0"
xmlns="urn:oasis:names:tc:opendocument:xmlns:container">
<rootfiles>
<rootfile full-path="SVG/Sandman.opf"
media-type="application/ocebps-package+xml" />
<rootfile full-path="XHTML/Sandman.opf"
media-type="application/ocebps-package+xml" />
</rootfiles>
</container>

—

The manifest element contained within the Package Document specifies the one and only manifest|used
for EPUB processing. Ancillary manifest information contained in the ZIP archive or in the optional
manifest.xm! file must not be used for EPUB processing purposes. Any extra files in the-ZIP archivg¢ must
not be used in the processing of the EPUB Publication (i.e., files within the ZIP archive that are not|listed
within the Package Document's manifest element, such as META-INF files or alternate derived renditipns of
the Publication).

The value of the ful I-path attribute must contain a path component (as defined by RFC3986) which must
take the form of a path-root less only (also defined by RFC 3986). The~path components are relativg to
the root of the container in which they are used.

OCF Processors must ignore foreign elements and attributes within a container.xml file.

> 2.5.2 Encryption = META-INF/encry ptieayx ml

An optional encryption.xml file within the NeTA-|Ne directory at the root level of the container file sysfem
holds all encryption information on the contents of the container. This file is an XML document whose root
element is encryption. The encryption element contains child elements of type encryptedkey and
Encrypteddata as defined by [XML ENGC Core]. Each encrypteddata element describes how one or more
files within the container are encrypted. Consequently, if any resource within the container is encrypted,
encryption.xml must be present-toiindicate that the resource is encrypted and provide information on how
it is encrypted.

An Encryptedkey element(describes each encryption key used in the container, while an encrypteddqta
element describes each.encrypted file. Each Encrypteddata element refers to an Encryptedkey element, as
described in XML Encryption.

The schema forencryption.xml files is available in Schema for encryption.xml; encryption.xml files must
be valid aceording to this schema.

OCF gnerypts individual files independently, trading off some security for improved performance, allpwing
the ‘Container contents to be incrementally decrypted. Encryption in this way exposes the directory
structure and file naming of the whole package.

OCF uses XML Encryption [XML ENC Core] to provide a framework for encryption, allowing a variety of
algorithms to be used. XML Encryption specifies a process for encrypting arbitrary data and representing
the result in XML. Even though an OCF Abstract Container may contain non-XML data, XML Encryption
can be used to encrypt all data in an OCF Abstract Container. OCF encryption supports only the
encryption of entire files within the container, not parts of files. The encryption.xm! file, if present, must
not be encrypted.

Encrypted data replaces unencrypted data in an OCF Abstract Container. For example, if an image
named photo. jpeg is encrypted, the contents of the photo. jpeg resource should be replaced by its
encrypted contents. When stored in a ZIP container, streams of data must be compressed before they
are encrypted and Deflate compression must be used. Within the ZIP directory, encrypted files should be
stored rather than Deflate-compressed.

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

Some situations require obfuscating the storage of embedded fonts referenced by an EPUB Publication
to tie them to the "parent" Publication and make them more difficult to extract for unrestricted use. In
these cases, encryption.xm! should be used to provide requisite font decoding information according to
Font Obfuscation.

The following files must never be encrypted, regardless of whether default or specific encryption is
requested:

mimetype

META-INF/container.xml

MCOTA LN i 1
Tt TN ooy ot o AT

META-INF/manifest.xml
META-INF/metadata.xml
META-INF/rights.xml
META-INF/signatures.xml

EPUB rootfile (the Package Document)

Signed resources may subsequently be encrypted using the DecryptiotnFransform for XML Signatufe
[XML SIG Decrypt]. This feature enables an application such as an-OCF agent to distinguish data that
was encrypted before signing from data that was encrypted after, signing. Only data that was encrypted
after signing must be decrypted before computing the digest used to validate the signature.

