

Reference number
ISO/IEC TS 30135-4:2014(E)

© ISO/IEC 2014

TECHNICAL
SPECIFICATION

ISO/IEC
TS

30135-4

First edition
2014-11-15

Information technology — Digital
publishing — EPUB3 —

Part 4:
Open Container Format

Technologies de l'information — Publications numériques — EPUB3 —

Partie 4: Format de conteneur ouvert

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

ISO/IEC TS 30135-4:2014(E)

 COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any
means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission.
Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.

ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2014 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

ISO/IEC TS 30135-4:2014(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical

Commission) form the specialized system for worldwide standardization. National bodies that are members of

ISO or IEC participate in the development of International Standards through technical committees

established by the respective organization to deal with particular fields of technical activity. ISO and IEC

technical committees collaborate in fields of mutual interest. Other international organizations, governmental

and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information

technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International

Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as

an International Standard requires approval by at least 75 % of the national bodies casting a vote.

In other circumstances, particularly when there is an urgent market requirement for such documents, the joint

technical committee may decide to publish an ISO/IEC Technical Specification (ISO/IEC TS), which

represents an agreement between the members of the joint technical committee and is accepted for

publication if it is approved by 2/3 of the members of the committee casting a vote.

An ISO/IEC TS is reviewed after three years in order to decide whether it will be confirmed for a further three

years, revised to become an International Standard, or withdrawn. If the ISO/IEC TS is confirmed, it is

reviewed again after a further three years, at which time it must either be transformed into an International

Standard or be withdrawn.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent

rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TS 30135 series were prepared by Korean Agency for Technology and Standards (as KS X 6070

series) with International Digital Publishing Forum and were adopted, under a special “fast-track procedure”,

by Joint Technical Committee ISO/IEC JTC 1, Information technology, in parallel with its approval by the

national bodies of ISO and IEC.

ISO/IEC TS 30135 consists of the following parts, under the general title Information technology — Document

description and processing languages — EPUB 3:

— Part 1: Overview

— Part 2: Publications

— Part 3: Content Documents

— Part 4: Open Container Format

— Part 5: Media Overlay

— Part 6: Canonical Fragment Identifier

— Part 7: Fixed-Layout Documents

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

EPUB Open Container Format (OCF) 3.0

Recommended Specification 11 October 2011

THIS VERSION

http://www.idpf.org/epub/30/spec/epub30-ocf-20111011.html

LATEST VERSION

http://www.idpf.org/epub/30/spec/epub30-ocf.html

PREVIOUS VERSION

http://www.idpf.org/epub/30/spec/epub30-ocf-20110908.html

A diff of changes from the previous draft is availab le at this link.

Please refer to the errata for this document, which may include some normative corrections.

Copyright © 2010, 2011 International Digital Publishing Forum™

All rights reserved. This work is protected under Title 17 of the United States Code. Reproduction and
dissemination of this work with changes is prohibited except with the written permission of the International

Digital Publishing Forum (IDPF).

EPUB is a registered trademark of the International Digital Publishing Forum.

Editors

James Pritchett, Learning Ally (formerly Recording for the Blind & Dyslexic)

Markus Gylling, DAISY Consortium

TAB LE O F CO NTENTS

1. Overview

1.1. Purpose and Scope
1.2. Terminology
1.3. Conformance Statements
1.4. Content Conformance
1.5. Reading System Conformance

2. OCF Abstract Container

2.1. Overview
2.2. File and Directory Structure
2.3. Relative IRIs for Referencing Other Components
2.4. File Names
2.5. META-INF

2.5.1. Container – META-INF/container.xml
2.5.2. Encryption – META-INF/encryption.xml

2.5.3. Manifest – META-INF/manifest.xml
2.5.4. Metadata – META-INF/metadata.xml

2.5.5. Rights Management – META-INF/rights.xml
2.5.6. Digital Signatures – META-INF/signatures.xml

3. OCF ZIP Container

3.1. Overview
3.2. ZIP File Requirements
3.3. OCF ZIP Container Media Type Identification

4. Font Obfuscation

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

file:///K:/KERIS%20Documents/2013%EB%85%84%20%ED%91%9C%EC%A4%80%ED%92%88%EC%A7%88%EA%B0%9C%EB%B0%9C%EB%B6%80/%EA%B5%AD%EC%A0%9C%ED%91%9C%EC%A4%80%ED%99%9C%EB%8F%99%20%EA%B4%80%EB%A0%A8/JTC1.SC34/JWG-EPUB3/Final%20TS%20Documents/Part4_Open_Container_Format/version/epub30-ocf-20111011.html
file:///K:/KERIS%20Documents/2013%EB%85%84%20%ED%91%9C%EC%A4%80%ED%92%88%EC%A7%88%EA%B0%9C%EB%B0%9C%EB%B6%80/%EA%B5%AD%EC%A0%9C%ED%91%9C%EC%A4%80%ED%99%9C%EB%8F%99%20%EA%B4%80%EB%A0%A8/JTC1.SC34/JWG-EPUB3/Final%20TS%20Documents/Part4_Open_Container_Format/epub30-ocf.html
file:///K:/KERIS%20Documents/2013%EB%85%84%20%ED%91%9C%EC%A4%80%ED%92%88%EC%A7%88%EA%B0%9C%EB%B0%9C%EB%B6%80/%EA%B5%AD%EC%A0%9C%ED%91%9C%EC%A4%80%ED%99%9C%EB%8F%99%20%EA%B4%80%EB%A0%A8/JTC1.SC34/JWG-EPUB3/Final%20TS%20Documents/Part4_Open_Container_Format/version/epub30-ocf-20110908.html
http://code.google.com/p/epub-revision/source/diff?spec=svn3218&old=3183&r=3218&format=side&path=%2Ftrunk%2Fsrc%2Fspec%2Fepub30-ocf.xml
http://idpf.org/epub/30/spec/epub30-ocf-errata/epub30-ocf-errata.html
http://www.idpf.org/
https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

›

›

4.1. Introduction
4.2. Obfuscation Algorithm
4.3. Generating the Obfuscation Key
4.4. Specifying Obfuscated Resources

A. Schemas

A.1. Schema for container.xml
A.2. Schema for encryption.xml
A.3. Schema for signatures.xml

B. Example
C. The application/epub+zip Media Type
D. Acknowledgements and Contributors
References

1 Overview

1.1 Purpose and Scope

This section is informative

This specification, EPUB Open Container Format (OCF) 3.0, defines a file format and processing model
for encapsulating the sets of related resources that comprise one or more EPUB® Publications into a
single-file container.

