

ISO/IEC 29341-1-1
Edition 1.0 2011-09

INTERNATIONAL
STANDARD

Information technology – UPnP device architecture –
Part 1-1: UPnP Device Architecture Version 1.1

IS
O

/IE
C

 2
93

41
-1

-1
:2

01
1(

E
)

colour
inside

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

 THIS PUBLICATION IS COPYRIGHT PROTECTED
 Copyright © 2011 ISO/IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester.
If you have any questions about ISO/IEC copyright or have an enquiry about obtaining additional rights to this
publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office
3, rue de Varembé
CH-1211 Geneva 20
Switzerland
Email: inmail@iec.ch
Web: www.iec.ch

About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.
 Catalogue of IEC publications: www.iec.ch/searchpub
The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,…).
It also gives information on projects, withdrawn and replaced publications.
 IEC Just Published: www.iec.ch/online_news/justpub
Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available
on-line and also by email.
 Electropedia: www.electropedia.org
The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical
Vocabulary online.
 Customer Service Centre: www.iec.ch/webstore/custserv
If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:
Email: csc@iec.ch
Tel.: +41 22 919 02 11
Fax: +41 22 919 03 00

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

mailto:inmail@iec.ch
http://www.iec.ch/
http://www.iec.ch/searchpub
http://www.iec.ch/online_news/justpub
http://www.electropedia.org/
http://www.iec.ch/webstore/custserv
mailto:csc@iec.ch
https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

ISO/IEC 29341-1-1
Edition 1.0 2011-09

INTERNATIONAL
STANDARD

Information technology – UPnP device architecture –
Part 1-1: UPnP Device Architecture Version 1.1

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION XA
ICS 35.200

PRICE CODE

ISBN 978-2-88912-656-9

colour
inside

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 1 —

CONTENTS

Introduction .. 4
0 Addressing ... 10

0.1 Determining whether to use Auto-IP ... 10
0.2 Choosing an address ... 10
0.3 Testing the address ... 11
0.4 Forwarding rules .. 11
0.5 Periodic checking for dynamic address availability .. 12
0.6 Device naming and DNS interaction ... 12
0.7 Name to IP address resolution ... 12
0.8 References .. 12

1 Discovery ... 13
1.1 SSDP message format ... 16

1.1.1 SSDP Start-line .. 16
1.1.2 SSDP message header fields ... 16
1.1.3 SSDP header field extensions .. 16
1.1.4 UUID format and RECOMMENDED generation algorithms 17
1.1.5 SSDP processing rules .. 17

1.2 Advertisement ... 17
1.2.1 Advertisement protocols and standards .. 18
1.2.2 Device available - NOTIFY with ssdp:alive .. 18
1.2.3 Device unavailable -- NOTIFY with ssdp:byebye 24
1.2.4 Device Update – NOTIFY with ssdp:update .. 25

1.3 Search .. 27
1.3.1 Search protocols and standards ... 27
1.3.2 Search request with M-SEARCH .. 28
1.3.3 Search response .. 31

1.4 References .. 33
2 Description ... 33

2.1 Generic requirements on HTTP usage .. 36
2.2 Generic requirements on XML usage .. 38
2.3 Device description ... 38
2.4 UPnP Device Template .. 43
2.5 Service description .. 43

2.5.1 Defining and processing extended data types ... 50
2.5.2 String equivalents of extended data types ... 51
2.5.3 Generic requirements ... 52
2.5.4 Ordering of Elements ... 52
2.5.5 Versioning ... 53

2.6 UPnP Service Template ... 53
2.7 Non-standard vendor extensions and limitations ... 53

2.7.1 Placement of Additional Elements and Attributes 55
2.8 UPnP Device Schema .. 55
2.9 UPnP Service Schema ... 55
2.10 UPnP Datatype Schema .. 55
2.11 Retrieving a description using HTTP .. 55

29341-1-1 © ISO/IEC:2011(E)29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 2 —

2.12 References .. 59
3 Control ... 59

3.1 Control protocols ... 62
3.1.1 SOAP Profile ... 62

3.2 Actions .. 65
3.2.1 Action invocation .. 65
3.2.2 Action Response .. 68
3.2.3 UPnP Action Schema ... 70
3.2.4 Recommendations and additional requirements .. 71
3.2.5 Action error response ... 71
3.2.6 UPnP Error Schema ... 74

3.3 Query for variable .. 74
3.4 References .. 75

4 Eventing ... 75
4.1 Unicast eventing .. 75

4.1.1 Subscription ... 77
4.1.2 SUBSCRIBE with NT and CALLBACK ... 79
4.1.3 Renewing a subscription with SUBSCRIBE with SID 81
4.1.4 Canceling a subscription with UNSUBSCRIBE .. 82

4.2 Multicast Eventing ... 84
4.3 Event messages .. 85

4.3.1 Error Cases ... 86
4.3.2 Unicast eventing: Event messages: NOTIFY ... 86
4.3.3 Multicast Eventing: Event messages: NOTIFY .. 89

4.4 UPnP Event Schema ... 92
4.5 Augmenting the UPnP Device and Service Schemas .. 92
4.6 References .. 93

5 Presentation ... 93
5.1 References .. 94

Annex A (normative) IP Version 6 Support ... 95
A.1 Introduction ... 95
A.2 General Principles ... 95

A.2.1 Device operation .. 96
A.2.2 Control point operation ... 96

A.3 Addressing .. 96
A.3.1 Summary of boot/startup process ... 96
A.3.2 Short overview of protocol specified by RFC 2462 97

A.4 Discovery .. 97
A.4.1 Advertisement .. 98
A.4.2 Advertisement: Device unavailable ... 98
A.4.3 Advertisement: Device update .. 99
A.4.4 Search ... 99
A.4.5 Search response .. 99

A.5 Description .. 100
A.6 Control .. 100
A.7 Eventing .. 100
A.8 Presentation .. 100
A.9 References .. 101

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 3 —

Annex B (informative) Schemas .. 102
B.1 UPnP Device Schema .. 102
B.2 UPnP Service Schema ... 106
B.3 UPnP Control Schema ... 110
B.4 UPnP Error Schema .. 111
B.5 UPnP Event Schema ... 112
B.6 Schema references .. 113

Figure 1: — Protocol stack .. 5
Figure 1-1: — Discovery architecture .. 13
Figure 1-2: — Advertisement protocol stack .. 18
Figure 1-3: — Initial and repeat announcements, no announcement spreading 20
Figure 1-4: — Initial and repeat announcements, message spreading of repeat
announcements .. 20
Figure 1-5: — Search protocol stack ... 27
Figure 2-1: — Description architecture .. 33
Figure 2-2: — Description retrieval protocol stack .. 56
Figure 3-1: — Control architecture .. 59
Figure 3-2: — Control protocol stack ... 62
Figure 4-1: — Unicast eventing architecture .. 75
Figure 4-2: — Unicast eventing protocol stack ... 76
Figure 4-3: — Multicast eventing architecture .. 84
Figure 4-4: — Mulitcast eventing protocol stack ... 85
Figure 5-1: — Presentation architecture .. 93
Figure 5-2: — Presentation protocol stack ... 94

Table 1 — Acronyms ... 7
Table 1-1: — Root device discovery messages .. 19
Table 1-2: — Embedded device discovery messages ... 19
Table 1-3: — Service discovery messages .. 19
Table 2-1: — Vendor extensions ... 53
Table 3-1: — SOAP 1.1 UPnP Profile .. 62
Table 3-2: — mustUnderstand attribute .. 64
Table 3-3: — UPnP Defined Action error codes ... 73
Table 4-4: — HTTP Status Codes indicating a Subscription Error ... 81
Table 4-5: — HTTP Status Codes indicating a Resubscription Error 82
Table 4-6: — HTTP Status Codes indicating a Cancel Subscription Error 83
Table 4-7: — HTTP Status Codes indicating a Notify Error ... 89
Table 4-8: — Multicast event levels ... 91

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

INFORMATION TECHNOLOGY –
UPNP DEVICE ARCHITECTURE –

Part 1-1: UPnP Device Architecture Version 1.1

FOREWORD

1) ISO (International Organization for Standardization) and IEC (International Electrotechnical Commission) form the
specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in
the development of International Standards. Their preparation is entrusted to technical committees; any ISO and
IEC member body interested in the subject dealt with may participate in this preparatory work. International
governmental and non-governmental organizations liaising with ISO and IEC also participate in this preparation.

2) In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

3) The formal decisions or agreements of IEC and ISO on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has representation
from all interested IEC and ISO member bodies.

4) IEC, ISO and ISO/IEC publications have the form of recommendations for international use and are accepted
by IEC and ISO member bodies in that sense. While all reasonable efforts are made to ensure that the
technical content of IEC, ISO and ISO/IEC publications is accurate, IEC or ISO cannot be held responsible for
the way in which they are used or for any misinterpretation by any end user.

5) In order to promote international uniformity, IEC and ISO member bodies undertake to apply IEC, ISO and
ISO/IEC publications transparently to the maximum extent possible in their national and regional publications.
Any divergence between any ISO/IEC publication and the corresponding national or regional publication
should be clearly indicated in the latter.

6) ISO and IEC provide no marking procedure to indicate their approval and cannot be rendered responsible for
any equipment declared to be in conformity with an ISO/IEC publication.

7) All users should ensure that they have the latest edition of this publication.

8) No liability shall attach to IEC or ISO or its directors, employees, servants or agents including individual experts
and members of their technical committees and IEC or ISO member bodies for any personal injury, property
damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees)
and expenses arising out of the publication of, use of, or reliance upon, this ISO/IEC publication or any other IEC,
ISO or ISO/IEC publications.

9) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

10) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 29341-1-1 was prepared by UPnP Forum Steering
committee1, was adopted, under the fast track procedure, by subcommittee 25:
Interconnection of information technology equipment, of ISO/IEC joint technical committee 1:
Information technology.

The list of all currently available parts of the ISO/IEC 29341 series, under the general title
Information technology – UPnP device architecture, can be found on the IEC web site.

This International Standard has been approved by vote of the member bodies, and the voting
results may be obtained from the address given on the second title page.

—————————
1 UPnP Forum Steering committee, UPnP Forum, 3855 SW 153rd Drive, Beaverton, Oregon 97006 USA. See also

“Introduction”.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

IMPORTANT – The “colour inside” logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct understanding
of its contents. Users should therefore print this publication using a colour printer.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 4 —

Introduction

What is UPnP™1 Technology?

UPnP™ technology defines an architecture for pervasive peer-to-peer network connectivity of
intelligent appliances, wireless devices, and PCs of all form factors. It is designed to bring
easy-to-use, flexible, standards-based connectivity to ad-hoc or unmanaged networks whether
in the home, in a small business, public spaces, or attached to the Internet. UPnP technology
provides a distributed, open networking architecture that leverages TCP/IP and Web
technologies to enable seamless proximity networking in addition to control and data transfer
among networked devices.

The UPnP Device Architecture (UDA) is more than just a simple extension of the plug and
play peripheral model. It is designed to support zero-configuration, "invisible" networking, and
automatic discovery for a breadth of device categories from a wide range of vendors. This
means a device can dynamically join a network, obtain an IP address, convey its capabilities,
and learn about the presence and capabilities of other devices. Finally, a device can leave a
network smoothly and automatically without leaving any unwanted state behind.

The technologies leveraged in the UPnP architecture include Internet protocols such as IP,
TCP, UDP, HTTP, and XML. Like the Internet, contracts are based on wire protocols that are
declarative, expressed in XML, and communicated via HTTP. Using Internet protocols is a
strong choice for UDA because of its proven ability to span different physical media, to enable
real world multiple-vendor interoperation, and to achieve synergy with the Internet and many
home and office intranets. The UPnP architecture has been explicitly designed to
accommodate these environments. Further, via bridging, UDA accommodates media running
non-IP protocols when cost, technology, or legacy prevents the media or devices attached to
it from running IP.

What is "universal" about UPnP technology? No device drivers; common protocols are used
instead. UPnP networking is media independent. UPnP devices can be implemented using
any programming language, and on any operating system. The UPnP architecture does not
specify or constrain the design of an API for applications; OS vendors may create APIs that
suit their customers’ needs.

UPnP™ Forum

The UPnP Forum is an industry initiative designed to enable easy and robust connectivity
among stand-alone devices and PCs from many different vendors. The UPnP Forum seeks to
develop standards for describing device protocols and XML-based device schemas for the
purpose of enabling device-to-device interoperability in a scalable, networked environment.

The UPnP Implementers Corporation (UIC) is comprised of UPnP Forum member companies
across many industries that promote the adoption of uniform technical device interconnectivity
standards and testing and certifying of these devices. The UIC develops and administers the
testing and certification process, administers the UPnP logo program, and provides
information to UIC members and other interested parties regarding the certification of UPnP
devices. The UPnP device certification process is open to any vendor who is a member of the
UPnP Forum and UIC, has paid the UIC dues, and has devices that support UPnP
functionality. For more information, see http://www.upnp-ic.org.

The UPnP Forum has set up working committees in specific areas of domain expertise. These
working committees are charged with creating proposed device standards, building sample
implementations, and building appropriate test suites. This document indicates specific
technical decisions that are the purview of UPnP Forum working committees.

UPnP vendors can build compliant devices with confidence of interoperability and benefits of
shared intellectual property and the logo program. Separate from the logo program, vendors
may also build devices that adhere to the UPnP Device Architecture defined herein without a
formal standards procedure. If vendors build non-standard devices, they determine technical
decisions that would otherwise be determined by a UPnP Forum working committee.