In the following exanple, adapted from Section 2.2.1 of [XML ENC’Cére] the resource image. jpeg is encrypted using a
symmetric key algorithm (AES) and the symmetric key is further encrypted using an asymmetric key algorithm (RSA) with a
key of John Smith.

<encryption
xmlns ="urn:oasis:names:tc:oependocument:xmlns:container"
xmlns:enc="http://www.w3.0%¥4§/2001/04/xmlenc#"
xmlns:ds="http://www.w3+.0rg/2000/09/xmldsig#">
<enc:EncryptedKey Id={'EXK">
<enc:EncryptionMethod
Algorithm="http://wwwiw3.0rg/2001/04/xmlenc#rsa-1 5"/>
<ds:KeyInfop
<ds:KeyName>John Smith</ds:KeyName>
</ds:KeyInfo>
<enc:CipherData>
<enc:CipherValue>xyzabc</enc:CiphervValue>
s/enc:CipherData>
</efc¥EncryptedKey>
<enc:EncryptedData Id="ED1">
<enc:EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#kw-aesl28"/>
<ds:KeyInfo>

as.RetrievallMetllod UKL= #J‘Ll\
Type="http://www.w3.0rg/2001/04/xmlenc#EncryptedKey" />

</ds:KeyInfo>

<enc:CipherData>
<enc:CipherReference URI="image.jpeg"/>

</enc:CipherData>

</enc:EncryptedData>
</encryption>

http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/#sec-eg-Symmetric-Key
https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

> 2.5.3 Manifest — META-INF/manifest.x ml

An optional file with the reserved name manifest.xml may be included within the neTA-INF directory at the
root level of the container file system.

The manifest.xml file, if present, must not be encrypted.

> 2.5.4 Metadata - META-INF/metadata.x ml

An optional file with the reserved name metadata.xml may be included within the NETA-INF directory at the
root level of the container file system. This file, if present, must be used for container-level metadata. This
version of the OCF specification does not specify any container-level metadata.

If the META-INF/metadata.xnl file is present, its contents should be only namespace-qualified elements
[XMLNS] to awoid collision with future versions of OCF that may specify a particular format for this fije.

The metadata.xml file, if present, must not be encrypted.

> 2.5.5 Rights Management — META-INF/rights.x ml

An optional file with the reserved name rights.xml may be included within the meTA-INF directory at the
root level of the container file system. This file is reserved fordigital rights management (DRM)
information for trusted exchange of Publications among rights*holders, intermediaries, and users. This
version of the OCF specification does not specify a required format for DRM information, but a futurg
version may specify a particular format for DRM information.

D

If the META-INF/rights.xml file is present, its conténts should be only namespace-qualified elements
[XMLNS] to awoid collision with future versions-of OCF that may specify a particular format for this fije.

The rights.xml file must not be encrypted:

When the rights.xnl file is not present, the OCF container provides no information indicating any part of
the container is rights governed;

> 2.5.6 Digital Sighatures — META-INF/signatures.x ml

An optional sigpatures.xm! within the META-INF directory at the root level of the container file system| holds
digital signatures/of the container and its contents. This file is an XML document whose root element is
signatures{Jhe signatures element contains child elements of type Signature as defined by [XML OSIG
Core]. Signatures can be applied to the Publication and any alternate renditions as a whole or to pgrts of
the Publication and renditions. XML Signature can specify the signing of any kind of data, not just XML.

The signatures.xml file must not be encrypted.

When the signatures.xm! file is not present, the OCF container provides no information indicating any part
of the container is digitally signed at the container level. It is possible that digital signing exists within any
optional alternate contained renditions, however.

The schema for signatures.xm! files is available in Schema for signatures.xml; signatures.xm! files must
be valid according to this schema.

When an OCF agent creates a signature of data in a container, it should add the new signature as the
last child signature element of the signatures element in the signatures.xml file.