This specification is one of a family of related specifications that compose EPUB 3, the third major
revision of an interchange and delivery format for digital publications based on XML and Web Standards. It
is meant to be read and understood in concert with the other specifications that make up EPUB 3:

The EPUB 3 Overview [EPUB3Overview], which provides an informative overview of EPUB and a
roadmap to the rest of the EPUB 3 documents. The Overview should be read first.

EPUB Publications 3.0 [Publications30], which defines publication-level semantics and
overarching conformance requirements for EPUB Publications.

EPUB Content Documents 3.0 [ContentDocs30], which defines profiles of XHTML, SVG and CSS
for use in the context of EPUB Publications.

EPUB Media Overlays 3.0 [MediaOverlays30], which defines a format and a processing model for
synchronization of text and audio.

OCF is the required container technology for EPUB Publications. OCF may play a role in the following
workflows:

During the preparation steps in producing an electronic Publication, OCF may be used as the
container format when exchanging in-progress Publications between different individuals and/or
different organizations.

When providing an electronic Publication from publisher or conversion house to the distribution or
sales channel, OCF is the recommended container format to be used as the transport format.

When delivering the final Publication to an EPUB Reading System or User, OCF is the required
format for the container that holds all of the assets that make up the Publication.

The OCF specification defines the rules for structuring the file collection in the abstract: the "abstract
container". It also defines the rules for the representation of this abstract container within a ZIP archive:
the "physical container". The rules for ZIP physical containers build upon the ZIP technologies used by
[ODF]. OCF also defines a standard method for obfuscating embedded fonts for those EPUB
Publications that require this functionality.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

›

This specification supersedes Open Container Format (OCF) 2.0.1 [OCF2]. Refer to [EPUB3Changes] for
information on differences between this specification and its predecessor.

1.2 Terminology

EPUB Publication (or Publication)

A logical document entity consisting of a set of interrelated resources and packaged in an
EPUB Container, as defined by this specification and its sibling specifications.

Publication Resource

A resource that contains content or instructions that contribute to the logic and rendering of
the EPUB Publication. In the absence of this resource, the Publication might not render as
intended by the Author. Examples of Publication Resources include the Package Document,
EPUB Content Documents, EPUB Style Sheets, audio, video, images, embedded fonts and
scripts.

With the exception of the Package Document itself, Publication Resources must be listed in
the manifest [Publications30] and must be bundled in the EPUB container file unless
specified otherwise in Publication Resource Locations [Publications30].

Examples of resources that are not Publication Resources include those identified by the
Package Document link [Publications30] element and those identified in outbound hyperlinks
that resolve outside the EPUB Container (e.g., referenced from an [HTML5] a element href
attribute).

EPUB Content Document

A Publication Resource that conforms to one of the EPUB Content Document definitions
(XHTML or SVG).

An EPUB Content Document is a Core Media Type, and may therefore be included in the
EPUB Publication without the provision of fallbacks [Publications30].

XHTML Content Document

An EPUB Content Document conforming to the profile of [HTML5] defined in XHTML Content
Documents [ContentDocs30].

XHTML Content Documents use the XHTML syntax of [HTML5].

SVG Content Document

An EPUB Content Document conforming to the constraints expressed in SVG Content
Documents [ContentDocs30].

Core Media Type

A set of Publication Resource types for which no fallback is required. Refer to Publication
Resources [Publications30] for more information.

Package Document

A Publication Resource carrying bibliographical and structural metadata about the EPUB
Publication, as defined in Package Documents [Publications30].

Manifestation

The digital (or physical) embodiment of a work of intellectual content. Changes to the content
such as significant revision, abridgement, translation, or the realization of the content in a
different digital or physical form result in a new manifestation. There may be many individual

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

http://idpf.org/epub/30/spec/epub30-publications.html#sec-manifest-elem
http://idpf.org/epub/30/spec/epub30-publications.html#sec-resource-locations
http://idpf.org/epub/30/spec/epub30-publications.html#sec-link-elem
http://www.w3.org/TR/html5/Overview.html#the-a-element
http://idpf.org/epub/30/spec/epub30-publications.html#sec-fallback-processing-flow
http://idpf.org/epub/30/spec/epub30-contentdocs.html#sec-xhtml
http://www.w3.org/TR/html5/Overview.html#the-xhtml-syntax
http://idpf.org/epub/30/spec/epub30-contentdocs.html#sec-svg
http://idpf.org/epub/30/spec/epub30-publications.html#sec-publication-resources
http://idpf.org/epub/30/spec/epub30-publications.html#sec-package-documents
https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

›

but identical copies of a manifestation, termed 'instances' or 'items'. The ISBN is an example
of a manifestation identifier, and is shared by all instances of that manifestation.

All instances of a manifestation need not be bit-for-bit identical, as minor corrections or
revisions are not judged to create a new manifestation or work.

Unique Identifier

The Unique Identifier is the primary identifier for an EPUB Publication, as identified by the
unique-identifier attribute. The Unique Identifier may be shared by one or many
Manifestations of the same work that conform to the EPUB standard and embody the same
content, where the differences between the Manifestations are limited to those changes that
take account of differences between EPUB Reading Systems (and which themselves may
require changes in the ISBN).

The Unique Identifier is less granular than the ISBN. However, significant revision,
abridgement, etc. of the content requires a new Unique Identifier.

EPUB Style Sheet (or Style Sheet)

A CSS Style Sheet conforming to the CSS profile defined in EPUB Style Sheets
[ContentDocs30].

Viewport

The region of an EPUB Reading System in which the content of an EPUB Publication is
rendered visually to a User.

EPUB Container (or Container)

The ZIP-based packaging and distribution format for EPUB Publications defined in OCF ZIP
Container.

OCF Processor

A software application that processes EPUB Containers according to this specification.

Author

The person(s) or organization responsible for the creation of an EPUB Publication, which is
not necessarily the creator of the content and resources it contains.