1 UPnP™ is a certification mark of the UPnP™ Implementers Corporation.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 5 —

In this document

The UPnP Device Architecture (formerly known as the DCP Framework) contained herein
defines the protocols for communication between controllers, or control points, and devices.
For discovery, description, control, eventing, and presentation, the UPnP Device Architecture
uses the following protocol stack (the indicated colors and type styles are used throughout
this document to indicate where each protocol element is defined):

Figure 1: — Protocol stack

UPnP vendor [purple-italic]

UPnP Forum [red-italic]

UPnP Device Architecture [green-bold]

SSDP [blue] Multicast events [navy-bold]
SOAP [blue] GENA [navy-bold]

HTTP [black] HTTP [black]

UDP [black] TCP [black]

IP [black]

At the highest layer, messages logically contain only UPnP vendor-specific information about
their devices. Moving down the stack, vendor content is supplemented by information defined
by UPnP Forum working committees. Messages from the layers above are hosted in UPnP-
specific protocols such as the Simple Service Discovery Protocol (SSDP), the General Event
Notification Architecture (GENA) and the multicast event protocol defined in this document,
and others that are referenced. SSDP is delivered via either multicast or unicast UDP.
Multicast events are delivered via multicast UDP. GENA is delivered via HTTP. Ultimately, all
messages above are delivered over IP. The remaining clauses of this document describe the
content and format for each of these protocol layers in detail. For reference, colors in [square
brackets] above indicate which protocol defines specific message components throughout this
document.

Two general classifications of devices are defined by the UPnP architecture: controlled
devices (or simply “devices”), and control points. A controlled device functions in the role of a
server, responding to requests from control points. Both control points and controlled devices
can be implemented on a variety of platforms including personal computers and embedded
systems. Multiple devices, control points, or both may be operational on the same network
endpoint simultaneously.

Note: This document is oriented toward an IPv4 environment. Considerations for an IPv6
environment are expressed in Annex A.

The foundation for UPnP networking is IP addressing. In an IPv4 environment, each device or
control point must have a Dynamic Host Configuration Protocol (DHCP) client and search for
a DHCP server when the device or control point is first connected to the network. If a DHCP
server is available, i.e., the network is managed; the device or control point MUST use the IP
address assigned to it. If no DHCP server is available, i.e., the network is unmanaged; the
device or control point MUST use Auto IP to get an address. In brief, Auto IP defines how a
device or control point intelligently chooses an IP address from a set of reserved addresses
and is able to move easily between managed and unmanaged networks. If during the DHCP
transaction, the device or control point obtains a domain name, e.g., through a DNS server or
via DNS forwarding, the device or control point should use that name in subsequent network
operations; otherwise, the device or control point should use its IP address.

Certain UPnP networks have more complex configurations such as multiple physical networks
and/or multiple logical networks to accommodate multiple non-overlapping addressing
schemes. Devices and control points may also have two or more network interfaces, and/or
two or more IP addresses assigned to each interface. In such configurations, a single device
or control point may be assigned multiple IP addresses from different logical networks in the
same UPnP network, resulting in devices appearing to a control point multiple times in the
network. Devices and control points that have multiple IP addresses on the same UPnP

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 6 —

network are referred to as multi-homed. Throughout this document, the term "UPnP-enabled
interface" is used to refer to an interface which is assigned an IP address belonging to the
UPnP network. Additional behaviors specific to multi-homed devices and control points will be
covered in applicable clauses throughout the document. However, as a general principle,
related interactions between control points and devices (e.g. action control request and
response messages, event subscription and event messages) MUST occur using the same
pair of outgoing and incoming UPnP-enabled interfaces.

Given an IP address, Step 1 in UPnP networking is discovery. When a device is added to the
network, the UPnP discovery protocol allows that device to advertise its services to control
points on the network. Similarly, when a control point is added to the network, the UPnP
discovery protocol allows that control point to search for devices of interest on the network.
The fundamental exchange in both cases is a discovery message containing a few essential
specifics about the device or one of its services, e.g., its type, identifier, and a pointer to more
detailed information. The clause on Discovery below explains how devices advertise, how
control points search, and contains details about the format of discovery messages.

Step 2 in UPnP networking is description. After a control point has discovered a device, the
control point still knows very little about the device. For the control point to learn more about
the device and its capabilities, or to interact with the device, the control point must retrieve
the device's description from the URL provided by the device in the discovery message.
Devices may contain other logical devices, as well as functional units, or services. The UPnP
description for a device is expressed in XML and includes vendor-specific manufacturer
information like the model name and number, the serial number, the manufacturer name,
URLs to vendor-specific Web sites, etc. The description also includes a list of any embedded
devices or services, as well as URLs for control, eventing, and presentation. For each service,
the description includes a list of the commands, or actions, to which the service responds,
and parameters, or arguments for each action; the description for a service also includes a list
of variables; these variables model the state of the service at run time, and are described in
terms of their data type, range, and event characteristics. The clause on Description below
explains how devices are described and how control points retrieve those descriptions.

Step 3 in UPnP networking is control. After a control point has retrieved a description of the
device, the control point can send actions to a device's services. To do this, a control point
sends a suitable control message to the control URL for the service (provided in the device
description). Control messages are also expressed in XML using the Simple Object Access
Protocol (SOAP). Like function calls, in response to the control message, the service returns
any action-specific values. The effects of the action, if any, are modeled by changes in the
variables that describe the run-time state of the service. The clause on Control below explains
the description of actions, state variables, and the format of control messages.

Step 4 in UPnP networking is eventing. A UPnP description for a service includes a list of
actions the service responds to and a list of variables that model the state of the service at
run time. The service publishes updates when these variables change, and a control point
may subscribe to receive this information. The service publishes updates by sending event
messages. Event messages contain the names of one or more state variables and the current
value of those variables. These messages are also expressed in XML. A special initial event
message is sent when a control point first subscribes; this event message contains the names
and values for all evented variables and allows the subscriber to initialize its model of the
state of the service. To support scenarios with multiple control points, eventing is designed to
keep all control points equally informed about the effects of any action. Therefore, all
subscribers are sent all event messages, subscribers receive event messages for all evented
variables that have changed, and event messages are sent no matter why the state variable
changed (either in response to a requested action or because the state the service is
modeling changed). Multicast eventing is a variant of Step 4 in UPnP networking. Through
multicast eventing, control points can listen to state changes in services without subscription.
This form of eventing is useful first when events which are not relevant to specific UPnP
interactions should be delivered to control points to inform users, and second when multiple
controlled devices want to inform multiple other control points. Multicast eventing is inherently
unreliable since it is based on UDP. To increase the probability of successful transmission,
the option to retransmit multicast event notifications is outlined. UPnP Working committees
should define whether specific events are multicast events. The clause on Eventing below

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 7 —

explains unicast event subscription and the format of both unicast and multicast event
messages.

Step 5 in UPnP networking is presentation. If a device has a URL for presentation, then the
control point can retrieve a page from this URL, load the page into a browser, and depending
on the capabilities of the page, allow a user to control the device and/or view device status.
The degree to which each of these can be accomplished depends on the specific capabilities
of the presentation page and device. The clause on Presentation below explains the protocol
for retrieving a presentation page.

Audience

The audience for this document includes UPnP device and control point vendors, members of
UPnP Forum working committees, and anyone else who has a need to understanding the
technical details of UPnP protocols.

This document assumes the reader is familiar with the HTTP, TCP, UDP, IP family of
protocols; this document makes no attempt to explain them. This document also assumes
most readers will be new to XML, and while it is not an XML tutorial, XML-related issues are
addressed in detail given the centrality of XML to the UPnP Device Architecture. This
document makes no assumptions about the reader's understanding of various programming or
scripting languages.

Conformance terminology

In this document, features are described as REQUIRED, RECOMMENDED, OPTIONAL or
DEPRECATED as follows:

REQUIRED (or MUST or MANDATORY).

These basic features MUST be implemented to comply with UPnP Device Architecture.
The phrases “MUST NOT”, and “PROHIBITED” indicate behavior that is prohibited, i.e.
that if performed means the implementation is not in compliance.

RECOMMENDED (or SHOULD).

These features add functionality supported by UPnP Device Architecture and SHOULD be
implemented. RECOMMENDED features take advantage of the capabilities UPnP Device
Architecture, usually without imposing major cost increases. Notice that for compliance
testing, if a RECOMMENDED feature is implemented, it MUST meet the specified
requirements to be in compliance with these guidelines. Some RECOMMENDED features
could become requirements in the future. The phrase “SHOULD NOT” indicates behavior
that is permitted but NOT RECOMMENDED.

OPTIONAL (or MAY).

These features are neither REQUIRED nor RECOMMENDED by UPnP Device
Architecture, but if the feature is implemented, it MUST meet the specified requirements to
be in compliance with these guidelines. These features are not likely to become
requirements in the future.

DEPRECATED.

Although these features are still described in this specification, they should not be
implemented except for backward compatibility. The occurrence of a deprecated feature
during operation of an implementation compliant with the current specification has no
effect on the implementation’s operation and does not produce any error conditions.
Backward compatibility may require that a feature is implemented and functions as
specified but it MUST never be used by implementations compliant with this specification.

Acronyms

Table 1 — Acronyms

Acronym Meaning Acronym Meaning

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 8 —

ARP Address Resolution Protocol SOAP Simple Object Access Protocol

CP Control Point SSDP Simple Service Discovery Protocol

DCP Device Control Protocol UDA UPnP Device Architecture

DDD Device Description Document UPC Universal Product Code

DHCP Dynamic Host Configuration Protocol URI Uniform Resource Identifier

DNS Domain Name System URL Uniform Resource Locator

GENA General Event Notification Architecture URN Uniform Resource Name

HTML Hypertext Markup Language UUID Universally Unique Identifier

HTTP Hypertext Trrdansfer Protocol XML Extensible Markup Language

SCPD Service Control Protocol Description

Glossary

action
Command exposed by a service. Takes one or more input or output arguments. May have a
return value. For more information, see clause 2, “Description” and clause 3, “Control”.

argument
Parameter for action exposed by a service. May be in or out. For more information, see clause
2, “Description” and clause 3, “Control”.

control point
Retrieves device and service descriptions, sends actions to services, polls for service state
variables, and receives events from services.

device
Logical device. A container. May embed other logical devices. Embeds one or more services.
Advertises its presence on network(s). For more information, see clause 1, “Discovery” and
clause 2, “Description”.

device description
Formal definition of a logical device, expressed in the UPnP Template Language. Written in
XML syntax. Specified by a UPnP vendor by filling in the placeholders in a UPnP Device
Template, including, e.g., manufacturer name, model name, model number, serial number,
and URLs for control, eventing, and presentation. For more information, see clause 2,
“Description”.

device type
Standard device types are denoted by urn:schemas-upnp-org:device: followed by a unique
name assigned by a UPnP Forum working committee. One-to-one relationship with UPnP
Device Templates. UPnP vendors may specify additional device types; these are denoted by
urn:domain-name:device: followed by a unique name assigned by the vendor, where domain-
name is a Vendor Domain Name. For more information, see clause 2, “Description” .

event
Notification of one or more changes in state variables exposed by a service. For more
information, see clause 4, “Eventing”.

GENA
General Event Notification Architecture. The event subscription and notification protocol
defined in clause 4, “Eventing”.

publisher
Source of event messages. Typically a device's service. For more information, see clause 4,
“Eventing”.

root device
A logical device that is not embedded in any other logical device. For more information, see
clause 2, “Description”.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 9 —

service
Logical functional unit. Smallest units of control. Exposes actions and models the state of a
physical device with state variables. For more information, see clause 3, “Control”.

service description
Formal definition of a logical service, expressed in the UPnP Template language. Written in
XML syntax. Specified by a UPnP vendor by filling in any placeholders in a UPnP Service
Template. (Was SCPD.) For more information, see clause 2, “Description”.

service type
Standard service types are denoted by urn:schemas-upnp-org:service: followed by a unique
name assigned by a UPnP forum working committee, colon, and an integer version number.
One-to-one relationship with UPnP Service Templates. UPnP vendors may specify additional
services; these are denoted by urn:domain-name:service: followed by a unique name
assigned by the vendor, colon, and a version number, where domain-name is a Vendor
Domain Name. For more information, see clause 2, “Description”.

SOAP
Simple Object Access Protocol. A remote-procedure call mechanism based on XML that
sends commands and receives values over HTTP. For more information, see clause 3,
“Control”.

SSDP
Simple Service Discovery Protocol. A multicast discovery and search mechanism that uses a
multicast variant of HTTP over UDP. Defined in clause 1, “Discovery”.

state variable
Single facet of a model of a physical service. Exposed by a service. Has a name, data type,
optional default value, optional constraints values, and may trigger events when its value
changes. For more information, see clause 2, “Description” and clause 3, “Control”.

subscriber
Recipient of event messages. Typically a control point. For more information, see clause 4,
“Eventing”.

UPnP Device Template
Template listing device type, required embedded devices (if any), and required services.
Written in XML syntax and derived from the UPnP Device Schema. Defined by a UPnP Forum
working committee. One-to-one relationship with standard device types. For more information,
see clause 2, “Description”.

UPnP Service Template
Template listing action names, parameters for those actions, state variables, and properties of
those state variables. Written in XML syntax and derived from the UPnP Service Schema.
Defined by a UPnP Forum working committee. One-to-one relationship with standard service
types. For more information, see clause 2, “Description”.

UPnP Device Schema
Defines the elements and attributes used in UPnP Device and Service Templates. Written in
XML syntax and derived from XML Schema (Part 1: Structures, Part 2: Datatypes). Defined by
the UPnP Device Architecture herein. For more information, see clause 2, “Description”.

Vendor Domain Name
A domain name that is supplied by a vendor. It is owned by the vendor, and MUST be
registered with an ICANN accredited Registrar, such that it is unique. The vendor MUST keep
the domain name registration up to date. A Vendor Domain Name length SHOULD be chosen
to be compatible with the use of the domain name in the UDA.