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

NOTE |

Each signature inthe signatures.xm! file identifies by IRI the data to which the signature applies,
using the XML Signature Manifest element and its Reference sub-elements. Individual contained
files may be signed separately or together. Separately signing each file creates a digest value for
the resource that can be validated independently. This approach may make a Signature element
larger. If files are signed together, the set of signed files can be listed in a single XML Signature
Manifest element and referenced by one or more signature elements.

Any or all files in the container can be signed in their entirety with the exception of the signatures.xm! file

H bloabl HTI I WP | H " H 4 s AW V1Y) ()) 5
SITICT al 1T WIT CUTTLANTT LT CUTTTPULTU STyTNaturc 1O iatiornt. VVITICTLUICT allu TTIOW T s Tgind tures . X1

should be signed depends on the objective of the signer.

If the signer wants to allow signatures to be added or removed from the container without invalidatin
signer’s signature, the signatures.xm! file should not be signed.

If the signer wants any addition or removal of a signature to invalidate the signer’s signature, the

Enveloped Signature transform (defined in Section 6.6.4 of [XML DSIG Core]) can be used to sign the

entire preexisting signature file excluding the Signature being created. This transform would sign all
previous signatures, and it would become invalid if a subsequent signature’was added to the packa

If the signer wants the removal of an existing signature to invalidate the signer’s signature but also

file

g the

vants

to allow the addition of signatures, an XPath transform can be used-to sign just the existing signatyres.

(This is only a suggestion. The particular XPath transform is not‘a part of the OCF specification.)

XML-Signature does not associate any semantics with a signature; an agent may include semantig
information, for example, by adding information to the Signature element that describes the signatu

[e.

XML Signature describes how additional information can*be added to a signature (for example, by using
the SignatureProperties element).
The following XML expression shows the content ofian exanple signatures.xml file, and is based on the exanple$
found in Section 2 of [XML DSIG Core]. It contains_one signature, and the signature applies to two resources,
O0EBFPS/book.html and OEBFPS/images/coVer . jpeg, in the container.
<signatures xmlns="urn:ocasSis:names:tc:opendocument:xmlns:container">
<Signature Id="sig™ixmlns="http://www.w3.0rg/2000/09/xmldsig#">
<SignedInfo>
<Canoni¢alizationMethod
Algorithm="http://www.w3.0rg/TR/2001/REC-xml-cl4n-
20010315"/>
<SignatureMethod
Algorithm=s"http://www.w3.0rg/2000/09/xmldsig#dsa-shal"/>
<Reference URI="#Manifestl">
<DigestMethod
Algofithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<DigestValue>j6lwx3rvEPOOVKtMup4NbeVu8nk=</DigestValuep
</Reference>
</SignedInfo>
<SignatureValue>..</SignatureValue>
<KeyInfo>
<KeyValue>
<DSAKeyValue>
<P>.</P><Q>.</Q><G>..</G><Y>..</¥Y>
</DSAKeyValue>
</KeyValue>
</KeyInfo>
<Object>

<Manifest Id="Manifestl">
<Reference URI="OEBFPS/book.xml">
<Transforms>

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-EnvelopedSignature
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Overview
https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

<Transform

Algorithm="http://www.w3.0rg/TR/2001/REC-xml-

c14n-20010315"/>
</Transforms>
<DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<DigestValue></DigestValue>

</Reference>
<Reference URI="OEBFPS/images/cover.jpeg">
<Transforms>
<Transform
Alocorat+thm—"h+ + . RERIN IR IL] o/l TD 20017 DO
g B - —oxryg

c14n-20010315"/>
</Transforms>
<DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal" />
<DigestValue></DigestValue>

</Reference>
</Manifest>
</Object>
</Signature>
</signatures>
= O

> 3 OCF ZIP Container

> 3.1 Overview
This section is informative

An OCF ZIP Container is-a'physical single-file manifestation of an abstract container.

> 3.2 ZIP File-Requirements

An OCF ZIP{Container uses the ZIP format as specified by [ZIP APPNOTE], but with the following
constraints and clarifications:

» The contents of the OCF ZIP Container must be a conforming abstract container.