User

An individual that consumes an EPUB Publication using an EPUB Reading System.

EPUB Reading System (or Reading System)

A system that processes EPUB Publications for presentation to a User in a manner
conformant with this specification and its sibling specifications.

1.3 Conformance Statements

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described
in [RFC2119].

All sections of this specification are normative except where identified by the informative status label
"This section is informative". The application of informative status to sections and appendices applies to
all child content and subsections they may contain.

All examples in this specification are informative.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

http://idpf.org/epub/30/spec/epub30-publications.html#attrdef-package-unique-identifier
http://idpf.org/epub/30/spec/epub30-contentdocs.html#sec-css
https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

›

›

›

›

›

›

›

›

1.4 Content Conformance

An OCF Abstract Container must meet the conformance constraints defined in OCF Abstract
Container.

An OCF ZIP Container (also referred to as an EPUB Container) must meet the conformance
constraints defined in OCF ZIP Container.

1.5 Reading System Conformance

An EPUB Reading System must meet all of the following criteria:

It must process the OCF ZIP Container in conformance with all Reading System conformance
constraints expressed in OCF ZIP Container.

If it has a Viewport, it must support deobfuscation of fonts as defined in Font Obfuscation.

2 OCF Abstract Container

2.1 Overview

This section is informative

An OCF Abstract Container defines a file system model for the contents of the container. The file system
model uses a single common root directory for all of the contents of the container. All (non-remote)
resources for embedded Publications are located within the directory tree headed by the container’s root
directory, although no specific file system structure is mandated for this. The file system model also
includes a mandatory directory named META-INF that is a direct child of the container's root directory and
is used to store the following special files:

container.xml [required]

Identifies the file that is the point of entry for each embedded Publication.

signatures.xml [optional]

Contains digital signatures for various assets.

encryption.xml [optional]

Contains information about the encryption of Publication resources. (This file is required if font
obfuscation is used.)

metadata.xml [optional]

Used to store metadata about the container.

rights.xml [optional]

Used to store information about digital rights.

manifest.xml [allowed]

A manifest of container contents as allowed by Open Document Format [ODF].

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

›

›

Complete conformance requirements for the various files in META-INF are found in META-INF.

2.2 File and Directory Structure

The virtual file system for the OCF Abstract Container must have a single common root directory for all of
the contents of the container.

The OCF Abstract Container must include a directory named META-INF that is a direct child of the
container's root directory. Requirements for the contents of this directory are described in META-INF.

The file name mimetype in the root directory is reserved for use by OCF ZIP Containers, as explained in
OCF ZIP Container.

All other files within the OCF Abstract Container may be in any location descendant from the container's
root directory except within the META-INF directory.

It is recommended that the contents of each of the individual Publications be stored within its own
dedicated directory under the container's root.

2.3 Relative IRIs for Referencing Other Components

Files within the OCF Abstract Container must reference each other via Relative IRI References
([RFC3987] and [RFC3986]). For example, if a file named chapter1.html references an image file named
image1.jpg that is located in the same directory, then chapter1.html might contain the following as part of
its content:

For Relative IRI References, the Base IRI [RFC3986] is determined by the relevant language
specifications for the given file formats. For example, the CSS specification defines how relative IRI
references work in the context of CSS style sheets and property declarations. Note that some language
specifications reference RFCs that preceded RFC3987, in which case the earlier RFC applies for content
in that particular language.

Unlike most language specifications, the Base IRIs for all files within the META-INF directory use the root
directory for the Abstract Container as the default Base IRI. For example, if META-INF/container.xml has
the following content:

<?xml version="1.0"?>
<container version="1.0"
xmlns="urn:oasis:names:tc:opendocument:xmlns:container">
 <rootfiles>
 <rootfile full-path="OEBPS/Great Expectations.opf"
 media-type="application/oebps-package+xml" />
 </rootfiles>
</container>

then the path OEBPS/Great Expectations.opf is relative to the root directory for the OCF Abstract Container
and not relative to the META-INF directory.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

›

›

›

›

›

2.4 File Names

The term File Name represents the name of any type of file, either a directory or an ordinary file within a
directory within an OCF Abstract Container.

For a given directory within the OCF Abstract Container, the Path Name is a string holding all directory File
Names in the full path concatenated together with a / (U+002F) character separating the directory File
Names. For a given file within the Abstract Container, the Path Name is the string holding all directory
File Names concatenated together with a / character separating the directory File Names, followed by a
/ character and then the File Name of the file.

The File Name restrictions described below are designed to allow Path Names and File Names to be
used without modification on most commonly used operating systems. This specification does not
specify how an OCF Processor that is unable to represent OCF File and Path Names would compensate
for this incompatibility.

In the context of an OCF Abstract Container, File and Path Names must meet all of the following criteria:

File Names must be UTF-8 [Unicode] encoded.

File Names must not exceed 255 bytes.

The Path Name for any directory or file within the Abstract Container must not exceed 65535
bytes.

File Names must not use the following [Unicode] characters, as these characters might not be
supported consistently across commonly-used operating systems:

SOLIDUS: / (U+002F)

QUOTATION MARK: " (U+0022)

ASTERISK: * (U+002A)

FULL STOP as the last character: . (U+002E)

COLON: : (U+003A)

LESS-THAN SIGN: < (U+003C)

GREATER-THAN SIGN: > (U+003E)

QUESTION MARK: ? (U+003F)

REVERSE SOLIDUS: \ (U+005C)

DEL (U+007F)

C0 range (U+0000 … U+001F)

C1 range (U+0080 … U+009F)

Private Use Area (U+E000 … U+F8FF)

Non characters in Arabic Presentation Forms-A (U+FDDO … U+FDEF)

Specials (U+FFF0 … U+FFFF)

Tags and Variation Selectors Supplement (U+E0000 … U+E0FFF)

Supplementary Private Use Area-A (U+F0000 … U+FFFFF)

Supplementary Private Use Area-B (U+100000 … U+10FFFF)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

›

›

›

NOTE

›

›

File Names are case sensitive.

All File Names within the same directory must be unique following case normalization as
described in section 3.13 of [Unicode].

All File Names within the same directory should be unique following NFC or NFD normalization
[TR15].