References and resources

RFC 2710, Multicast Listener Discovery for IPv6. Available at:
http://www.ietf.org/rfc/rfc2710.txt.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 10 —

RFC 2616, HTTP: Hypertext Transfer Protocol 1.1. Available at:
http://www.ietf.org/rfc/rfc2616.txt.

RFC 2279, UTF-8, a transformation format of ISO 10646 (character encoding). Available at:
http://www.ietf.org/rfc/rfc2279.txt.

XML, Extensible Markup Language. W3C recommendation. Available at:
http://www.w3.org/XML/.

Each clause in this document contains additional information about resources for specific
topics.

0 Addressing

Addressing is Step 0 of UPnP™ networking. Through addressing, devices and control points
get a network address. Addressing enables discovery (Step 1) where control points find
interesting device(s), description (Step 2) where control points learn about device capabilities,
control (Step 3) where a control point sends commands to device(s), eventing (Step 4) where
control points listen to state changes in device(s), and presentation (Step 5) where control
points display a user interface for device(s).

The foundation for UPnP networking is IP addressing. A UPnP device or control point MAY
support IP version 4-only, or both IP version 4 and IP version 6. This clause, and the
examples given throughout clauses 1 through 5 of this document, assumes an IPv4
implementation. Annex A of this document describes IPv6 operation. Each UPnP device or
control point which does not itself implement a DHCP server MUST have a Dynamic Host
Configuration Protocol (DHCP) client and search for a DHCP server when the device or
control point is first connected to the network (if the device or control point itself implements a
DHCP server, it MAY allocate itself an address from the pool that it controls). If a DHCP
server is available, i.e., the network is managed; the device or control point MUST use the IP
address assigned to it. If no DHCP server is available, i.e., the network is unmanaged; the
device or control point MUST use automatic IP addressing (Auto-IP) to obtain an address.

Auto-IP (defined in RFC 3927) defines how a device or control point: (a) determines if DHCP
is unavailable, and (b) intelligently chooses an IP address from a set of link-local IP
addresses. This method of address assignment enables a device or control point to easily
move between managed and unmanaged networks.

This clause provides an overview of the basic operation of Auto-IP. The operations described
in this clause are detailed and clarified in the reference documents listed below. Where
conflicts between this document and the reference documents exist, the reference document
always takes precedence.

0.1 Determining whether to use Auto-IP

A device or control point that supports Auto-IP and is configured for dynamic address
assignment begins by requesting an IP address via DHCP by sending out a DHCPDISCOVER
message. The amount of time this DHCP Client listens for DHCPOFFERs is implementation
dependent. If a DHCPOFFER is received during this time, the device or control point MUST
continue the process of dynamic address assignment. If no valid DHCPOFFERs are received,
the device or control point MUST then auto-configure an IP address using Auto-IP.

0.2 Choosing an address

To auto-configure an IP address using Auto-IP, the device or control point uses an
implementation dependent algorithm for choosing an address in the 169.254/16 range. The
first and last 256 addresses in this range are reserved and MUST NOT be used.

The selected address MUST then be tested to determine if the address is already in use. If
the address is in use by another device or control point, another address MUST be chosen
and tested, up to an implementation dependent number of retries. The address selection
MUST be randomized to avoid collision when multiple devices or control points are attempting
to allocate addresses. The device or control point chooses an address using a pseudo-

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 11 —

random algorithm (distributed over the entire address range from 169.254.1.0 to
169.254.254.255) to minimize the likelihood that devices or control points that join the
network at the same time will choose the same address and subsequently choose alternative
addresses in the same sequence when collisions are detected. This pseudo-random algorithm
SHOULD be seeded using the device’s or control point’s Ethernet hardware MAC address.

0.3 Testing the address

To test the chosen address, the device or control point MUST use an Address Resolution
Protocol (ARP) probe. An ARP probe is an ARP request with the device or control point
hardware address used as the sender's hardware address and the sender's IP address set to
0s. The device or control point MUST then listen for responses to the ARP probe, or other
ARP probes for the same IP address. If either of these ARP packets is seen, the device or
control point MUST consider the address in use and try a different address. The ARP probe
MAY be repeated for greater certainty that the address is not already in use; it is
RECOMMENDED that the probe be sent four times at two-second intervals.

After successfully configuring a link-local address, the device or control point MUST send two
gratuitous ARPs, spaced two seconds apart, this time filling in the sender IP address. The
purpose of these gratuitous ARPs is to make sure that other hosts on the net do not have
stale ARP cache entries left over from some other host that may previously have been using
the same address.

Devices and control points that are equipped with persistent storage MAY record the IP
address they have selected and on the next boot use that address as their first candidate
when probing, in order to increase the stability of addresses and reduce the need to resolve
address conflicts.

Address collision detection is not limited to the address testing phase, when the device or
control point is sending ARP probes and listening for replies. Address collision detection is an
ongoing process that is in effect for as long as the device or control point is using a link-local
address. At any time, if a device or control point receives an ARP packet with its own IP
address given as the sender IP address, but a sender hardware address that does not match
its own hardware address, then the device or control point MUST treat this as an address
collision and MUST respond as described in either a) or b) below:

a) Immediately configure a new link-local IP address as described above; or,
b) If the device or control point currently has active TCP connections or other reasons to

prefer to keep the same IP address, and has not seen any other conflicting ARP packets
recently (e.g., within the last ten seconds) then it MAY elect to attempt to defend its
address once, by recording the time that the conflicting ARP packet was received, and
then broadcasting one single gratuitous ARP, giving its own IP and hardware addresses
as the source addresses of the ARP. However, if another conflicting ARP packet is
received within a short time after that (e.g., within ten seconds) then the device or control
point MUST immediately configure a new Auto-IP address as described above.

The device or control point MUST respond to conflicting ARP packets as described in either a)
or b) above; it MUST NOT ignore conflicting ARP packets. If a new address is selected, the
device or control point MUST cancel previous advertisements and re-advertise with the new
address.

After successfully configuring an Auto-IP address, all subsequent ARP packets (replies as
well as requests) containing an Auto-IP source address MUST be sent using link-level
broadcast instead of link-level unicast, in order to facilitate timely detection of duplicate
addresses.

0.4 Forwarding rules

IP packets whose source or destination addresses are in the 169.254/16 range MUST NOT be
sent to any router for forwarding. Instead, the senders MUST ARP for the destination address
and then send the packets directly to the destination on the same link. IP datagrams with a
multicast destination address and an Auto-IP source address MUST NOT be forwarded off the

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 12 —

local link. Devices and control points MAY assume that all 169.254/16 destination addresses
are on-link and directly reachable. The 169.254/16 address range MUST NOT be subnetted.

0.5 Periodic checking for dynamic address availability

A device or control point that has auto-configured an IP address MUST periodically check for
the existence of a DHCP server. This is accomplished by sending DHCPDISCOVER
messages. How often this check is made is implementation dependent, but checking every 5
minutes would maintain a balance between network bandwidth required and connectivity
maintenance. If a DHCPOFFER is received, the device or control point MUST proceed with
dynamic address allocation. Once a DHCP assigned address is in place, the device or control
point MAY release the auto-configured address, but MAY also choose to maintain this
address for a period of time (or indefinitely) to maintain connectivity.

To switch over from one IP address to a new one, the device SHOULD, if possible, cancel any
outstanding advertisements made on the previous address and MUST issue new
advertisements on the new address. The clause on Discovery explains advertisements and
their cancellations. In addition, any event subscriptions are deleted by the device (see clause
on Eventing).

For a multi-homed device with multiple IP addresses, to switch one of the IP addresses to a
new one, the device SHOULD cancel any outstanding advertisements made on the previous
IP address, and MUST issue new advertisements on the new IP addresses. Furthermore, it
MUST also issue appropriate update advertisements on all unaffected IP addresses. The
clause on Discovery explains advertisements, their cancellations and updates. The clause on
Eventing explains the effect on event subscriptions.

0.6 Device naming and DNS interaction

Once a device has a valid IP address for the network, it can be located and referenced on that
network through that address. There may be situations where the end user needs to locate
and identify a device. In these situations, a friendly name for the device is much easier for a
human to use than an IP address. If a device chooses to provide a host name to a DHCP
server and register with a DNS server, the device SHOULD either ensure the requested host
name is unique or provide a means for the user to change the requested host name. Most
often, devices do not provide a host name, but provide URLs using literal (numeric) IP
addresses.

Moreover, names are much more static than IP addresses. Clients referring a device by name
don't require any modification when the IP address of a device changes. Mapping of the
device's DNS name to its IP address could be entered into the DNS database manually or
dynamically according to RFC 2136. While devices supporting dynamic DNS updates can
register their DNS records directly in the DNS, it is also possible to configure a DHCP server
to register DNS records on behalf of these DHCP clients.

0.7 Name to IP address resolution

A device that needs to contact another device identified by a DNS name needs to discover its
IP address. The device submits a DNS query according to RFC1034 and 1035 to the pre-
configured DNS server(s) and receives a response from a DNS server containing the IP
address of the target device. A device can be statically pre-configured with the list of DNS
servers. Alternatively a device could be configured with the list of DNS server through DHCP,
or after the address assignment through a DHCPINFORM message.

0.8 References

RFC1034, Domain Names - Concepts and Facilities. Available at:
http://www.ietf.org/rfc/rfc1034.txt.

RFC1035, Domain Names - Implementation and Specification. Available at:
http://www.ietf.org/rfc/rfc1035.txt.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 13 —

RFC 2131, Dynamic Host Configuration Protocol. Available at:
http://www.ietf.org/rfc/rfc2131.txt.

RFC 2136, Dynamic Updates in the Domain Name System. Available at:
http://www.ietf.org/rfc/rfc2136.txt.

RFC 3927, Dynamic Configuration of IPv4 Link-Local Addresses. Available at:
http://www.ietf.org/rfc/rfc3927.txt.

1 Discovery

Discovery is Step 1 in UPnP™ networking. Discovery comes after addressing (Step 0) where
devices get a network address. Through discovery, control points find interesting device(s).
Discovery enables description (Step 2) where control points learn about device capabilities,
control (Step 3) where a control point sends commands to device(s), eventing (Step 4) where
control points listen to state changes in device(s), and presentation (Step 5) where control
points display a user interface for device(s).

Discovery is the first step in UPnP networking. When a device is added to the network, the
UPnP discovery protocol allows that device to advertise its services to control points on the
network. Similarly, when a control point is added to the network, the UPnP discovery protocol
allows that control point to search for devices of interest on the network. The fundamental
exchange in both cases is a discovery message containing a few, essential specifics about
the device or one of its services, e.g., its type, universally unique identifier, a pointer to more
detailed information and optionally parameters that identify the current state of the device.

Figure 1-1: — Discovery architecture

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 14 —

resquest

control point 3

response

control point 1

control point 2

response

response

advertise

advertise

advertise

root device 2

service

device

service

search

search

search
multicast

multicast

root device 1

service

service

device

service

multicast
unicast

When a device knows it is newly added to the network, it MUST multicast a number of
discovery messages advertising itself, its embedded devices, and its services (initial
announce). Any interested control point can listen to the standard multicast address for
notifications that new capabilities are available. A multi-homed device MUST multicast the
discovery messages on all UPnP-enabled interfaces. A multi-homed control point MAY listen
to the standard multicast address on one, some or all of its UPnP-enabled interfaces.

When a new control point is added to the network, it MAY multicast a discovery message
searching for interesting devices, services, or both. All devices MUST listen to the standard
multicast address for these messages and MUST respond if any of their root devices,
embedded devices or services matches the search criteria in the discovery message. In
addition, a control point MAY unicast a discovery message to a specific IP address on port
1900 or on the port specified by the optional SEARCHPORT.UPNP.ORG header field (which
supersedes port 1900 for this use), searching for a UPnP device or service at that specific IP
address. This action presumes the control point already knows the device at this IP address is
a UPnP 1.1 device (which listens on the appropriate port). The control point can use unicast
search for a number of applications. A unicast search can quickly confirm a specific device
and provide the corresponding discovery information (e.g. UUID, URL) of this device. All
devices MUST listen to incoming unicast search messages on port 1900 or, if provided, the
port number specified in the SEARCHPORT.UPNP.ORG header field and MUST respond if
any of their root devices, embedded devices or services matches the search criteria in the
discovery message.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 15 —

A multi-homed control point MAY multicast discovery messages on one, some or all of its
UPnP-enabled interfaces. Multi-homed devices MUST listen to the standard multicast address
on all UPnP-enabled interfaces for multicast discovery messages. Multi-homed devices MUST
also listen to incoming unicast search messages on port 1900 or, if provided, the port number
specified in the SEARCHPORT.UPNP.ORG header field. The devices MUST respond if any of
their root devices, embedded devices or services matches the search criteria in the discovery
message.

To reiterate, a control point MAY learn of a device of interest because that device sent
discovery messages advertising itself or because the device responded to a discovery
message searching for devices. In either case, if a control point is interested in a device and
wants to learn more about it, the control point uses the information in the discovery message
to send a description query message. The clause on Description explains description
messages in detail.

When a device is removed from the network, it SHOULD, if possible, multicast a number of
discovery messages revoking its earlier announcements, effectively declaring that its root
devices, embedded devices and services will no longer be available. When the IP address of
a device is changed, it SHOULD revoke any earlier announcements and it MUST advertise
using the new IP address.

When a multi-homed device becomes unavailable to the network on any of its UPnP-enabled
interfaces, it SHOULD, if possible, multicast a number of discovery messages revoking its
earlier announcements on the affected UPnP-enabled interfaces, effectively declaring that its
root devices, embedded devices and services will no longer be available on those interfaces.
If it remains available to the network on any of its other UPnP-enabled interfaces, it MUST
NOT multicast such discovery messages on the unaffected UPnP-enabled interfaces.