—) OCF ZIPContaimers mustnot use the features i the ZiPappiication note that attow ZiPfites to

be split across multiple storage media. OCF Processors must treat any OCF files that specify

that the ZIP file is split across multiple storage media as being in error.

» OCF ZIP Containers must include only uncompressed files or Deflate-compressed files within the
ZIP archive. OCF Processors must treat any OCF Containers that use compression techniques

other than Deflate as being in error.

» OCF ZIP Containers may use the ZIP64 extensions defined as "Version 1" in section V,

subsection G of the application note at [ZIP APPNOTE] and should use only those extensions
when the content requires them. OCF Processors must support the ZIP64 extensions defined as

"Version 1".

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

, OCF ZIP Containers must not use the encryption features defined by the ZIP format; instead,

encryption must be done using the features described in Encryption — META-INF/encryption.xml.
OCF Processors must treat any other OCF ZIP Containers that use ZIP encryption features as
being in error.

» It is not a requirement that OCF Processors preserve information from an OCF ZIP Container
through load and save operations that is not defined within the OCF Abstract Container; in
particular, an OCF Processor does not have to preserve CRC values, comment fields or fields that
hold file system information corresponding to a particular operating system (e.g., External file
attributes and Extra field).

»y OCF ZIP Containers must encode File System Names using UTF-8 [Unicode].

The following constraints apply to particular fields in the OCF ZIP Container archive:

» In the local file header table, OCF ZIP Containers must set the version needed to lextTact flelds
to the values 10, 20 or 45 in order to match the maximum version level needed by the given file
(e.g., 20 if Deflate is needed, 45 if ZIP64 is needed). OCF Processors must treat-any other values
as being in error.

» In the local file header table, OCF ZIP Containers must set the compression method field to the
values 0 or 8. OCF Processors must treat any other values as being_in error.

» OCF Processors must treat OCF ZIP Containers with an ArchiVe decryption header Or an Afchive
extra data record as being in error.

> 3.3 OCF ZIP Container Media Type Identification

OCF ZIP Containers must include a minetype file as, the first file in the Container, and the contents ¢f this
file must be the MIME type string application/epubtzip.

The contents of the mimetype file must not contain any leading padding or whitespace, must not bedin
with the Unicode signature (or Byte Order-Mark), and the case of the MIME type string must be exactly
as presented above. The nimetype file additionally must be neither compressed nor encrypted, and {here
must not be an extra field in its ZIPCheader.

Refer to Appendix €., Fhe application/epubtzip Media Type for further information about the
application/epubtzip media type.

> AFont Obfuscation

> 4.1 Introduction

This section is informative

Since an OCF Zip Container is fundamentally a ZIP file, commonly available ZIP tools can be used to
extract any unencrypted content stream from the package. On some systems, the contents of the ZIP
file may appear like any other native container (e.g., a folder). While the ability to do this is quite useful, it
can pose a problem for an Author who wishes to include a third-party font.

Many commercial fonts allow embedding, but embedding a font implies making it an integral part of the

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

Publication, not providing the original font file along with the content. Since integrated ZIP support is so
ubiquitous in modern operating systems, simply placing the font in the ZIP archive is insufficient to signify
that the font is not intended to be reused in other contexts. This uncertainty can undermine the otherwise
very useful font embedding capability of EPUB Publications.

In order to discourage reuse of the font, some font vendors may allow use of their fonts in EPUB
Publications if those fonts are bound in some way to the Publication. That is, if the font file cannot be
installed directly for use on an operating system with the built-in tools of that computing device, and it
cannot be directly used by other EPUB Publications.

It is beyond the scope of this document to provide a digital rights management or enforcement system for
font files. It instead defines a method of obfuscation that will require additional work on the part of the final

OCF recipient to gain general access to any included fonts. It is the hope of the IDPF that this will meet
the requirements of most font vendors. No claim is made in this document or by the IDPF, that this
constitutes encryption, nor does it guarantee that the font file will be secure from copyright infringerment.
The defined mechanism will simply provide a stumbling block for those who are unaware of'the license
details of the supplied font. It will not prevent a determined user from gaining full access.to the font.|Given
an OCF Container, it is possible to apply the algorithms defined to extract the raw font file. Whethef this
satisfies the requirements of individual font licenses remains a question for the licensor and licenseg.