Some commercial ZIP tools do not support the full Unicode range and may support only the ASCII
range for File Names. Content creators who want to use ZIP tools that have these restrictions may
find it is best to restrict their File Names to the ASCII range. If the names of files cannot be
preserved during the unzipping process, it will be necessary to compensate for any name
translation which took place when the files are referenced by URI from within the content.

2.5 META-INF

All OCF Abstract Containers must include a directory called META-INF. This directory contains the files
specified below. Files other than the ones defined below may be included in the META-INF directory; OCF
Processors must not fail when encountering such files.

2.5.1 Container – META-INF/container.x ml

All OCF Containers must include a file called container.xml within the META-INF directory. The
container.xml file must identify the media type of, and paths to, the root files for the EPUB Publications
included within the container.

The container.xml file must not be encrypted.

The schema for container.xml files is available in Schema for container.xml; container.xml files must be
valid according to this schema after removing all elements and attributes from other namespaces
(including all attributes and contents of such elements).

The rootfiles element must contain one or more rootfile elements, each of which must uniquely
reference a Package Document representing a single Publication. The Publications stored in an OCF
should be different renditions of the same Manifestation.

An OCF Processor must consider the first rootfile element within the rootfiles element to represent the
default rendition for the contained Publication. Reading Systems are not required to use any rendition
except the default one.

The following example shows a sample container.xml for an EPUB Publication with the root fi le OEBPS/My Crazy

Life.opf (the Package Document):

<?xml version="1.0"?>
<container version="1.0"
xmlns="urn:oasis:names:tc:opendocument:xmlns:container">
 <rootfiles>
 <rootfile full-path="OEBPS/My Crazy Life.opf"
 media-type="application/oebps-package+xml" />
 </rootfiles>
</container>

The following example shows SVG and XHTML renditions of The Sandman bundled in the same container:

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

›

<?xml version="1.0"?>
<container version="1.0"
xmlns="urn:oasis:names:tc:opendocument:xmlns:container">
 <rootfiles>
 <rootfile full-path="SVG/Sandman.opf"
 media-type="application/oebps-package+xml" />
 <rootfile full-path="XHTML/Sandman.opf"
 media-type="application/oebps-package+xml" />
 </rootfiles>
</container>

The manifest element contained within the Package Document specifies the one and only manifest used
for EPUB processing. Ancillary manifest information contained in the ZIP archive or in the optional
manifest.xml file must not be used for EPUB processing purposes. Any extra files in the ZIP archive must
not be used in the processing of the EPUB Publication (i.e., files within the ZIP archive that are not listed
within the Package Document's manifest element, such as META-INF files or alternate derived renditions of
the Publication).

The value of the full-path attribute must contain a path component (as defined by RFC3986) which must
take the form of a path-rootless only (also defined by RFC 3986). The path components are relative to
the root of the container in which they are used.

OCF Processors must ignore foreign elements and attributes within a container.xml file.

2.5.2 Encryption – META-INF/encryption.x ml

An optional encryption.xml file within the META-INF directory at the root level of the container file system
holds all encryption information on the contents of the container. This file is an XML document whose root
element is encryption. The encryption element contains child elements of type EncryptedKey and
EncryptedData as defined by [XML ENC Core]. Each EncryptedData element describes how one or more
files within the container are encrypted. Consequently, if any resource within the container is encrypted,
encryption.xml must be present to indicate that the resource is encrypted and provide information on how
it is encrypted.

An EncryptedKey element describes each encryption key used in the container, while an EncryptedData
element describes each encrypted file. Each EncryptedData element refers to an EncryptedKey element, as
described in XML Encryption.

The schema for encryption.xml files is available in Schema for encryption.xml; encryption.xml files must
be valid according to this schema.

OCF encrypts individual files independently, trading off some security for improved performance, allowing
the container contents to be incrementally decrypted. Encryption in this way exposes the directory
structure and file naming of the whole package.

OCF uses XML Encryption [XML ENC Core] to provide a framework for encryption, allowing a variety of
algorithms to be used. XML Encryption specifies a process for encrypting arbitrary data and representing
the result in XML. Even though an OCF Abstract Container may contain non-XML data, XML Encryption
can be used to encrypt all data in an OCF Abstract Container. OCF encryption supports only the
encryption of entire files within the container, not parts of files. The encryption.xml file, if present, must
not be encrypted.

Encrypted data replaces unencrypted data in an OCF Abstract Container. For example, if an image
named photo.jpeg is encrypted, the contents of the photo.jpeg resource should be replaced by its
encrypted contents. When stored in a ZIP container, streams of data must be compressed before they
are encrypted and Deflate compression must be used. Within the ZIP directory, encrypted files should be
stored rather than Deflate-compressed.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

Some situations require obfuscating the storage of embedded fonts referenced by an EPUB Publication
to tie them to the "parent" Publication and make them more difficult to extract for unrestricted use. In
these cases, encryption.xml should be used to provide requisite font decoding information according to
Font Obfuscation.

The following files must never be encrypted, regardless of whether default or specific encryption is
requested:

mimetype

META-INF/container.xml

META-INF/encryption.xml

META-INF/manifest.xml

META-INF/metadata.xml

META-INF/rights.xml

META-INF/signatures.xml

EPUB rootfile (the Package Document)

Signed resources may subsequently be encrypted using the Decryption Transform for XML Signature
[XML SIG Decrypt]. This feature enables an application such as an OCF agent to distinguish data that
was encrypted before signing from data that was encrypted after signing. Only data that was encrypted
after signing must be decrypted before computing the digest used to validate the signature.

In the following example, adapted from Section 2.2.1 of [XML ENC Core] the resource image.jpeg is encrypted using a

symmetric key algorithm (AES) and the symmetric key is further encrypted using an asymmetric key algorithm (RSA) with a

key of John Smith.