When a multi-homed device becomes available to the network on a new UPnP-enabled
interface (in addition to any existing UPnP-enabled interfaces), it MUST increase its
BOOTID.UPNP.ORG field value (see clause 1.2 “Advertisement”), and multicast a number of
update messages on the existing UPnP-enabled interfaces to announce the new
BOOTID.UPNP.ORG field value. After all the update messages have been sent, it MUST
multicast a number of discovery messages on all (existing and new) UPnP-enabled interfaces
with the new BOOTID.UPNP.ORG field value.

Similarly, when one of the IP addresses of a multi-homed device is changed, it SHOULD
revoke any earlier announcements on the previous IP address. It MUST increase its
BOOTID.UPNP.ORG field value (see clause 1.2 “Advertisement”), and multicast a number of
update messages on the existing UPnP-enabled interfaces to announce the new
BOOTID.UPNP.ORG field value. After all the update messages have been sent, it MUST
multicast a number of discovery messages on all (existing and new) UPnP-enabled interfaces
with the new BOOTID.UPNP.ORG field value.

Finally, if a multi-homed device loses connectivity on one of its UPnP-enabled interfaces and
then regains connectivity, it MUST increase its BOOTID.UPNP.ORG field value (see 1.2,
“Advertisement”), and multicast a number of update messages on the unaffected UPnP-
enabled interfaces to announce the new BOOTID.UPNP.ORG field value. After all the update
messages have been sent, it MUST multicast a number of discovery messages on all
(affected and unaffected) UPnP-enabled interfaces with the new BOOTID.UPNP.ORG field
value.

To limit network congestion, the time-to-live (TTL) of each IP packet for each multicast
message SHOULD default to 2 and SHOULD be configurable. When the TTL is greater than 1,
it is possible for multicast messages to traverse multiple routers; therefore control points and
devices using non-AutoIP addresses MUST send an IGMP Join message so that routers will
forward multicast messages to them (this is not necessary when using an Auto-IP address,
since packets with Auto-IP addresses will not be forwarded by routers).

Versioning: Discovery plays an important role in the interoperability of devices and control
points using different versions of UPnP networking. The UPnP Device Architecture (defined
herein) is versioned with both a major and a minor version, usually written as major.minor,
where both major and minor are integers (for example, version 2.10 [two dot ten] is newer

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 16 —

than version 2.2 [two dot two]). Advances in minor versions MUST be a compatible superset
of earlier minor versions of the same major version. Advances in major version are not
required to be supersets of earlier versions and are not guaranteed to be backward
compatible. Version information is communicated in discovery and description messages.
Discovery messages include the version of UPnP networking that the devices and control
points support (in the SERVER and USER-AGENT header fields); the version of device and
service types supported is also included in relevant discovery messages. Additionally,
description documents also include the same information. SERVER and USER-AGENT
header fields are also used in control and eventing to communicate which version of UPnP
networking the devices and control points support. This clause explains the format of version
information in discovery messages and specific requirements on discovery messages to
maintain compatibility with advances in minor versions.

The remainder of this clause explains the UPnP discovery protocol known as SSDP (Simple
Service Discovery Protocol) in detail, enumerating how devices advertise and revoke their
advertisements as well as how control points search and devices respond.

1.1 SSDP message format
SSDP uses part of the header field format of HTTP 1.1 as defined in RFC 2616. However, it is
NOT based on full HTTP 1.1 as it uses UDP instead of TCP, and it has its own processing
rules. This subclause defines the generic format of a SSDP message.

All SSDP messages MUST be formatted according to RFC 2616 clause 4.1 “generic message”.
SSDP messages MUST have a start-line and a list of message header fields. SSDP
messages SHOULD NOT have a message body. If a SSDP message is received with a
message body, the message body MAY be ignored.

1.1.1 SSDP Start-line
Each SSDP message MUST have exactly one start-line. See clause 1.2, “Advertisement” and
clause 1.3, “Search” below for the definition of all possible SSDP messages. The start-line
MUST be formatted either as defined in RFC 2616 clause 5.1 or clause 6.1. Furthermore, the
start-line MUST be one of the following three:

NOTIFY * HTTP/1.1\r\n
M-SEARCH * HTTP/1.1\r\n
HTTP/1.1 200 OK\r\n

As a clarification, while the start-line MUST include “HTTP/1.1”, this does not signal that
SSDP is fully based on HTTP 1.1; this start-line element is included for backward
compatibility reasons only.

1.1.2 SSDP message header fields
The message header fields in a SSDP message MUST be formatted according to RFC 2616
clause 4.2. This specifies that each message header field consist of a case-insensitive field
name followed by a colon (":"), followed by the case-sensitive field value. SSDP restricts
allowed field values.

Example SSDP header:

HOST: 239.255.255.250:1900

1.1.3 SSDP header field extensions
UPnP working committees and UPnP vendors are allowed to extend SSDP messages with
additional SSDP header fields. Additional message header fields can also be defined by the
UPnP Forum Technical committee (e.g. clause 1.2, “Advertisement” defines
BOOTID.UPNP.ORG, CONFIGID.UPNP.ORG, NEXTBOOTID.UPNP.ORG, and
SEARCHPORT.UPNP.ORG header fields). To prevent name-clashes of header field
definitions (two parties accidentally define the same header field name with different
semantics), vendor-defined header field names MUST have the following format:

 field-name = token “.” domain-name

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 17 —

where the domain-name MUST be Vendor Domain Name, and in addition MUST satisfy the
token format as defined in RFC 2616, clause 2.2.

Example vendor-defined SSDP header fields:

 myheader.philips.com: “some value”
 myheader.sony.com: “other value”

1.1.4 UUID format and RECOMMENDED generation algorithms
UPnP 1.1 devices MUST format UUIDs according to the format specified below. However,
UPnP 1.1 control points MUST also be able to accept UUIDs that have not been formatted
according to the rules specified below, as formatting rules are not specified in UPnP 1.0 other
than the requirement that a UUID is a string.

UUIDs are 128 bit numbers that MUST be formatted as specified by the following grammar
(taken from [1]):

 UUID = 4 * <hexOctet> “-” 2 * <hexOctet> “-” 2 * <hexOctet> “-” 2 * <hexOctet> “-” 6 * <hexOctet
 hexOctet = <hexDigit> <hexDigit>
 hexDigit = “0”|“1”|“2”|“3”|“4”|“5”|“6”|“7”|“8”|“9”|“a”|“b”|“c”|“d”|“e”|“f”|“A”|“B”|“C”|“D”|“E”|“F”

The following is an example of the string representation of a UUID:

 “2fac1234-31f8-11b4-a222-08002b34c003”

UUIDs MAY be generated using any suitable generation algorithm2 that satisfies the following
requirements:

a) It is very unlikely to duplicate a UUID generated from some other resource.
b) It maps down to a 128-bit number.
c) UUIDs MUST remain fixed over time.
The following UUID generation algorithm is RECOMMENDED:

Time & MAC-based algorithm as specified in [1], where the UUID is generated once and
stored in non-volatile memory if available.

1.1.5 SSDP processing rules
When an SSDP message is received that is not formatted according to clause 1.1, “SSDP
message format” (the clauses above), receivers SHOULD silently discard the message.
Receivers MAY try to parse such SSDP messages to try to interoperate.

When parsing SSDP header fields, receivers MUST parse all REQUIRED SSDP-defined
header fields (see clause 1.2, “Advertisement” and clause 1.3, “Search” below) and MAY skip
all other header fields. Receivers MUST be able to skip header fields they do not understand.

1.2 Advertisement
When a device is added to the network, the device advertises its services to control points. It
does this by multicasting discovery messages to a standard address and port
(239.255.255.250:1900). Control points listen to this port to detect when new capabilities are
available on the network. To advertise the full extent of its capabilities, a device MUST
multicast a number of discovery messages corresponding to each of its root devices,
embedded devices and services. Each message contains information specific to the
embedded device (or service) as well as information about its enclosing device. Messages
MUST include duration until the advertisements expire; if the device remains available, the
advertisements MUST be re-sent (with new duration). If the device becomes unavailable, the
device SHOULD explicitly cancel its advertisements, but if the device is unable to do this, the
advertisements will expire on their own. If a multi-homed device becomes unavailable on
some, but not all, of its UPnP-enabled interfaces, the device SHOULD explicitly cancel its

2 The UUID generation algorithm specified in [1] is RECOMMENDED, but is not MANDATORY,
other UUID generation algorithms may be used instead, as long as they satisfy the three
requirements.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 18 —

advertisements on the affected UPnP-enabled interfaces (but NOT on the unaffected UPnP-
enabled interfaces), but if the device is unable to do this, the advertisements on those
interfaces or IP addresses will expire on their own. In addition, messages include the
following header fields defined in this document: BOOTID.UPNP.ORG,
NEXTBOOTID.UPNP.ORG, CONFIGID.UPNP.ORG, SEARCHPORT.UPNP.ORG. The field
value of the BOOTID.UPNP.ORG header field MUST be increased each time a device
(re)joins the network and sends an initial announce (a “reboot” in UPnP terms), or adds a
UPnP-enabled interface. Unless the device explicitly announces a change in the
BOOTID.UPNP.ORG field value using an SSDP message, as long as the device remains
continuously available in the network, the same BOOTID.UPNP.ORG field value MUST be
used in all repeat announcements, search responses, update messages and eventually bye-
bye messages. Control points can parse this header field to detect whether the device has
potentially lost its state (event subscriptions will have been lost, DCP specific state may have
been changed) due to a “reboot”. Since a device cannot change IP addresses without
changing the BOOTID.UPNP.ORG field value, the BOOTID.UPNP.ORG field value can also
be used to distinguish multi-homed devices (in this case, a control point will see SSDP
messages from different IP addresses with the same UUID, BOOTID.UPNP.ORG field value)
from devices that changed IP addresses (in this case, the BOOTID.UPNP.ORG field value will
be different). The field value of the NEXTBOOTID.UPNP.ORG header field indicates the field
value of the BOOTID.UPNP.ORG header field that a multi-homed device intends to use in
future announcements after adding a new UPnP-enabled interface. The field value of the
CONFIGID.UPNP.ORG header field identifies the current set of device and service
descriptions; control points can parse this header field to detect whether they need to send
new description query messages. The field value of the SEARCHPORT.UPNP.ORG header
field identifies the port at which the device listens to unicast M-SEARCH messages; control
points can parse this header field to know to which port unicast M-SEARCH messages MUST
be sent. These header fields are explained in detail below.

1.2.1 Advertisement protocols and standards
To send (and receive) advertisements, devices (and control points) use the following subset
of the overall UPnP protocol stack. (The overall UPnP protocol stack is listed at the beginning
of this document.)

Figure 1-2: — Advertisement protocol stack

UPnP vendor [purple-italic]

UPnP Forum [red-italic]

UPnP Device Architecture [green-bold]

SSDP [blue]

UDP [black]

IP [black]

At the highest layer, discovery messages contain vendor-specific information, e.g., URL for
the device description and device identifier. Moving down the stack, vendor content is
supplemented by information from a UPnP Forum working committee, e.g., device type.
Messages from the layers above are hosted in UPnP-specific protocols, defined in this
document. In turn, the SSDP messages are delivered via UDP over IP. For reference, colors
in [square brackets] above indicate which protocol defines specific header fields and field
values in discovery messages listed below.

1.2.2 Device available - NOTIFY with ssdp:alive
When a device is added to the network, it MUST multicast discovery messages to advertise
its root device, any embedded devices, and any services. Each discovery message MUST
contain four major components:

a) A notification type (e.g., device type), sent in an NT (Notification Type) header field.
b) A composite identifier for the advertisement, sent in a USN (Unique Service Name) header

field.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 19 —

c) A URL for more information about the device (or enclosing device in the case of a service),
sent in a LOCATION header field.

d) A duration for which the advertisement is valid, sent in a CACHE-CONTROL header field.
To advertise its capabilities, a device multicasts a number of discovery messages. Specifically,
a root device MUST multicast:

• Three discovery messages for the root device.
Table 1-1 — Root device discovery messages

 NT USN a

1 upnp:rootdevice uuid:device-UUID::upnp:rootdevice

2 uuid:device-UUID b uuid:device-UUID (for root device UUID)

3 urn:schemas-upnp-org:device:deviceType:ver
or
urn:domain-name:device:deviceType:ver

uuid:device-UUID::urn:schemas-upnp-
org:device:deviceType:ver (of root device)
or
uuid:device-UUID::urn:domain-name:device:deviceType:ver

a Note that the prefix of the USN header field (before the double colon) MUST match the value of the UDN element
in the device description. (Clause 2, “Description” explains the UDN element.)

b Note that the field value of this NT header field MUST match the value of the UDN element in the device
description.

• Two discovery messages for each embedded device.
Table 1-2 — Embedded device discovery messages

 NT USN a

1 uuid:device-UUID b uuid:device-UUID

2 urn:schemas-upnp-org:device:d
eviceType:ver
or
urn:domain-name:device:deviceType:ver

uuid:device-UUID::urn:schemas-upnp-
org:device:deviceType:ver
or
uuid:device-UUID::urn:domain-name:device:deviceType:ver

a Note that the prefix of the USN header field (before the double colon) MUST match the value of the UDN
element in the device description. (Clause 2, “Description” explains the UDN element.)

b Note that the field value of this NT header field MUST match the value of the UDN element in the device
description

• Once for each service type in each device.
Table 1-3 — Service discovery messages

 NT USN a

1 urn:schemas-upnp-
org:service:serviceType:ver
or
urn:domain-name:service:serviceType:ver

uuid:device-UUID::urn:schemas-upnp-
org:service:serviceType:ver
or
uuid:device-UUID::urn:domain-
name:service:serviceType:ver

a Note that the field value of this NT header field MUST match the value of the UDN element in the device
description.