> 4.2 Obfuscation Algorithm

The algorithm employed to obfuscate the font file consists of maodifying the first 1040 bytes (~1KB) jof the
font file. In the unlikely event that the file is less than 1040 bytes) then the entire file will be modified. The
key for the algorithm is generated using the instructions as-given in the section Generating the
Obfuscation Key. To obfuscate the original data, the result 'of performing a logical exclusive or (XOR) on
the first byte of the raw file and the first byte of the keyxis stored as the first byte of the embedded font

file. This process is repeated with the next byte of source and key, until all bytes in the key have bgen

used. At this point, the process continues startingwith the first byte of the key and 21st byte of the
source. Once 1040 bytes have been encoded.in this way (or the end of the source is reached), any
remaining data in the source is directly copied to the destination. In pseudo-code, this is the algorithm:

set source to font file
set destination to obfusegated file
set keyData to key forJfont
set outer to 0
while outer < 52 (and not (source at EOF)
set inner teJ0
while inner < 20 and not (source at EOF)
read+~]l byte from source //Assumes read advances file positfion
get’ sourceByte to result of read
set keyByte to byte inner of keyData
set obfuscatedByte to (sourceByte XOR keyByte)
write obfuscatedByte to destination
increment inner
end while

increment outer
end while
if not (source at EOF) then

read source to EOF

write result of read to destination
end 1if

To get the original font data back, the process is simply reversed. That is, the source file becomes the
obfuscated data and the destination file will contain the raw font data.

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

> 4.3 Generating the Obfuscation Key

The key used in the obfuscation algorithm is derived from unique identifer(s) of the Publication(s) in the
Container, as required by the EPUB Publications 3.0 specification and detailed in Unique Identifier
[Publications30]. In order to create the key, the unique identifiers of all Publications contained in the
container must be concatenated in the order that the Publications appear in container.xml and a space
(Unicode code point u+0020) inserted between each identifier. Before generating this string, all whitespace
characters as defined by the XML 1.0 specification [XML], section 2.3 are removed from the individual
identifiers. Specifically the Unicode code points u+0020, U+0009, U+0000 and U+000A must be stripped from
each identifier before it is added to the concanenated space-delimited string. An SHA-1 digest of the
UTF-8 representation of this string should be generated as specified by the Secure Hash Standard [SHA-

t—Thisdigestisthermdirectty used-asthekey for theatgorithmdescribed-mObfustatiomAfgorithm,.

> 4.4 Specifying Obfuscated Resources

All encrypted data in an OCF Abstract Container must have an entry in the encryptien xn! file

accompanying the Publication (see Encryption — META-INF/encryption.xml), which includes fonts
obfuscated using the method described here. For such obfuscated fonts, in the-enhcryption.xml file, the
EncryptionMethod element child of the Encrypteddata must have an Algor i thm attribute with the value
http://www.idpf.org/2008/embedding. The presence of this attribute signals.the use of the algorithm
described in this specification. All resources that have been obfuscated\using this approach must be
listed in the CipherData element.

An exanple encryption.xml file might look like this:

<encryption
xmlns="urn:oasis:names:tc:opendocument :xmlns:container"”
xmlns:enc="http://www.w3.0rg/2001Y04/xmlenc#">
<enc:EncryptedData>
<enc:EncryptionMethod
Algorithm="http://www.idpf.org#2008/embedding" />
<enc:CipherData>
<enc:CipherReference URI="OEBPS/Fonts/BKANT.TTEF"/>
</enc:CipherData>
</enc:EncryptedData>
</encryption>

To prevent trivial-Copying of the embedded font to other Publications, the explicit key must not be
provided in‘the encryption.xm! file. Reading systems must derive the key from the package's Uniqus
Identifier:

D

> Appendix A. Schemas

The schemas in this Appendix are normative.