<encryption
 xmlns ="urn:oasis:names:tc:opendocument:xmlns:container"
 xmlns:enc="http://www.w3.org/2001/04/xmlenc#"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <enc:EncryptedKey Id="EK">
 <enc:EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <ds:KeyInfo>
 <ds:KeyName>John Smith</ds:KeyName>
 </ds:KeyInfo>
 <enc:CipherData>
 <enc:CipherValue>xyzabc</enc:CipherValue>
 </enc:CipherData>
 </enc:EncryptedKey>
 <enc:EncryptedData Id="ED1">
 <enc:EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#kw-aes128"/>
 <ds:KeyInfo>
 <ds:RetrievalMethod URI="#EK"
 Type="http://www.w3.org/2001/04/xmlenc#EncryptedKey"/>
 </ds:KeyInfo>
 <enc:CipherData>
 <enc:CipherReference URI="image.jpeg"/>
 </enc:CipherData>
 </enc:EncryptedData>
</encryption>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/#sec-eg-Symmetric-Key
https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

›

›

›

›

2.5.3 Manifes t – META-INF/manifes t.x ml

An optional file with the reserved name manifest.xml may be included within the META-INF directory at the
root level of the container file system.

The manifest.xml file, if present, must not be encrypted.

2.5.4 Metadata – META-INF/metadata.x ml

An optional file with the reserved name metadata.xml may be included within the META-INF directory at the
root level of the container file system. This file, if present, must be used for container-level metadata. This
version of the OCF specification does not specify any container-level metadata.

If the META-INF/metadata.xml file is present, its contents should be only namespace-qualified elements
[XMLNS] to avoid collision with future versions of OCF that may specify a particular format for this file.

The metadata.xml file, if present, must not be encrypted.

2.5.5 R ights Management – META-INF/rights .x ml

An optional file with the reserved name rights.xml may be included within the META-INF directory at the
root level of the container file system. This file is reserved for digital rights management (DRM)
information for trusted exchange of Publications among rights holders, intermediaries, and users. This
version of the OCF specification does not specify a required format for DRM information, but a future
version may specify a particular format for DRM information.

If the META-INF/rights.xml file is present, its contents should be only namespace-qualified elements
[XMLNS] to avoid collision with future versions of OCF that may specify a particular format for this file.

The rights.xml file must not be encrypted.

When the rights.xml file is not present, the OCF container provides no information indicating any part of
the container is rights governed.

2.5.6 Digital S ignatures – META-INF/s ignatures .x ml

An optional signatures.xml within the META-INF directory at the root level of the container file system holds
digital signatures of the container and its contents. This file is an XML document whose root element is
signatures. The signatures element contains child elements of type Signature as defined by [XML DSIG
Core]. Signatures can be applied to the Publication and any alternate renditions as a whole or to parts of
the Publication and renditions. XML Signature can specify the signing of any kind of data, not just XML.

The signatures.xml file must not be encrypted.

When the signatures.xml file is not present, the OCF container provides no information indicating any part
of the container is digitally signed at the container level. It is possible that digital signing exists within any
optional alternate contained renditions, however.

The schema for signatures.xml files is available in Schema for signatures.xml; signatures.xml files must
be valid according to this schema.

When an OCF agent creates a signature of data in a container, it should add the new signature as the
last child Signature element of the signatures element in the signatures.xml file.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

NOTE

Each Signature in the signatures.xml file identifies by IRI the data to which the signature applies,
using the XML Signature Manifest element and its Reference sub-elements. Individual contained
files may be signed separately or together. Separately signing each file creates a digest value for
the resource that can be validated independently. This approach may make a Signature element
larger. If files are signed together, the set of signed files can be listed in a single XML Signature
Manifest element and referenced by one or more Signature elements.

Any or all files in the container can be signed in their entirety with the exception of the signatures.xml file
since that file will contain the computed signature information. Whether and how the signatures.xml file
should be signed depends on the objective of the signer.

If the signer wants to allow signatures to be added or removed from the container without invalidating the
signer’s signature, the signatures.xml file should not be signed.

If the signer wants any addition or removal of a signature to invalidate the signer’s signature, the
Enveloped Signature transform (defined in Section 6.6.4 of [XML DSIG Core]) can be used to sign the
entire preexisting signature file excluding the Signature being created. This transform would sign all
previous signatures, and it would become invalid if a subsequent signature was added to the package.

If the signer wants the removal of an existing signature to invalidate the signer’s signature but also wants
to allow the addition of signatures, an XPath transform can be used to sign just the existing signatures.
(This is only a suggestion. The particular XPath transform is not a part of the OCF specification.)

XML-Signature does not associate any semantics with a signature; an agent may include semantic
information, for example, by adding information to the Signature element that describes the signature.
XML Signature describes how additional information can be added to a signature (for example, by using
the SignatureProperties element).

The following XML expression shows the content of an example signatures.xml fi le, and is based on the examples

found in Section 2 of [XML DSIG Core]. It contains one signature, and the signature applies to two resources,

OEBFPS/book.html and OEBFPS/images/cover.jpeg, in the container.

<signatures xmlns="urn:oasis:names:tc:opendocument:xmlns:container">
 <Signature Id="sig" xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod
 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315"/>
 <SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
 <Reference URI="#Manifest1">
 <DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>…</SignatureValue>
 <KeyInfo>
 <KeyValue>
 <DSAKeyValue>
 <P>…</P><Q>…</Q><G>…</G><Y>…</Y>
 </DSAKeyValue>
 </KeyValue>
 </KeyInfo>
 <Object>
 <Manifest Id="Manifest1">
 <Reference URI="OEBFPS/book.xml">
 <Transforms>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-EnvelopedSignature
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Overview
https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

›

›

›

›

›

›

›

 <Transform

 Algorithm="http://www.w3.org/TR/2001/REC-xml-
c14n-20010315"/>
 </Transforms>
 <DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue></DigestValue>
 </Reference>
 <Reference URI="OEBFPS/images/cover.jpeg">
 <Transforms>
 <Transform
 Algorithm="http://www.w3.org/TR/2001/REC-xml-
c14n-20010315"/>
 </Transforms>
 <DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue></DigestValue>
 </Reference>
 </Manifest>
 </Object>
 </Signature>
</signatures>

3 OCF ZIP Container

3.1 Overview

This section is informative

An OCF ZIP Container is a physical single-file manifestation of an abstract container.

3.2 ZIP File Requirements

An OCF ZIP Container uses the ZIP format as specified by [ZIP APPNOTE], but with the following
constraints and clarifications:

The contents of the OCF ZIP Container must be a conforming abstract container.