If a root device has d embedded devices and s embedded services but only k distinct service
types, this works out to 3+2d+k requests. If a particular device or embedded device contains
multiple instances of a particular service type, it is only necessary to advertise the service
type once (rather than once for each instance). Note that if two embedded devices contain a
service of the same service type, these services MUST still be separately announced. This
advertises the full extent of the device's capabilities to interested control points. These

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 20 —

messages MUST be sent out as a series with roughly comparable expiration times; order is
unimportant, but refreshing or canceling individual messages is PROHIBITED.

Updated UPnP device and service types are REQUIRED to be fully backward compatible with
previous versions of the same type. Devices MUST advertise the highest supported version of
each supported type. For example, if a device supports version 2 of the “Audio” service, it
would advertise only version 2, even though it also supports version 1. It MUST NOT
advertise additional supported versions. Control points that support a given version of a
device or service are able to also interact with higher versions because of this backward
compatibility requirement, but only using the functionality that was defined in the lower
version. For example, if a control point supports only version “1” of the “Audio” service, and a
device advertises that it supports version “2” of the “Audio” service, the control point MUST
recognize the device and be able to use it.

Choosing an appropriate duration for advertisements is a balance between minimizing
network traffic and maximizing freshness of device status. Relatively short durations close to
the minimum of 1800 seconds will ensure that control points have current device status at the
expense of additional network traffic; longer durations, say on the order of a day, compromise
freshness of device status but can significantly reduce network traffic. Generally, device
vendors should choose a value that corresponds to expected device usage: short durations
for devices that are expected to be part of the network for short periods of time, and
significantly longer durations for devices expected to be long-term members of the network.
Devices that frequently connect to and leave the network (such as mobile wireless devices)
SHOULD use a shorter duration so that control points have a more accurate view of their
availability. Advertisements in a set (both initial and subsequent) SHOULD have comparable
durations. Advertisements in the initial set SHOULD be sent as quickly as possible.
Subsequent refreshments of the advertisements MAY be spread over time rather than being
sent as a group.

Spreading refreshments of advertisements over time rather than being sent as a group
improves reliability in case there are network glitches: without increasing the total network
load it increases the frequency of sending announcements from devices to control points. The
two figures below show the announcement behavior without spreading and with spreading the
messages over the entire interval. The figures show a timeline from the moment a device joins
the network, sends its initial announcements (represented by vertical lines), and subsequently
periodically sends repeat announcements. In the second figure, these repeat announcements
are spread over the entire period rather than sent as a bunch.

Figure 1-3: — Initial and repeat announcements, no announcement spreading

Figure 1-4: — Initial and repeat announcements, message spreading of repeat
announcements

Devices SHOULD wait a random interval (e.g. between 0 and 100milliseconds) before
sending an initial set of advertisements in order to reduce the likelihood of network storms;
this random interval SHOULD also be applied on occasions where the device obtains a new
IP address or a new UPnP-enabled interface is installed.

Due to the unreliable nature of UDP, devices SHOULD send the entire set of discovery
messages more than once with some delay between sets e.g. a few hundred milliseconds. To
avoid network congestion discovery messages SHOULD NOT be sent more than three times.
In addition, the device MUST re-send its advertisements periodically prior to expiration of the
duration specified in the CACHE-CONTROL header field; it is RECOMMENDED that such

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 21 —

refreshing of advertisements be done at a randomly-distributed interval of less than one-half
of the advertisement expiration time, so as to provide the opportunity for recovery from lost
advertisements before the advertisement expires, and to distribute over time the
advertisement refreshment of multiple devices on the network in order to avoid spikes in
network traffic. Note that UDP packets are also bounded in length (perhaps as small as 512
Bytes in some implementations); each discovery message MUST fit entirely in a single UDP
packet. There is no guarantee that the above 3+2d+k messages will arrive in a particular
order.

A multi-homed device MUST perform the above announcement procedures on each of its
UPnP-enabled interfaces. Advertisements sent on multiple UPnP-enabled interfaces MUST
contain the same field values except for the HOST, CACHE-CONTROL and LOCATION
header fields. The HOST field value of an advertisement MUST be the standard multicast
address specified for the protocol (IPv4 or IPv6) used on the interface. The URL specified by
the LOCATION header field MUST be reachable on the interface on which the advertisement
is sent. Finally, advertisements sent on different interfaces MAY have different CACHE-
CONTROL field values and MAY be sent with different frequencies.

When a device is added to the network, it MUST send a multicast message with method
NOTIFY and ssdp:alive in the NTS header field in the following format. Values in italics are
placeholders for actual values.

 NOTIFY * HTTP/1.1
 HOST: 239.255.255.250:1900
 CACHE-CONTROL: max-age = seconds until advertisement expires
 LOCATION: URL for UPnP description for root device
 NT: notification type
 NTS: ssdp:alive
 SERVER: OS/version UPnP/1.1 product/version
 USN: composite identifier for the advertisement
 BOOTID.UPNP.ORG: number increased each time device sends an initial announce or an update
message
 CONFIGID.UPNP.ORG: number used for caching description information
 SEARCHPORT.UPNP.ORG: number identifies port on which device responds to unicast M-SEARCH

Note: No body is sent for messages with method NOTIFY, but note that the message MUST
have a blank line following the last header field.

The TTL for the IP packet SHOULD default to 2 and SHOULD be configurable.

Listed below are details for the request line and header fields appearing in the listing above.
Field names are not case sensitive. All field values are case sensitive except where noted.

Request line

Must be “NOTIFY * HTTP/1.1”

NOTIFY
Method for sending notifications and events.

*
Message applies generally and not to a specific resource. MUST be *.

HTTP/1.1
HTTP version.

Header fields

HOST
REQUIRED. Field value contains multicast address and port reserved for SSDP by Internet Assigned Numbers Authority
(IANA). MUST be 239.255.255.250:1900. If the port number (“:1900”) is omitted, the receiver MUST assume the default
SSDP port number of 1900.

CACHE-CONTROL
REQUIRED. Field value MUST have the max-age directive (“max-age=”) followed by an integer that specifies the number
of seconds the advertisement is valid. After this duration, control points SHOULD assume the device (or service) is no

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 22 —

longer available; as long as a control point has received at least one advertisement that is still valid from a root device, any
of its embedded devices or any of its services, then the control point can assume that all are available. The number of
seconds SHOULD be greater than or equal to 1800 seconds (30 minutes), although exceptions are defined in the text
above. Specified by UPnP vendor. Other directives MUST NOT be sent and MUST be ignored when received.

LOCATION
REQUIRED. Field value contains a URL to the UPnP description of the root device. Normally the host portion contains a
literal IP address rather than a domain name in unmanaged networks. Specified by UPnP vendor. Single absolute URL
(see RFC 3986).

NT
REQUIRED. Field value contains Notification Type. MUST be one of the following. (See Table 1-1, “Root device discovery
messages”, Table 1-2, “Embedded device discovery messages”, and Table 1-3, “Service discovery messages” above.)
Single URI.

upnp:rootdevice
Sent once for root device.

uuid:device-UUID
Sent once for each device, root or embedded, where device-UUID is specified by the UPnP vendor. See clause
1.1.4, “UUID format and RECOMMENDED generation algorithms” for the MANDATORY UUID format.

urn:schemas-upnp-org:device:deviceType:ver
Sent once for each device, root or embedded, where deviceType and ver are defined by UPnP Forum working
committee, and ver specifies the version of the device type.

urn:schemas-upnp-org:service:serviceType:ver
Sent once for each service where serviceType and ver are defined by UPnP Forum working committee and ver
specifies the version of the service type.

urn:domain-name:device:deviceType:ver
Sent once for each device, root or embedded, where domain-name is a Vendor Domain Name, deviceType and
ver are defined by the UPnP vendor, and ver specifies the version of the device type. Period characters in the
Vendor Domain Name MUST be replaced with hyphens in accordance with RFC 2141.

urn:domain-name:service:serviceType:ver
Sent once for each service where domain-name is a Vendor Domain Name, serviceType and ver are defined by
UPnP vendor, and ver specifies the version of the service type. Period characters in the Vendor Domain Name
MUST be replaced with hyphens in accordance with RFC 2141.

NTS
REQUIRED. Field value contains Notification Sub Type. MUST be ssdp:alive. Single URI.

SERVER
REQUIRED. Specified by UPnP vendor. String. Field value MUST begin with the following “product tokens” (defined by
HTTP/1.1). The first product token identifes the operating system in the form OS name/OS version, the second token
represents the UPnP version and MUST be UPnP/1.1, and the third token identifes the product using the form
product name/product version. For example, “SERVER: unix/5.1 UPnP/1.1 MyProduct/1.0”. Control points MUST be
prepared to accept a higher minor version number of the UPnP version than the control point itself implements. For
example, control points implementing UDA version 1.0 will be able to interoperate with devices implementing
UDA version 1.1.

USN
REQUIRED. Field value contains Unique Service Name. Identifies a unique instance of a device or service. MUST be one
of the following. (See Table 1-1, “Root device discovery messages”, Table 1-2, “Embedded device discovery messages”,
and Table 1-3, “Service discovery messages” above.) The prefix (before the double colon) MUST match the value of the
UDN element in the device description. (Clause 2, “Description” explains the UDN element.) Single URI.

uuid:device-UUID::upnp:rootdevice
Sent once for root device where device-UUID is specified by UPnP vendor. See clause 1.1.4, “UUID format and
RECOMMENDED generation algorithms” for the MANDATORY UUID format.

uuid:device-UUID
Sent once for every device, root or embedded, where device-UUID is specified by the UPnP vendor. See clause
1.1.4, “UUID format and RECOMMENDED generation algorithms”for the MANDATORY UUID format.

uuid:device-UUID::urn:schemas-upnp-org:device:deviceType:ver
Sent once for every device, root or embedded, where device-UUID is specified by the UPnP vendor, deviceType
and ver are defined by UPnP Forum working committee and ver specifies version of the device type. See clause
1.1.4, “UUID format and RECOMMENDED generation algorithms” for the MANDATORY UUID format.

uuid:device-UUID::urn:schemas-upnp-org:service:serviceType:ver
Sent once for every service where device-UUID is specified by the UPnP vendor, serviceType and ver are
defined by UPnP Forum working committee and ver specifies version of the device type. See clause 1.1.4,
“UUID format and RECOMMENDED generation algorithms” for the MANDATORY UUID format.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 23 —

uuid:device-UUID::urn:domain-name:device:deviceType:ver
Sent once for every device, root or embedded, where device-UUID, domain-name (a Vendor Domain Name),
deviceType and ver are defined by the UPnP vendor and ver specifies the version of the device type. See clause
1.1.4, “UUID format and RECOMMENDED generation algorithms” for the MANDATORY UUID format. Period
characters in the Vendor Domain Name MUST be replaced by hyphens in accordance with RFC 2141.

uuid:device-UUID::urn:domain-name:service:serviceType:ver
Sent once for every service where device-UUID, domain-name (a Vendor Domain Name), serviceType and ver
are defined by the UPnP vendor and ver specifies the version of the service type. See clause 1.1.4, “UUID
format and RECOMMENDED generation algorithms” for the MANDATORY UUID format. Period characters in
the Vendor Domain Name MUST be replaced by hyphens in accordance with RFC 2141.

BOOTID.UPNP.ORG
REQUIRED. The BOOTID.UPNP.ORG header field represents the boot instance of the device expressed according to a
monotonically increasing value. Its field value MUST be a non-negative 31-bit integer; ASCII encoded, decimal, without
leading zeros (leading zeroes, if present, MUST be ignored by the recipient) that MUST be increased on each initial
announce of the UPnP device or MUST be the same as the field value of the NEXTBOOTID.UPNP.ORG header field in
the last sent SSDP update message. Its field value MUST remain the same on all periodically repeated announcements. A
convenient mechanism is to set this field value to the time that the device sends its initial announcement, expressed as
seconds elapsed since midnight January 1, 1970; for devices that have a notion of time, this will not require any additional
state to remember or be “flashed”. However, it is perfectly acceptable to use a simple boot counter that is incremented on
every initial announcement as a field value of this header field. As such, control points MUST NOT view this header field as
a timestamp. The BOOTID.UPNP.ORG header field MUST be included in all announcements of a root device, its
embedded devices and its services. Unless the device explicitly updates its value by sending an SSDP update message,
as long as the device remains available in the network, the same BOOTID.UPNP.ORG field value MUST be used in all
announcements, search responses, update messages and eventually bye-bye messages.

Control points can use this header field to detect the case when a device leaves and rejoins the network (“reboots” in
UPnP terms). It can be used by control points for a number of purposes such as re-establishing desired event
subscriptions, checking for changes to the device state that were not evented since the device was off-line.

CONFIGID.UPNP.ORG
REQUIRED. The CONFIGID.UPNP.ORG field value MUST be a non-negative, 31-bit integer, ASCII encoded, decimal,
without leading zeros (leading zeroes, if present, MUST be ignored by the recipient) that MUST represent the configuration
number of a root device. UPnP 1.1 devices MAY freely assign configid numbers from 0 to 16777215 (2^24-1). Higher
numbers are reserved for future use, and can be assigned by the Technical Committee. The configuration of a root
device consists of the following information: the DDD of the root device and all its embedded devices, and the SCPDs of all
the contained services. If any part of the configuration changes, the CONFIGID.UPNP.ORG field value MUST be changed.
The CONFIGID.UPNP.ORG header field MUST be included in all announcements of a root device, its embedded devices
and its services. The configuration number that is present in a CONFIGID.UPNP.ORG field value MUST satisfy the
following rule:

• if a device sends out two messages with a CONFIGID.UPNP.ORG header field with the same field value K,
the configuration MUST be the same at the moments that these messages were sent.