> A.1 Schema for container.xml

The schema for container.xm! files is available at http://www.idpf.org/epub/30/schema/ocf-container-
30.rmc.

http://idpf.org/epub/30/spec/epub30-publications.html#sec-opf-metadata-identifiers-uid
http://idpf.org/epub/30/schema/ocf-container-30.rnc
https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

> A.2 Schema for encryption.xml

The schema for encryption.xml files is available at http://www.idpf.org/epub/30/schemal/ocf-encryption-
30.rnc. It is based on schemas in [XML Sec RNG Schemas].

> A.3 Schema for signatures.xm|

The schema for signatures.xml files is available at http://www.idpf.org/epub/30/schemal/ocf-signatures-

20 e 14 [N Al [HESAY.V | <) RANCOC O

o Ao H bara 1
DUTTIL. TUTO VAo TUU UIT OUTICTTTIAO TTT [7AVIL UL TAINUOU OUTICITTIAO |-

> Appendix B. Example

The following example demonstrates the use of this OCF format to contain a signed-and encrypted [EPUB
Publication within a ZIP Container.

» Example B.1. Ordered list of files in the ZIP Container

mimetype
META-INF/container.xml
META-INF/signatures.xml
META-INF/encryption.xml
OEBPS/As You Like It.opf
OEBPS/book.html
OEBPS/nav.html
OEBPS/toc.ncx
OEBPS/images/cover.png

»y Example B.2. The contents of;the nimetype file

application/epub+¥zZip

» Example B.3) The contents of the NETA-INF/container.xml file

<?xml/version="1.0"?2>
<&entainer version="1.0"
xmlns="urn:oasis:names:tc:opendocument:xmlns:container">

oa PR P
¥

coTTTCo

<rootfile full-path="OEBPS/As You Like It.opf"
media-type="application/ocebps-package+xml" />
</rootfiles>
</container>

» Example B.4. The contents of the NETA-INF/signatures.xml file

<signatures xmlns="urn:ocasis:names:tc:opendocument:xmlns:container">
<Signature Id="AsYoulLikeItSignature"

http://idpf.org/epub/30/schema/ocf-encryption-30.rnc
http://idpf.org/epub/30/schema/ocf-signatures-30.rnc
https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

xmlns="http://www.w3.0rg/2000/09/xmldsig#">

<!-- SignedInfo is the information that is actually signed. In
this case -->

<!-- the SHAl algorithm is used to sign the canonical form of the
XML S

<!-- documents enumerated in the Object element below
-——>

<SignedInfo>

<CanonicalizationMethod
Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
SicgnatureMethod

Algorithm="http://www.w3.0rg/2000/09/xmldsig#dsa-shal"/>
<Reference URI="#AsYouLikeIt">
<DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal" />
<DigestValue>..</DigestValue>

</Reference>
</SignedInfo>
<!-- The signed value of the digest above usling the DSA algorifthm
-—>
<SignatureValue>..</SignatureValue>
<!-- The key to use to validate the gdgnature -->
<KeyInfo>
<KeyValue>
<DSAKeyValue>
<P>..</P>
<Q>.</0>
<G>.</G>
<Y>.</Y>
</DSAKeyValueX
</KeyValue>
</KeyInfo>
<!-- The list documents to sign. Note that the canonical form [of
XML -=>
<!-- doguments is signed while the binary form of the other
documents -->
<!-+¥_1$ used -->
<Q@bject>

<Manifest Id="AsYouLikeIt">
<Reference URI="OEBPS/As You Like It.opf">
<Transforms>
<Transform
Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
</Transforms>

<DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<DigestValue></DigestValue>
</Reference>
<Reference URI="OEBPS/book.html">
<Transforms>
<Transform
Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
</Transforms>
<DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal" />
<DigestValue></DigestValue>