OCF ZIP Containers must not use the features in the ZIP application note that allow ZIP files to
be split across multiple storage media. OCF Processors must treat any OCF files that specify
that the ZIP file is split across multiple storage media as being in error.

OCF ZIP Containers must include only uncompressed files or Deflate-compressed files within the
ZIP archive. OCF Processors must treat any OCF Containers that use compression techniques
other than Deflate as being in error.

OCF ZIP Containers may use the ZIP64 extensions defined as "Version 1" in section V,
subsection G of the application note at [ZIP APPNOTE] and should use only those extensions
when the content requires them. OCF Processors must support the ZIP64 extensions defined as
"Version 1".

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

›

›

›

›

›

›

›

NOTE

›

›

OCF ZIP Containers must not use the encryption features defined by the ZIP format; instead,
encryption must be done using the features described in Encryption – META-INF/encryption.xml.

OCF Processors must treat any other OCF ZIP Containers that use ZIP encryption features as
being in error.

It is not a requirement that OCF Processors preserve information from an OCF ZIP Container
through load and save operations that is not defined within the OCF Abstract Container; in
particular, an OCF Processor does not have to preserve CRC values, comment fields or fields that
hold file system information corresponding to a particular operating system (e.g., External file
attributes and Extra field).

OCF ZIP Containers must encode File System Names using UTF-8 [Unicode].

The following constraints apply to particular fields in the OCF ZIP Container archive:

In the local file header table, OCF ZIP Containers must set the version needed to extract fields
to the values 10, 20 or 45 in order to match the maximum version level needed by the given file
(e.g., 20 if Deflate is needed, 45 if ZIP64 is needed). OCF Processors must treat any other values
as being in error.

In the local file header table, OCF ZIP Containers must set the compression method field to the
values 0 or 8. OCF Processors must treat any other values as being in error.

OCF Processors must treat OCF ZIP Containers with an Archive decryption header or an Archive
extra data record as being in error.

3.3 OCF ZIP Container Media Type Identification

OCF ZIP Containers must include a mimetype file as the first file in the Container, and the contents of this
file must be the MIME type string application/epub+zip.

The contents of the mimetype file must not contain any leading padding or whitespace, must not begin
with the Unicode signature (or Byte Order Mark), and the case of the MIME type string must be exactly
as presented above. The mimetype file additionally must be neither compressed nor encrypted, and there
must not be an extra field in its ZIP header.

Refer to Appendix C, The application/epub+zip Media Type for further information about the
application/epub+zip media type.

4 Font Obfuscation

4.1 Introduction

This section is informative

Since an OCF Zip Container is fundamentally a ZIP file, commonly available ZIP tools can be used to
extract any unencrypted content stream from the package. On some systems, the contents of the ZIP
file may appear like any other native container (e.g., a folder). While the ability to do this is quite useful, it
can pose a problem for an Author who wishes to include a third-party font.

Many commercial fonts allow embedding, but embedding a font implies making it an integral part of the

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

›

Publication, not providing the original font file along with the content. Since integrated ZIP support is so
ubiquitous in modern operating systems, simply placing the font in the ZIP archive is insufficient to signify
that the font is not intended to be reused in other contexts. This uncertainty can undermine the otherwise
very useful font embedding capability of EPUB Publications.

In order to discourage reuse of the font, some font vendors may allow use of their fonts in EPUB
Publications if those fonts are bound in some way to the Publication. That is, if the font file cannot be
installed directly for use on an operating system with the built-in tools of that computing device, and it
cannot be directly used by other EPUB Publications.

It is beyond the scope of this document to provide a digital rights management or enforcement system for
font files. It instead defines a method of obfuscation that will require additional work on the part of the final
OCF recipient to gain general access to any included fonts. It is the hope of the IDPF that this will meet
the requirements of most font vendors. No claim is made in this document or by the IDPF, that this
constitutes encryption, nor does it guarantee that the font file will be secure from copyright infringement.
The defined mechanism will simply provide a stumbling block for those who are unaware of the license
details of the supplied font. It will not prevent a determined user from gaining full access to the font. Given
an OCF Container, it is possible to apply the algorithms defined to extract the raw font file. Whether this
satisfies the requirements of individual font licenses remains a question for the licensor and licensee.

4.2 Obfuscation Algorithm

The algorithm employed to obfuscate the font file consists of modifying the first 1040 bytes (~1KB) of the
font file. In the unlikely event that the file is less than 1040 bytes, then the entire file will be modified. The
key for the algorithm is generated using the instructions as given in the section Generating the
Obfuscation Key. To obfuscate the original data, the result of performing a logical exclusive or (XOR) on
the first byte of the raw file and the first byte of the key is stored as the first byte of the embedded font
file. This process is repeated with the next byte of source and key, until all bytes in the key have been
used. At this point, the process continues starting with the first byte of the key and 21st byte of the
source. Once 1040 bytes have been encoded in this way (or the end of the source is reached), any
remaining data in the source is directly copied to the destination. In pseudo-code, this is the algorithm:

set source to font file
set destination to obfuscated file
set keyData to key for font
set outer to 0
while outer < 52 and not (source at EOF)
 set inner to 0
 while inner < 20 and not (source at EOF)
 read 1 byte from source //Assumes read advances file position
 set sourceByte to result of read
 set keyByte to byte inner of keyData
 set obfuscatedByte to (sourceByte XOR keyByte)
 write obfuscatedByte to destination
 increment inner
 end while
 increment outer
end while
if not (source at EOF) then
 read source to EOF
 write result of read to destination
end if

To get the original font data back, the process is simply reversed. That is, the source file becomes the
obfuscated data and the destination file will contain the raw font data.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

›

›

›

›

4.3 Generating the Obfuscation Key

The key used in the obfuscation algorithm is derived from unique identifer(s) of the Publication(s) in the
Container, as required by the EPUB Publications 3.0 specification and detailed in Unique Identifier
[Publications30]. In order to create the key, the unique identifiers of all Publications contained in the
container must be concatenated in the order that the Publications appear in container.xml and a space
(Unicode code point U+0020) inserted between each identifier. Before generating this string, all whitespace
characters as defined by the XML 1.0 specification [XML], section 2.3 are removed from the individual
identifiers. Specifically the Unicode code points U+0020, U+0009, U+000D and U+000A must be stripped from
each identifier before it is added to the concanenated space-delimited string. An SHA-1 digest of the
UTF-8 representation of this string should be generated as specified by the Secure Hash Standard [SHA-
1]. This digest is then directly used as the key for the algorithm described in Obfuscation Algorithm.