Whenever a control point receives a CONFIGID.UPNP.ORG header field with a field value K, and subsequently downloads
the configuration information, this configuration information is associated with K. As an additional safeguard, the device
MUST include a configId attribute with value K in the returned description (see clause 2, “Description”). The following
caching rules for control points supersede the caching rules that are defined in UPnP 1.0:

• Control points MAY ignore the CONFIGID.UPNP.ORG header field and use the caching rules that are
based on advertisement expirations as defined in Clause 2, Description: as long as at least one of the
discovery advertisements from a root device, its embedded devices and its services have not expired, a
control point MAY assume that the root device and all its embedded devices and all its services are
available. The device and service descriptions MAY be retrieved at any point since the device and service
descriptions are static as long as the device and its services are available.

• If no configuration number is included in a received SSDP message, control points SHOULD cache based
on advertisement expirations as defined in Clause 2 Description.

• If a CONFIGID.UPNP.ORG header field with field value K is included in a received SSDP message, and a
control point has already cached information associated with field value K, the control point MAY use this
cached information as the current configuration of the device. Otherwise, a control point SHOULD assume
it has not cached the current configuration of the device and needs to send new description query
messages.

The CONFIGID.UPNP.ORG header field reduces peak loads on UPnP devices during startup and during network hiccups.
Only if a control point receives an announcement of an unknown configuration is downloading required.

SEARCHPORT.UPNP.ORG
OPTIONAL. If a device does not send the SEARCHPORT.UPNP.ORG header field, it MUST respond to unicast M-
SEARCH messages on port 1900. Only if port 1900 is unavailable MAY a device select a different port to respond to
unicast M-SEARCH messages. If a device sends the SEARCHPORT.UPNP.ORG header field, its field value MUST be an
ASCII encoded integer, decimal, without leading zeros (leading zeroes, if present, MUST be ignored by the recipient), in
the range 49152-65535 (RFC 4340). The device MUST respond to unicast M-SEARCH messages that are sent to the
advertised port.

 Note: No responses are sent for messages with method NOTIFY.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 24 —

1.2.3 Device unavailable -- NOTIFY with ssdp:byebye
When a device and its services are going to be removed from the network, the device
SHOULD multicast an ssdp:byebye message corresponding to each of the ssdp:alive
messages it multicasted that have not already expired. If the device is removed abruptly from
the network, it might not be possible to multicast a message. As a fallback, discovery
messages MUST include an expiration value in a CACHE-CONTROL field value (as explained
above); if not re-advertised, the discovery message eventually expires on its own.

(Note: when a control point is about to be removed from the network, no discovery-related
action is required.)

When a device is about to be removed from the network, it SHOULD explicitly revoke its
discovery messages by sending one multicast message for each ssdp:alive message it sent.
Each multicast message MUST have method NOTIFY and ssdp:byebye in the NTS header
field in the following format. Values in italics are placeholders for actual values.

When a multi-homed device is about to be removed from the network on one or more of its
UPnP-enabled interfaces, it SHOULD explicitly revoke its discovery messages by sending one
multicast message for each ssdp:alive message it has previously sent on those interfaces
and IP addresses. It MUST NOT send such multicast messages to any of the UPnP-enabled
interfaces that remain available.

When ssdp:byebye messages are sent on multiple UPnP-enabled interfaces, the messages
MUST contain identical field values except for the HOST field value. The HOST field value of
an advertisement MUST be the standard multicast address specified for the protocol (IPv4 or
IPv6) used on the interface.

 NOTIFY * HTTP/1.1
 HOST: 239.255.255.250:1900
 NT: notification type
 NTS: ssdp:byebye
 USN: composite identifier for the advertisement
 BOOTID.UPNP.ORG: number increased each time device sends an initial announce or an update
message
 CONFIGID.UPNP.ORG: number used for caching description information

Note: No body is present for messages with method NOTIFY, but note that the message
MUST have a blank line following the last header field.

The TTL for the IP packet SHOULD default to 2 and SHOULD be configurable.

Listed below are details for the request line and header fields appearing in the listing above.
Field names are not case sensitive. All field values are case sensitive except where noted.

Request line
Must be “NOTIFY * HTTP/1.1”

NOTIFY
Method for sending notifications and events.

*
Message applies generally and not to a specific resource. MUST be *.

HTTP/1.1
HTTP version.

Header fields

HOST
REQUIRED. Field value contains multicast address and port reserved for SSDP by Internet Assigned Numbers Authority
(IANA). MUST be 239.255.255.250:1900. If the port number (“:1900”) is omitted, the receiver MUST assume the default
SSDP port number of 1900.

NT
REQUIRED. Field value contains Notification Type. (See list of required field values for the NT header field in NOTIFY with
ssdp:alive above.) Single URI.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 25 —

NTS

REQUIRED. Field value contains Notification Sub Type. MUST be ssdp:byebye. Single URI.

USN
REQUIRED. Field value contains Unique Service Name. (See list of required field values for the USN header field in
NOTIFY with ssdp:alive above.) Single URI.

BOOTID.UPNP.ORG
REQUIRED. As defined in clause 1.2, and 1.2.2.

CONFIGID.UPNP.ORG
REQUIRED. As defined in clause 1.2, and 1.2.2.

Note: No responses are sent for messages with method NOTIFY.

If a control point has received at least one ssdp:byebye message of a root device, any of its
embedded devices or any of its services then the control point can assume that all are no
longer available. As a fallback, if a control point fails to receive notification that a root device,
its embedded devices and its services are unavailable, the original discovery messages will
eventually expire yielding the same effect. Only when all original advertisements of a root
device, its embedded devices and its services have expired can a control point assume that
they are no longer available.

If a multi-homed control point has received at least one ssdp:byebye message of a root device,
any of its embedded devices or any of its services on one of its UPnP-enabled interfaces then
the control point can assume that all are no longer available on that UPnP-enabled interface.
However, the control point MUST NOT assume that the device is also no longer available on
all of its other UPnP-enabled interfaces. As a fallback, if a control point fails to receive
notification that a root device, its embedded devices and its services are unavailable on a
particular UPnP-enabled interface, the original discovery messages will eventually expire
yielding the same effect. Only when all original advertisements of a root device, its embedded
devices and its services received on a UPnP-enabled interface have expired can a control
point assume that they are no longer available on that interface or IP address.

1.2.4 Device Update – NOTIFY with ssdp:update
When a new UPnP-enabled interface is added to a multi-homed device, the device MUST
increase its BOOTID.UPNP.ORG field value, multicast an ssdp:update message for each of
the root devices, embedded devices and embedded services to all of the existing UPnP-
enabled interfaces to announce a change in the BOOTID.UPNP.ORG field value, and re-
advertise itself on all (existing and new) UPnP-enabled interfaces with the new
BOOTID.UPNP.ORG field value. Similarly, if a multi-homed device loses connectivity on a
UPnP-enabled interface and regains connectivity, or if the IP address on one of the UPnP-
enabled interfaces changes, the device MUST increase the BOOTID.UPNP.ORG field value,
multicast an ssdp:update message for each of the root devices, embedded devices and
embedded services to all the unaffected UPnP-enabled interfaces to announce a change in
the BOOTID.UPNP.ORG field value, and re-advertise itself on all (affected and unaffected)
UPnP-enabled interfaces with the new BOOTID.UPNP.ORG field value. In all cases ,the
ssdp:update message for the root devices MUST be sent as soon as possible. Other
ssdp:update messages SHOULD be spread over time. However, all ssdp:update messages
MUST be sent before any announcement messages with the new BOOTID.UPNP.ORG field
value can be sent.

When ssdp:update messages are sent on multiple UPnP-enabled interfaces, the messages
MUST contain identical field values except for the HOST and LOCATION field values. The
HOST field value of an advertisement MUST be the standard multicast address specified for
the protocol (IPv4 or IPv6) used on the interface. The URL specified in the LOCATION field
value MUST be reachable on the interface on which the advertisement is sent.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 26 —

 NOTIFY * HTTP/1.1
 HOST: 239.255.255.250:1900
 LOCATION: URL for UPnP description for root device
 NT: notification type
 NTS: ssdp:update
 USN: composite identifier for the advertisement
 BOOTID.UPNP.ORG: BOOTID value that the device has used in its previous announcements
 CONFIGID.UPNP.ORG: number used for caching description information
 NEXTBOOTID.UPNP.ORG: new BOOTID value that the device will use in subsequent announcements
 SEARCHPORT.UPNP.ORG: number identifies port on which device responds to unicast M-SEARCH

Note: No body is present for messages with method NOTIFY, but note that the message
MUST have a blank line following the last header field.

The TTL for the IP packet SHOULD default to 2 and SHOULD be configurable.

Listed below are details for the request line and header fields appearing in the listing above.
Field names are not case sensitive. All field values are case sensitive except where noted.

Request line
Must be “NOTIFY * HTTP/1.1”

NOTIFY
Method for sending notifications and events.

*
Message applies generally and not to a specific resource. MUST be *.

HTTP/1.1
HTTP version.

Header fields

HOST
REQUIRED. Field value contains multicast address and port reserved for SSDP by Internet Assigned Numbers Authority
(IANA). MUST be 239.255.255.250:1900. If the port number (“:1900”) is omitted, the receiver MUST assume the default
SSDP port number of 1900.

LOCATION
REQUIRED. Field value MUST be the same as the LOCATION field value that has been sent in previous SSDP messages.
Single absolute URL (see RFC 3986).

NT
REQUIRED. Field value contains Notification Type. (See list of required field values for the NT header field in NOTIFY with
ssdp:alive above.) Single URI.

NTS
REQUIRED. Field value contains Notification Sub Type. MUST be ssdp:update. Single URI.

USN
REQUIRED. Field value contains Unique Service Name. (See list of required field values for the USN header field in
NOTIFY with ssdp:alive above.) Single URI.

BOOTID.UPNP.ORG
REQUIRED. As defined in clause 1.2, and 1.2.2, Field value MUST be the same as the BOOTID.UPNP.ORG field value
that has been sent in previous SSDP messages.

CONFIGID.UPNP.ORG
REQUIRED. As defined in clause 1.2, and 1.2.2.

NEXTBOOTID.UPNP.ORG
REQUIRED. Field value contains the new BOOTID.UPNP.ORG field value that the device intends to use in the subsequent
device and service announcement messages. Its field value MUST be a non-negative 31-bit integer; ASCII encoded,
decimal, without leading zeros (leading zeroes, if present, MUST be ignored by the recipient) and MUST be greater than
the field value of the BOOTID.UPNP.ORG header field.

SEARCHPORT.UPNP.ORG
OPTIONAL. As defined in clause 1.2, and 1.2.2.

Note: No responses are sent for messages with method NOTIFY.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 27 —

If a control point with a single UPnP-enabled interface receives an ssdp:update message,
the NEXTBOOTID.UPNP.ORG field value replaces the BOOTID.UPNP.ORG field value that
the control point has previously recorded for the device. It can expect future announcements,
search responses, update messages and eventually bye-bye messages from the device to
contain the “new” BOOTID.UPNP.ORG field value (that is: the field value of the
NEXTBOOTID.UPNP.ORG header field in the received ssdp:update message). The field
value in the NEXTBOOTID.UPNP.ORG header field MUST be recorded as the current
BOOTID.UPNP.ORG field value of the device which is to be expected on all subsequent
SSDP messages.

If a multi-homed control point receives an ssdp:update message on its UPnP-enabled
interface(s), and the message arrives on the interface(s) that it uses for UPnP
communications with the device (such as event subscriptions), it can assume that the device
has remained continuously available (including all device state), and that the
NEXTBOOTID.UPNP.ORG field value replaces the BOOTID.UPNP.ORG field value that the
control point has previously recorded for the device. It can expect future announcements,
search responses, update messages and eventually bye-bye messages from the device to
contain the “new” BOOTID.UPNP.ORG field value (that is: the field value of the
NEXTBOOTID.UPNP.ORG header field in the received ssdp:update message). The field
value in the NEXTBOOTID.UPNP.ORG header field MUST be recorded as the current
BOOTID.UPNP.ORG field value of the device which is to be expected on all subsequent
SSDP messages.

If a control point receives an SSDP message with a BOOTID.UPNP.ORG field value different
(either higher or lower) from the value that the control point has previously recorded for the
device,it can assume that the device has become temporarily unavailable on that interface
and has become available again, and any stored state information about the device has
become invalid. It MUST treat the device as a newly discovered device.

1.3 Search
When a control point is added to the network, the UPnP discovery protocol allows that control
point to search for devices of interest on the network. It does this by multicasting on the
reserved address and port (239.255.255.250:1900) a search message with a pattern, or target,
equal to a type or identifier for a device or service. Responses from devices contain discovery
messages essentially identical to those advertised by newly connected devices; the former
are unicast while the latter are multicast. Control points can also send a unicast search
message to a known IP address and port 1900 or the port indicated by
SEARCHPORT.UPNP.ORG, to verify the existence of UPnP device(s) and service(s) at the
IP address. For example, a unicast search may be used to quickly check whether a known
UPnP device or service is still available on the network. Multi-homed control points MAY
choose to send discovery messages on any, some or all of its UPnP-enabled interfaces.

1.3.1 Search protocols and standards
To search for devices (and be discovered by control points), control points (and devices) use
the following subset of the overall UPnP protocol stack. (The overall UPnP protocol stack is
listed at the beginning of this document.)