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

</Reference>
<Reference URI="OEBPS/images/cover.png">
<DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<DigestValue></DigestValue>
</Reference>
</Manifest>
</Object>
</Signature>
</signatures>

» Example B.5. The contents of the NETA-INF/encryption.xml file

<?xml version="1.0"7?>

<encryption xmlns="urn:ocasis:names:tc:opendocument:xmlns:container"
xmlns:enc="http://www.w3.0rg/2001/04/xmlenc#"

xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">

<!-- The RSA encrypted AES-128 symmetric key used to encrypt the data
-—>
<enc:EncryptedKey Id="EK">
<enc:EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlené#rsa-1 5"/>
<ds:KeyInfo>
<ds:KeyName>John Smith</ds;KeyName>
</ds:KeyInfo>
<enc:CipherData>
<enc:CipherValue>xyzabec..</enc:CipherValue>
</enc:CipherData>
</enc:EncryptedKey>

<!-- Each EncryptedData block identifies a single document that hals
been -=>

<!-- encrypted usiyrg the AES-128 algorithm. The data remains stored
in it’s -->

<!-- encryptéd)'form in the original file within the container.

-—>
<enc:EncryptedData Id="ED1">

<engrEncryptionMethod
Algorithm®z"http://www.w3.0rg/2001/04/xmlenc#kw-aesl28"/>

<ds:KeyInfo>

<ds:RetrievalMethod URI="#EK"

Type="http://www.w3.0rg/2001/04/xmlenc#EncryptedKey"/>

</ds:KeyInfo>

<enc:CipherData>

<enc:CipherReference URI="OEBPS/book.html"/>
</enc:CipherData>
</enc:EncryptedData>

<enc:EncryptedData Id="ED2">

<enc:EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#kw-aesl28"/>

<ds:KeyInfo>

<ds:RetrievalMethod URI="#EK"

Type="http://www.w3.0rg/2001/04/xmlenc#EncryptedKey" />

</ds:KeyInfo>

<enc:CipherData>

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

<enc:CipherReference URI="OEBPS/images/cover.png"/>
</enc:CipherData>
</enc:EncryptedData>

</encryption>

» Example B.6. The contents of the 0e8PS/As You Like It.opf file

<?xml version="1.0"?2>

<package version="3.0"
xml:lang="en"
xmlns="http://www.idpf.org/2007/opf"
unique-identifier="pub-id">

<metadata xmlns:dc="http://purl.org/dc/elements/1.1/">
<dc:identifier
id="pub-id">urn:uuid:B9B412F2-CAAD-4A44-B9IF -
A375068478A0</dc:identifier>
<meta refines="#pub-id"
property="identifier-type"
scheme="xsd:string">uuid</meta>

<dc:language>en</dc:language>
<dc:title>As You Like It</dc:title>
<dc:creator id="creator">Widliam Shakespeare</dc:creator>
<meta refines="#creator"
property="role"
scheme="marc:relators">aut</meta>
<meta property="dcterms:modified">2000-03-24T00:00:00Z</meta>
<dc:publisher>Project Gutenberg</dc:publisher>
<dc:datex*2000-03-24</dc:date>
<meta\ property="dcterms:dateCopyrighted">9999-01-01</meta>
Ldc:identifier
id="isbnl3">urn:isbn:9780741014559</dc:identifier>
<meta refines="#isbnl3"

property="identifier-type"
scheme="onix:codelist5">15</meta>

<dc:identifier 1d="isbnl0">0-7410-1455-6</dc:identifier>
<meta refines="#isbnlO"
property="identifier-type"
scheme="onix:codelist5">2</meta>

<link rel="xml-signature"
href="../META-INF/signatures.xml#AsYouLikeItSignature"/>
</metadata>

<manifest>
<item i1id="r4915"
href="book.html"

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

media-type="application/xhtml+xml"/>
<item id="r7184"
href="images/cover.png"
media-type="image/png"/>
<item id="nav"
href="nav.html"
media-type="application/xhtml+xml"
properties="nav"/>
<item id="ncx"
href="toc.ncx"
media-type="application/x-dtbncx+xml"/>

manifegst

<spine toc="ncx">
<itemref idref="r4915"/>
</spine>
</package>

> Appendix C. The application/epub+zip Media Type

This appendix registers the media type application/epubtzjigdor the EPUB Open Container Format
(OCF).