4.4 Specifying Obfuscated Resources

All encrypted data in an OCF Abstract Container must have an entry in the encryption.xml file
accompanying the Publication (see Encryption – META-INF/encryption.xml), which includes fonts
obfuscated using the method described here. For such obfuscated fonts, in the encryption.xml file, the
EncryptionMethod element child of the EncryptedData must have an Algorithm attribute with the value
http://www.idpf.org/2008/embedding. The presence of this attribute signals the use of the algorithm
described in this specification. All resources that have been obfuscated using this approach must be
listed in the CipherData element.

An example encryption.xml fi le might look like this:

<encryption ​
 xmlns="urn:oasis:names:tc:opendocument:xmlns:container" ​
 xmlns:enc="http://www.w3.org/2001/04/xmlenc#">​
 <enc:EncryptedData> ​
 <enc:EncryptionMethod
Algorithm="http://www.idpf.org/2008/embedding"/> ​
 <enc:CipherData> ​
 <enc:CipherReference URI="OEBPS/Fonts/BKANT.TTF"/> ​
 </enc:CipherData> ​
 </enc:EncryptedData> ​
</encryption> ​

To prevent trivial copying of the embedded font to other Publications, the explicit key must not be
provided in the encryption.xml file. Reading systems must derive the key from the package's Unique
Identifier.

Appendix A. Schemas

The schemas in this Appendix are normative.

A.1 Schema for container.xml

The schema for container.xml files is available at http://www.idpf.org/epub/30/schema/ocf-container-
30.rnc.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

http://idpf.org/epub/30/spec/epub30-publications.html#sec-opf-metadata-identifiers-uid
http://idpf.org/epub/30/schema/ocf-container-30.rnc
https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

›

›

›

›

›

›

›

A.2 Schema for encryption.xml

The schema for encryption.xml files is available at http://www.idpf.org/epub/30/schema/ocf-encryption-
30.rnc. It is based on schemas in [XML Sec RNG Schemas].

A.3 Schema for signatures.xml

The schema for signatures.xml files is available at http://www.idpf.org/epub/30/schema/ocf-signatures-
30.rnc. It is based on schemas in [XML Sec RNG Schemas].

Appendix B. Example

The following example demonstrates the use of this OCF format to contain a signed and encrypted EPUB
Publication within a ZIP Container.

Example B.1. Ordered list of files in the ZIP Container

mimetype
META-INF/container.xml
META-INF/signatures.xml
META-INF/encryption.xml
OEBPS/As You Like It.opf
OEBPS/book.html
OEBPS/nav.html
OEBPS/toc.ncx
OEBPS/images/cover.png

Example B.2. The contents of the mimetype file

application/epub+zip

Example B.3. The contents of the META-INF/container.xml file

<?xml version="1.0"?>
<container version="1.0"
xmlns="urn:oasis:names:tc:opendocument:xmlns:container">
 <rootfiles>
 <rootfile full-path="OEBPS/As You Like It.opf"
 media-type="application/oebps-package+xml" />
 </rootfiles>
</container>

Example B.4. The contents of the META-INF/signatures.xml file

<signatures xmlns="urn:oasis:names:tc:opendocument:xmlns:container">
 <Signature Id="AsYouLikeItSignature"

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

http://idpf.org/epub/30/schema/ocf-encryption-30.rnc
http://idpf.org/epub/30/schema/ocf-signatures-30.rnc
https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

xmlns="http://www.w3.org/2000/09/xmldsig#">

 <!-- SignedInfo is the information that is actually signed. In
this case -->
 <!-- the SHA1 algorithm is used to sign the canonical form of the
XML -->
 <!-- documents enumerated in the Object element below
-->
 <SignedInfo>
 <CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 <SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
 <Reference URI="#AsYouLikeIt">
 <DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue>…</DigestValue>
 </Reference>
 </SignedInfo>

 <!-- The signed value of the digest above using the DSA algorithm
-->
 <SignatureValue>…</SignatureValue>

 <!-- The key to use to validate the signature -->
 <KeyInfo>
 <KeyValue>
 <DSAKeyValue>
 <P>…</P>
 <Q>…</Q>
 <G>…</G>
 <Y>…</Y>
 </DSAKeyValue>
 </KeyValue>
 </KeyInfo>

 <!-- The list documents to sign. Note that the canonical form of
XML -->
 <!-- documents is signed while the binary form of the other
documents -->
 <!-- is used -->
 <Object>
 <Manifest Id="AsYouLikeIt">
 <Reference URI="OEBPS/As You Like It.opf">
 <Transforms>
 <Transform
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 </Transforms>
 <DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue></DigestValue>
 </Reference>
 <Reference URI="OEBPS/book.html">
 <Transforms>
 <Transform
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 </Transforms>
 <DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue></DigestValue>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

›

 </Reference>
 <Reference URI="OEBPS/images/cover.png">
 <DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue></DigestValue>
 </Reference>
 </Manifest>
 </Object>
 </Signature>
</signatures>

Example B.5. The contents of the META-INF/encryption.xml file

<?xml version="1.0"?>
<encryption xmlns="urn:oasis:names:tc:opendocument:xmlns:container"
 xmlns:enc="http://www.w3.org/2001/04/xmlenc#"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <!-- The RSA encrypted AES-128 symmetric key used to encrypt the data
-->
 <enc:EncryptedKey Id="EK">
 <enc:EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <ds:KeyInfo>
 <ds:KeyName>John Smith</ds:KeyName>
 </ds:KeyInfo>
 <enc:CipherData>
 <enc:CipherValue>xyzabc…</enc:CipherValue>
 </enc:CipherData>
 </enc:EncryptedKey>