Figure 1-5: — Search protocol stack

UPnP vendor [purple-italic]

UPnP Forum [red-italic]

UPnP Device Architecture [green-bold]

SSDP [blue]

UDP [black]

IP [black]

At the highest layer, search messages contain vendor-specific information, e.g., the control
point, device, and service identifiers. Moving down the stack, vendor content is supplemented

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 28 —

by information from a UPnP Forum working committee, e.g., device or service types.
Messages from the layers above are hosted in UPnP-specific protocols, defined in this
document. In turn, search requests are delivered via multicast and unicast SSDP messages
defined in this document. Search responses are delivered via a unicast SSDP messages
defined in this document. Both kinds of messages are delivered via UDP over IP. For
reference, colors in [square brackets] above indicate which protocol defines specific header
fields and field values in discovery messages listed below.

1.3.2 Search request with M-SEARCH
When a control point desires to search the network for devices, it MUST send a multicast
request with method M-SEARCH in the following format. Control points that know the address
of a specific device MAY also use a similar format to send unicast requests with method M-
SEARCH.

For multicast M-SEARCH, the message format is defined below. Values in italics are
placeholders for actual values.

 M-SEARCH * HTTP/1.1
 HOST: 239.255.255.250:1900
 MAN: "ssdp:discover"
 MX: seconds to delay response
 ST: search target
 USER-AGENT: OS/version UPnP/1.1 product/version

Note: No body is present in requests with method M-SEARCH, but note that the message
MUST have a blank line following the last header field.

Note: The TTL for the IP packet SHOULD default to 2 and SHOULD be configurable.

Listed below are details for the request line and header fields appearing in the listing above.
Field names are not case sensitive. All field values are case sensitive except where noted.

Request line
Must be “M-SEARCH * HTTP/1.1”

M-SEARCH
Method for search requests.

*
Request applies generally and not to a specific resource. MUST be *.

HTTP/1.1
HTTP version.

Header fields

HOST
REQUIRED. Field value contains the multicast address and port reserved for SSDP by Internet Assigned Numbers
Authority (IANA). MUST be 239.255.255.250:1900.

MAN
REQUIRED by HTTP Extension Framework. Unlike the NTS and ST field values, the field value of the MAN header field is
enclosed in double quotes; it defines the scope (namespace) of the extension. MUST be "ssdp:discover".

MX
REQUIRED. Field value contains maximum wait time in seconds. MUST be greater than or equal to 1 and SHOULD be
less than 5 inclusive. Device responses SHOULD be delayed a random duration between 0 and this many seconds to
balance load for the control point when it processes responses. This value MAY be increased if a large number of devices
are expected to respond. The MX field value SHOULD NOT be increased to accommodate network characteristics such as
latency or propagation delay (for more details, see the explanation below). Specified by UPnP vendor. Integer.

ST
REQUIRED. Field value contains Search Target. MUST be one of the following. (See NT header field in NOTIFY with
ssdp:alive above.) Single URI.

ssdp:all
Search for all devices and services.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 29 —

upnp:rootdevice
Search for root devices only.

uuid:device-UUID
Search for a particular device. device-UUID specified by UPnP vendor. See clause 1.1.4, “UUID format and
RECOMMENDED generation algorithms” for the MANDATORY UUID format.

urn:schemas-upnp-org:device:deviceType:ver
Search for any device of this type where deviceType and ver are defined by the UPnP Forum working committee.

urn:schemas-upnp-org:service:serviceType:ver
Search for any service of this type where serviceType and ver are defined by the UPnP Forum working
committee.

urn:domain-name:device:deviceType:ver
Search for any device of this typewhere domain-name (a Vendor Domain Name), deviceType and ver are
defined by the UPnP vendor and ver specifies the highest specifies the highest supported version of the device
type. Period characters in the Vendor Domain Name MUST be replaced with hyphens in accordance with RFC
2141.

urn:domain-name:service:serviceType:ver
Search for any service of this type. Where domain-name (a Vendor Domain Name), serviceType and ver are
defined by the UPnP vendor and ver specifies the highest specifies the highest supported version of the service
type. Period characters in the Vendor Domain Name MUST be replaced with hyphens in accordance with RFC
2141.

USER-AGENT
OPTIONAL. Specified by UPnP vendor. String. Field value MUST begin with the following “product tokens” (defined by
HTTP/1.1). The first product token identifes the operating system in the form OS name/OS version, the second token
represents the UPnP version and MUST be UPnP/1.1, and the third token identifes the product using the form
product name/product version. For example, “USER-AGENT: unix/5.1 UPnP/1.1 MyProduct/1.0”. Control points MUST be
prepared to accept a higher minor version number of the UPnP version than the control point itself implements. For
example, control points implementing UDA version 1.0 will be able to interoperate with devices implementing
UDA version 1.1.

For unicast M-SEARCH, the message format is defined below. Values in italics are
placeholders for actual values.

 M-SEARCH * HTTP/1.1
 HOST: hostname:portNumber
 MAN: "ssdp:discover"
 ST: search target

 USER-AGENT: OS/version UPnP/1.1 product/version

Note: No body is present in requests with method M-SEARCH, but note that the message
MUST have a blank line following the last header field.

Listed below are details for the request line and header fields appearing in the listing above.
Field names are not case sensitive. All field values are case sensitive except where noted.

Request line
Must be “M-SEARCH * HTTP/1.1”

M-SEARCH
Method for search requests.

*
Request applies generally and not to a specific resource. MUST be *.

HTTP/1.1
HTTP version.

Header fields

HOST
REQUIRED. For unicast requests, the field value MUST be the domain name or IP address of the target device and either
port 1900 or the SEARCHPORT provided by the target device.

MAN

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 30 —

REQUIRED by HTTP Extension Framework. Unlike the NTS and ST field values, the field value of the MAN header field is
enclosed in double quotes; it defines the scope (namespace) of the extension. MUST be "ssdp:discover".

ST
REQUIRED. Field value contains Search Target. MUST be one of the following. (See NT header field in NOTIFY with
ssdp:alive above.) Single URI.

ssdp:all
Search for all devices and services.

upnp:rootdevice
Search for root devices only.

uuid:device-UUID
Search for a particular device. device-UUID specified by UPnP vendor. See clause 1.1.4, “UUID format and
RECOMMENDED generation algorithms” for the MANDATORY UUID format.

urn:schemas-upnp-org:device:deviceType:ver
Search for any device of this type where deviceType and ver are defined by the UPnP Forum working committee.

urn:schemas-upnp-org:service:serviceType:ver
Search for any service of this type where serviceType and ver are defined by the UPnP Forum working
committee.

urn:domain-name:device:deviceType:ver
Search for any device of this type where domain-name (a Vendor Domain Name), deviceType and ver are
defined by the UPnP vendor and ver specifies the highest supported version of the device type. Period
characters in the Vendor Domain Name MUST be replaced with hyphens in accordance with RFC 2141.

urn:domain-name:service:serviceType:ver
Search for any service of this type where domain-name (a Vendor Domain Name), serviceType and ver are
defined by the UPnP vendor and ver specifies the highest supported version of the service type. Period
characters in the Vendor Domain Name MUST be replaced with hyphens in accordance with RFC 2141.

USER-AGENT
OPTIONAL. Specified by UPnP vendor. String. Field value MUST begin with the following “product tokens” (defined by
HTTP/1.1). The first product token identifes the operating system in the form OS name/OS version, the second token
represents the UPnP version and MUST be UPnP/1.1, and the third token identifes the product using the form
product name/product version. For example, “USER-AGENT: unix/5.1 UPnP/1.1 MyProduct/1.0”. Control points MUST be
prepared to accept a higher minor version number of the UPnP version than the control point itself implements. For
example, control points implementing UDA version 1.0 will be able to interoperate with devices implementing
UDA version 1.1.

Due to the unreliable nature of UDP, control points SHOULD send each M-SEARCH message
more than once. As a fallback, to guard against the possibility that a device might not receive
the M-SEARCH message from a control point, a device SHOULD re-send its advertisements
periodically (see CACHE-CONTROL header field in NOTIFY with ssdp:alive above).

For a multicast request, the control point SHOULD wait at least the amount of time specified
in the MX header field for responses to arrive from devices. The random distribution of
responses over the MX interval means that a responder MAY send a response at MX seconds
after receiving the M-SEARCH request. The MX field value MAY be adjusted by heuristics at
the requester based on, for example, observed number of responders. Network characteristics
affecting the propagation of traffic cannot be addressed by increasing the MX field value
because of the reason cited above. A requester MAY adapt to network characteristics with
heuristics based on observed network behavior (the exact heuristics are out of scope). The
net effect is that the M-SEARCH request persists at the requester for a period of time
exceeding MX such that the characteristics of the network are properly accommodated to
minimize lost responses.

When a device receives a unicast M-SEARCH, it SHOULD respond within 1 second and it
MAY respond sooner. The sender of the unicast request SHOULD wait at least 1 second for
the response.

Updated versions of device and service types are REQUIRED to be fully backward compatible
with previous versions. Devices MUST respond to M-SEARCH requests for any supported
version. For example, if a device implements “urn:schemas-upnp-org:service:xyz:2”, it MUST
respond to search requests for both that type and “urn:schemas-upnp-org:service:xyz:1”. The
response MUST specify the same version as was contained in the search request. If a control
point searches for a device or service of a particular version and receives no responses

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 31 —

(presumably because no device present on the network supports the specified version), but is
willing to operate using a lower version, it MAY repeat the search request specifying the lower
version.

1.3.3 Search response
To be found by a network search, a device MUST send a unicast UDP response to the source
IP address and port that sent the request to the multicast address. Devices respond if the ST
header field of the M-SEARCH request is “ssdp:all”, “upnp:rootdevice”, “uuid:” followed by a
UUID that exactly matches the one advertised by the device, or if the M-SEARCH request
matches a device type or service type supported by the device. Multi-homed devices MUST
send the search response using the same UPnP-enabled interface on which the search
request was received. The URL specified in the LOCATION field value MUST specify an
address that is reachable on that interface.

Devices responding to a multicast M-SEARCH SHOULD wait a random period of time
between 0 seconds and the number of seconds specified in the MX field value of the search
request before responding, in order to avoid flooding the requesting control point with search
responses from multiple devices. If the search request results in the need for a multiple part
response from the device, those multiple part responses SHOULD be spread at random
intervals through the time period from 0 to the number of seconds specified in the MX header
field. Devices MAY assume an MX field value less than that specified in the MX header field. If
the MX header field specifies a field value greater than 5, the device SHOULD assume that it
contained the value 5 or less. Devices MUST NOT stop responding to other requests while
waiting the random delay before sending a response.

For multicast M-SEARCH requests, if the search request does not contain an MX header field,
the device MUST silently discard and ignore the search request. If the MX header field
specifies a field value greater than 5, the device SHOULD assume that it contained the value
5 or less.

Any device responding to a unicast M-SEARCH SHOULD respond within 1 second.

The URL specified in the LOCATION header field of the M-SEARCH response MUST be
reachable by the control point to which the response is directed.

Responses to M-SEARCH requests are intentionally parallel to advertisements, and as such,
follow the same pattern as listed for NOTIFY with ssdp:alive (above) except that instead of the NT
header field there is an ST header field here. The response MUST be sent in the following
format. Values in italics are placeholders for actual values.

 HTTP/1.1 200 OK
 CACHE-CONTROL: max-age = seconds until advertisement expires
 DATE: when response was generated
 EXT:
 LOCATION: URL for UPnP description for root device
 SERVER: OS/version UPnP/1.1 product/version
 ST: search target
 USN: composite identifier for the advertisement
 BOOTID.UPNP.ORG: number increased each time device sends an initial announce or an update
message
 CONFIGID.UPNP.ORG: number used for caching description information
 SEARCHPORT.UPNP.ORG: number identifies port on which device responds to unicast M-SEARCH

Note: No body is present in a response to a request with method M-SEARCH, but note that the
message MUST have a blank line following the last header field.

(Note: No need to limit TTL for the IP packet in response to a search request.)

Listed below are details for the header fields appearing in the listing above. Field names are
not case sensitive. All field values are case sensitive except where noted.

Response line

Must be “HTTP/1.1 200 OK”

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 32 —

Header fields

CACHE-CONTROL
REQUIRED. Field value MUST have the max-age directive (“max-age=”) followed by an integer that specifies the number
of seconds the advertisement is valid. After this duration, control points SHOULD assume the device (or service) is no
longer available; as long as a control point has received at least one advertisement that is still valid from a root device, any
of its embedded devices or any of its services, then the control point can assume that all are available. The number of
seconds SHOULD be greater than or equal to 1800 seconds (30 minutes), although exceptions are defined in the text
above. Specified by UPnP vendor. Other directives MUST NOT be sent and MUST be ignored when received.

DATE
RECOMMENDED. Field value contains date when response was generated. “rfc1123-date” as defined in RFC 2616.

EXT
REQUIRED for backwards compatibility with UPnP 1.0. (Header field name only; no field value.)

LOCATION
REQUIRED. Field value contains a URL to the UPnP description of the root device. Normally the host portion contains a
literal IP address rather than a domain name in unmanaged networks. Specified by UPnP vendor. Single absolute URL
(see RFC 3986).

SERVER
REQUIRED. Specified by UPnP vendor. String. Field value MUST begin with the following “product tokens” (defined by
HTTP/1.1). The first product token identifes the operating system in the form OS name/OS version, the second token
represents the UPnP version and MUST be UPnP/1.1, and the third token identifes the product using the form
product name/product version. For example, “SERVER: unix/5.1 UPnP/1.1 MyProduct/1.0”. Control points MUST be
prepared to accept a higher minor version number of the UPnP version than the control point itself implements. For
example, control points implementing UDA version 1.0 will be able to interoperate with devices implementing
UDA version 1.1.