An OCF file is a container technology based on the ZIP ‘archive format. It is used to encapsulate ER
Publications and optional alternate renditions thereof. OCF and its related standards are maintainec
defined by the International Digital Publishing Forum (IDPF).

MIME media type name:

application
MIME subtype name:
epub+zip
Required parameters:
None.
Optional pargdmeters:
None.

Enceding considerations:

FaVal it 1| D _laotd L

PUB
and

lo £l H o J | L H L H bl als 4 L H i L
VUl NCo dic Ullidry TNTo 1T I (LILLY . 77 VWVWW. IdTN A UTY/ do S TYTTITTITTILS/TTTCUTIA™Ly PO o AP PITL AUV £

)

format.

Security considerations:

All processors that read OCF files should rigorously check the size and validity of data retrieved.

In addition, because of the various content types that can be embedded in OCF files, it is possible
that application/epubt+zip may describe content that has security implications beyond those
described here. However, only in the case where the processor recognizes and processes the
additional content, or where further processing of that content is dispatched to other processors,

would security issues potentially arise. And in that case, they would fall outside the domain
registration document.

of this

http://www.iana.org/assignments/media-types/application/zip
https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

Security considerations that apply to application/zip also apply to OCF files.
Interoperability considerations:
None.

Published specification:

This media type registration is for the EPUB Open Container Format (OCF), as described by the

EPUB Open Container Format (OCF) 3.0 specification located at
http://www.idpf.org/epub/30/spec/epub30-ocf.html.

The ERLIB OCE 2 0 cnacificatinn ctinarcndac tha Onan Caontainar Eaormmat 2 0 1 cnececifieatio
e ot Yo —oru-SpPetHtation-Supero oot operoottamer—Torat = o1TSpeomtator

which is located at http://www.idpf.org/doc_library/epub/OCF 2.0.1 draft.doc and which alsa

the application/epub+zip media type.

Applications which use this media type:

This media type is in wide use for the distribution of ebooks in the EPUB format. The followir

of applications is not exhaustive.
¢ Adobe Digital Editions
e Aldiko
e Azardi
e Apple iBooks
¢ Barnes & Noble Nook
» Calibre
e (Google Books
 |bis Reader
e MobiPocket reader
e Sony Reader
e Stanza
Additional informatidn}
Magic aumber(s):
0: PK 0x03 0x04, 30: mimetype, 38: application/epubtzip
File extension(s):

OCF files are most often identified with the extension .epub.

Macintosh File Type Code(s):
ZIP

Fragment Identifiers:

uses

g list

The IDPF maintains a registry of linking schemes at http://idpf.org/epub/linking/. Some of

these schemes define custom fragment identifiers that resolve to application/epub+zip and

application/oebps—packagetxml documents.

Person & email address to contact for further information:

http://www.iana.org/assignments/media-types/application/zip
file:///K:/KERIS%20Documents/2013%EB%85%84%20%ED%91%9C%EC%A4%80%ED%92%88%EC%A7%88%EA%B0%9C%EB%B0%9C%EB%B6%80/%EA%B5%AD%EC%A0%9C%ED%91%9C%EC%A4%80%ED%99%9C%EB%8F%99%20%EA%B4%80%EB%A0%A8/JTC1.SC34/JWG-EPUB3/Final%20TS%20Documents/Part4_Open_Container_Format/epub30-ocf.html
http://www.idpf.org/doc_library/epub/OCF_2.0.1_draft.doc
http://idpf.org/epub/linking/linking.html
https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

	Blank Page