 <!-- Each EncryptedData block identifies a single document that has
been -->
 <!-- encrypted using the AES-128 algorithm. The data remains stored
in it’s -->
 <!-- encrypted form in the original file within the container.
-->
 <enc:EncryptedData Id="ED1">
 <enc:EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#kw-aes128"/>
 <ds:KeyInfo>
 <ds:RetrievalMethod URI="#EK"
Type="http://www.w3.org/2001/04/xmlenc#EncryptedKey"/>
 </ds:KeyInfo>
 <enc:CipherData>
 <enc:CipherReference URI="OEBPS/book.html"/>
 </enc:CipherData>
 </enc:EncryptedData>

 <enc:EncryptedData Id="ED2">
 <enc:EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#kw-aes128"/>
 <ds:KeyInfo>
 <ds:RetrievalMethod URI="#EK"
Type="http://www.w3.org/2001/04/xmlenc#EncryptedKey"/>
 </ds:KeyInfo>
 <enc:CipherData>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

›

 <enc:CipherReference URI="OEBPS/images/cover.png"/>
 </enc:CipherData>
 </enc:EncryptedData>

</encryption>

Example B.6. The contents of the OEBPS/As You Like It.opf file

<?xml version="1.0"?>
<package version="3.0"
 xml:lang="en"
 xmlns="http://www.idpf.org/2007/opf"
 unique-identifier="pub-id">

 <metadata xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:identifier
 id="pub-id">urn:uuid:B9B412F2-CAAD-4A44-B91F-
A375068478A0</dc:identifier>
 <meta refines="#pub-id"
 property="identifier-type"
 scheme="xsd:string">uuid</meta>

 <dc:language>en</dc:language>

 <dc:title>As You Like It</dc:title>

 <dc:creator id="creator">William Shakespeare</dc:creator>
 <meta refines="#creator"
 property="role"
 scheme="marc:relators">aut</meta>

 <meta property="dcterms:modified">2000-03-24T00:00:00Z</meta>

 <dc:publisher>Project Gutenberg</dc:publisher>

 <dc:date>2000-03-24</dc:date>

 <meta property="dcterms:dateCopyrighted">9999-01-01</meta>

 <dc:identifier
 id="isbn13">urn:isbn:9780741014559</dc:identifier>
 <meta refines="#isbn13"
 property="identifier-type"
 scheme="onix:codelist5">15</meta>

 <dc:identifier id="isbn10">0-7410-1455-6</dc:identifier>
 <meta refines="#isbn10"
 property="identifier-type"
 scheme="onix:codelist5">2</meta>

 <link rel="xml-signature"
 href="../META-INF/signatures.xml#AsYouLikeItSignature"/>
 </metadata>

 <manifest>
 <item id="r4915"
 href="book.html"

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

›

 media-type="application/xhtml+xml"/>
 <item id="r7184"
 href="images/cover.png"
 media-type="image/png"/>
 <item id="nav"
 href="nav.html"
 media-type="application/xhtml+xml"
 properties="nav"/>
 <item id="ncx"
 href="toc.ncx"
 media-type="application/x-dtbncx+xml"/>
 </manifest>

 <spine toc="ncx">
 <itemref idref="r4915"/>
 </spine>
</package>

Appendix C. The application/epub+zip Media Type

This appendix registers the media type application/epub+zip for the EPUB Open Container Format
(OCF).

An OCF file is a container technology based on the ZIP archive format. It is used to encapsulate EPUB
Publications and optional alternate renditions thereof. OCF and its related standards are maintained and
defined by the International Digital Publishing Forum (IDPF).

MIME media type name:

application

MIME subtype name:

epub+zip

Required parameters:

None.

Optional parameters:

None.

Encoding considerations:

OCF files are binary files in ZIP (http://www.iana.org/assignments/media-types/application/zip)
format.

Security considerations:

All processors that read OCF files should rigorously check the size and validity of data retrieved.

In addition, because of the various content types that can be embedded in OCF files, it is possible
that application/epub+zip may describe content that has security implications beyond those
described here. However, only in the case where the processor recognizes and processes the
additional content, or where further processing of that content is dispatched to other processors,
would security issues potentially arise. And in that case, they would fall outside the domain of this
registration document.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

http://www.iana.org/assignments/media-types/application/zip
https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

Security considerations that apply to application/zip also apply to OCF files.

Interoperability considerations:

None.

Published specification:

This media type registration is for the EPUB Open Container Format (OCF), as described by the
EPUB Open Container Format (OCF) 3.0 specification located at
http://www.idpf.org/epub/30/spec/epub30-ocf.html.

The EPUB OCF 3.0 specification supersedes the Open Container Format 2.0.1 specification,
which is located at http://www.idpf.org/doc_library/epub/OCF_2.0.1_draft.doc and which also uses
the application/epub+zip media type.

Applications which use this media type:

This media type is in wide use for the distribution of ebooks in the EPUB format. The following list
of applications is not exhaustive.

Adobe Digital Editions

Aldiko

Azardi

Apple iBooks

Barnes & Noble Nook

Calibre

Google Books

Ibis Reader

MobiPocket reader

Sony Reader

Stanza

Additional information:

Magic number(s):

0: PK 0x03 0x04, 30: mimetype, 38: application/epub+zip

File extension(s):

OCF files are most often identified with the extension .epub.

Macintosh File Type Code(s):

ZIP

Fragment Identifiers:

The IDPF maintains a registry of linking schemes at http://idpf.org/epub/linking/. Some of
these schemes define custom fragment identifiers that resolve to application/epub+zip and
application/oebps-package+xml documents.

Person & email address to contact for further information:

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TS 30
13

5-4
:20

14

http://www.iana.org/assignments/media-types/application/zip
file:///K:/KERIS%20Documents/2013%EB%85%84%20%ED%91%9C%EC%A4%80%ED%92%88%EC%A7%88%EA%B0%9C%EB%B0%9C%EB%B6%80/%EA%B5%AD%EC%A0%9C%ED%91%9C%EC%A4%80%ED%99%9C%EB%8F%99%20%EA%B4%80%EB%A0%A8/JTC1.SC34/JWG-EPUB3/Final%20TS%20Documents/Part4_Open_Container_Format/epub30-ocf.html
http://www.idpf.org/doc_library/epub/OCF_2.0.1_draft.doc
http://idpf.org/epub/linking/linking.html
https://standardsiso.com/api/?name=c2f974b98f77168c2ce4ec807bbcd128

	Blank Page