ST
REQUIRED. Field value contains Search Target. Single URI. The response sent by the device depends on the field value
of the ST header field that was sent in the request. In some cases, the device MUST send multiple response messages as
follows. If the received ST field value was:

ssdp:all
Respond 3+2d+k times for a root device with d embedded devices and s embedded services but only k distinct
service types (see clause 1.1.2, “SSDP message header fields” for a definition of each message to be sent).
Field value for ST header field MUST be the same as for the NT header field in NOTIFY messages with
ssdp:alive. (See above.)

upnp:rootdevice
Respond once for root device. Must be upnp:rootdevice.

uuid:device-UUID
Respond once for each matching device, root or embedded. Must be uuid:device-UUID where device-UUID is
specified by the UPnP vendor. See clause 1.1.4, “UUID format and RECOMMENDED generation algorithms” for
the MANDATORY UUID format.

urn:schemas-upnp-org:device:deviceType:ver
Respond once for each matching device, root or embedded. MUST be
urn:schemas-upnp-org:device:deviceType:ver where deviceType and ver are defined by UPnP Forum working
committee and ver MUST contain the version of the device type contained in the M-SEARCH request.

urn:schemas-upnp-org:service:serviceType:ver
Respond once for each matching service type. MUST be urn:schemas-upnp-org:service:serviceType:ver where
serviceType and ver are defined by the UPnP Forum working committee and ver MUST contain the version of
the service type contained in the M-SEARCH request.

urn:domain-name:device:deviceType:ver
Respond once for each matching device, root or embedded. MUST be urn:domain-name:device:deviceType:ver
where domain-name (a Vendor Domain Name), deviceType and ver are defined by the UPnP vendor and ver
MUST contain the version of the device type from the M-SEARCH request. Period characters in the Vendor
Domain Name MUST be replaced with hyphens in accordance with RFC 2141.

urn:domain-name:service:serviceType:ver
Respond once for each matching service type. MUST be urn: domain-name:service:serviceType:ver where
domain-name (a Vendor Domain Name), serviceType and ver are defined by the UPnP vendor and ver MUST
contain the version of the service type from the M-SEARCH request. Period characters in the Vendor Domain
Name MUST be replaced with hyphens in accordance with RFC 2141.

USN

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 33 —

REQUIRED. Field value contains Unique Service Name. (See list of required field values for the USN header field in
NOTIFY with ssdp:alive above.) Single URI.

BOOTID.UPNP.ORG
REQUIRED. As defined in clause 1.2, and 1.2.2.

CONFIGID.UPNP.ORG
OPTIONAL. As defined in clause 1.2, and 1.2.2.

SEARCHPORT.UPNP.ORG
OPTIONAL. As defined in clause 1.2, and 1.2.2.

If there is an error with the search request (such as an invalid field value in the MAN header
field, a missing MX header field, or other malformed content), the device MUST silently
discard and ignore the search request; sending of error responses is PROHIBITED due to the
possibility of packet storms if many devices send an error response to the same request.

1.4 References
RFC 2141, URN Syntax. Available at: http://www.ietf.org/rfc/rfc2141.txt>.

RFC 2616, HTTP: Hypertext Transfer Protocol 1.1. Available at:
http://www.ietf.org/rfc/rfc2616.txt.

RFC 2774, HTTP Extension Framework. Available at: http://www.ietf.org/rfc/rfc2774.txt.

RFC 3986, Uniform Resource Identifiers (URI): Generic Syntax. Available at:
http://www.ietf.org/rfc/rfc3986.txt.

RFC 4340, Datagram Congestion Control Protocol (DCCP). Available at:
http://www.ietf.org/rfc/rfc4340.txt.

[1] DCE variant of Universal Unique Identifiers (UUIDs), The Open group, 1997, Available at:
http://www.opengroup.org/onlinepubs/9629399/apdxa.htm.

2 Description

Description is Step 2 in UPnP™ networking. Description comes after addressing (Step 0)
where devices get a network address, and after discovery (Step 1) where control points find
interesting device(s). Description enables control (Step 3) where control points send
commands to device(s), eventing (Step 4) where control points listen to state changes in
device(s), and presentation (Step 5) where control points may display an html user interface
for device(s).

After a control point has discovered a device, the control point still knows very little about the
device -- only the information that was in the discovery message, i.e., the device's (or
service's) UPnP type, the device's universally-unique identifier, and a URL to the device's
UPnP description. For the control point to learn more about the device and its capabilities, or
to interact with the device, the control point MUST retrieve a description of the device and its
capabilities from the URL provided by the device in the discovery message.

Figure 2-1: — Description architecture

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 34 —

control point

root device

service

service

device

service

HTTP GET

HTTP RESP
description

service URL

HTTP GET

HTTP RESP
description

The UPnP description for a device is partitioned into two logical parts: a device description
describing the physical and logical containers, and service descriptions describing the
capabilities exposed by the device. A UPnP device description includes vendor-specific
manufacturer information like the model name and number, serial number, manufacturer
name, URLs to vendor-specific Web sites, etc. (details below). For each service included in
the device, the device description lists the service type, service name, a URL for a service
description, a URL for control, and a URL for eventing. A device description also includes a
description of all embedded devices and a URL for presentation of the aggregate. This clause
explains UPnP device descriptions, and the clauses on Control, Eventing, and Presentation
explain how URLs for control, eventing, and presentation are used respectively.

Note that a single physical device MAY include multiple logical devices. Multiple logical
devices can be modeled as a single root device with embedded devices (and services) or as
multiple root devices (perhaps with no embedded devices). In the former case, there is one
UPnP device description for the root device, and that device description contains a
description for all embedded devices. In the latter case, there are multiple UPnP device
descriptions, one for each root device.

A UPnP device description is written by a UPnP vendor. The description is in XML syntax and
is usually based on a standard UPnP Device Template. A UPnP Device Template is produced
by a UPnP Forum working committee; they derive the template from the UPnP Device
Schema, which was derived from standard constructions in XML. This clause explains the
format for a UPnP device description, UPnP Device Templates, and the part of the UPnP
Device Schema that covers devices.

A UPnP service description includes a list of commands, or actions, to which the service
responds, and parameters, or arguments for each action. A service description also includes a
list of variables. These variables model the state of the service at run time, and are described
in terms of their data type, range, and event characteristics. This clause explains the
description of actions, arguments, state variables, and the properties of those variables. The
clause on Eventing explains event characteristics.

Like a UPnP device description, a UPnP service description is written by a UPnP vendor. The
description is in XML syntax and is usually based on a standard UPnP Service Template. A
UPnP Service Template is produced by a UPnP Forum working committee; they derived the
template from the UPnP Service Schema, augmenting it with human language where
necessary. The UPnP Service Schema is derived using the conventions of XML Schema. This
clause explains the format for a UPnP service description, UPnP Service Templates, typical
augmentations in human language, and the part of the UPnP Service Schema that covers
services.

UPnP vendors can differentiate their devices by extending services (see clause 2.7, “Non-
standard vendor extensions and limitations”), including additional UPnP services, or
embedding additional devices. When a control point retrieves a particular device's description,

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 35 —

these added features are exposed to the control point for control and eventing. The device
and service descriptions authoritatively document the implementation of the device.

Retrieving a UPnP device description is simple: the control point issues an HTTP GET
request on the URL in the discovery message, and the device returns the device description.
Retrieving a UPnP service description is a similar process that uses a URL within the device
description. The protocol stack, method, header fields, and body for the response and request
are explained in detail below. Description documents MUST be sent using the same IP
address on which the HTTP GET request was received.

As long as at least one of the discovery advertisements from a root device, any of its
embedded devices or any of its services have not expired and none of the advertisements
have been cancelled, a control point MAY assume that the root device and all its embedded
devices and all its services are available. The device and service descriptions MAY be
retrieved at any point since the device and service descriptions are static as long as the
device and its services are available. If a device cancels at least one of its advertisements or
if all the advertisements expire, a control point SHOULD assume the device and its services
are no longer available. If a device needs to change one of these descriptions, it MUST
cancel its outstanding advertisements and re-advertise. Consequently, control points
SHOULD NOT assume that device and service descriptions are unchanged if a device re-
appears on the network, but they can detect whether descriptions changed if a changed
CONFIGID.UPNP.ORG field value is present in the announcements.

Like discovery, description plays an important role in the interoperability of devices and
control points using different versions of UPnP networking. As explained in clause 1,
“Discovery”, the UPnP Device Architecture is versioned with both a major and a minor version.
The major version and minor version are separate integer numbers; they are not to be
interpreted or compared as though they were a single decimal number, even though they may
appear as such in print. Advances in minor versions MUST be a compatible superset of earlier
minor versions of the same major version; therefore device vendors are free to implement
standardized devices and services on versions of the architecture with a higher minor version
number. Advances in major version are NOT REQUIREDto be supersets of earlier versions
and are not guaranteed to be backward compatible. The architecture version of a root device,
all its embedded devices and all its services MUST be the same. Version information is
communicated in description messages as a backup to the information communicated in
discovery messages. This clause explains the format of version information in description
messages.

Device and service types standardized by UPnP Forum working committees or created by
vendors have an integer version. Every later version of a device or service MUST be a fully
backwardly compatible superset of the previous version, i.e., compared to earlier versions of
the device, it MUST include all mandatory embedded devices and services of the same or
later version. The UPnP device or service type remains the same across all versions of a
device whereas the device or service version MUST be larger for later versions. Versions of
device and service templates MAY have non-integer versions (such as “0.9”) during
development in the working committee, but this MUST become an integer upon
standardization. Devices and services MAY have a version number greater than the major
version number of the architecture they are designed for (e.g., “Power:2” MAY be designed to
work on UDA version 1.0); there is no direct correlation between the version of a device or
service template and the architecture version with which it is designed to work. If a non-
backward-compatible version of a device or service is defined, it MUST have a different
device or service name to indicate that it is not backwardly compatible (and version numbers
of the new type MUST restart at 1).

UPnP device and service types are “building blocks” that MAY be assembled in various
combinations. Both standard and vendor-defined device types MAY be embedded in standard
device types. Both standard and vendor-defined device types MAY be embedded in vendor-
defined device types. Likewise, both standard and vendor-defined service types MAY be
embedded in both standard and vendor-defined device types. A control point that is capable
of operating with a particular device or service type MUST at least recognize that device or
service type even when it is embedded within another device type (standard or vendor-
defined) that it does not recognize. For example, if a standard service type “Print:1” is defined,

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 36 —

and a standard device type “Printer:1” is defined that contains the “Print:1” service, a control
point that wishes to use the “Print:1” service must find and use it whether the service is
embedded within a “urn:schemas-upnp-org:device:Printer:1” device or embedded within a
vendor-defined “urn:acme-com:device:Printer:1” or “urn:acme-
com:device:AcmeMultifunctionPrinter:1” device.

The remainder of this clause first explains how devices are described, explaining details of
vendor-specific information, embedded devices, and URLs for control, eventing, and
presentation. Second, it explains UPnP Device Templates. Third, it explains how services are
described, explaining details of actions, arguments, state variables, and properties of those
variables. Then it explains UPnP Service Templates, and the UPnP Service Schema. Finally,
this clause explains in detail how a control point retrieves device and service descriptions
from a device.

2.1 Generic requirements on HTTP usage
This subclause defines generic requirements on HTTP usage in UPnP Version 1.1. HTTP is
the underlying transport for:

• Description (see clause 2, “Description”)

• Control (see clause 3, “Control”)

• Eventing (see clause 4, “Eventing”)

• Presentation (clause 5, “Presentation”)
The baseline transport for all devices and control points is RECOMMENDED to be HTTP/1.1
compliant (as defined in RFC 2616) but at least MUST be HTTP/1.0 compliant (as defined in
RFC 1945). Vendors are free to implement and Working Committees are free to require for
new device classes implementations of more recent versions of HTTP that are backwards
compatible with HTTP version 1.0, such as HTTP version 1.1 as defined in RFC 2616.
However whatever version is implemented, all REQUIRED components defined by the
specified HTTP version MUST be implemented.

If a control point uses an HTTP/1.0 binding on a SOAP request without setting the KeepAlive
token, the device MUST close the socket after responding. If a control point uses an HTTP/1.1
binding on a SOAP request, and sets the “Connection:CLOSE” token, the device MUST close
the socket after responding.

USER-AGENT header field
Control points can add the USER-AGENT header field to any UPnP-related HTTP request to
signal that they support UPnP 1.1. Working Committees MAY require presence of this header
on description retrieval, action invocations and event subscriptions for newly defined services.

 USER-AGENT: OS/version UPnP/1.1 product/version

USER-AGENT
OPTIONAL.Specified by UPnP vendor. String. Field value MUST begin with the following “product tokens” (defined by
HTTP/1.1). The first product token identifes the operating system in the form OS name/OS version, the second token
represents the UPnP version and MUST be UPnP/1.1, and the third token identifes the product using the form
product name/product version. For example, “USER-AGENT: unix/5.1 UPnP/1.1 MyProduct/1.0”. Control points MUST be
prepared to accept a higher minor version number of the UPnP version than the control point itself implements. For
example, control points implementing UDA version 1.0 will be able to interoperate with devices implementing
UDA version 1.1.

Vendor-defined or working committee-defined HTTP Header fields
HTTP field names defined by vendors or working committees MUST have the following format:

field-name = token “.” domain-name
where the domain-name MUST be a Vendor Domain Name or MUST be “UPNP.ORG” (for
working committee defined field names), and in addition MUST satisfy the token format as
defined in RFC 2616 clause 2.2. Field names are case-insensitive.

HTTP/1.0 Persistent connections

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 37 —

Some implementations of HTTP/1.0 defined what is known as persistent connections. There
are many practical uses for this functionality, as it may reduce overhead for a given device by
allowing resources to be used more efficiently. However, this functionality for HTTP/1.0 is not
officially defined in the specification and classified as experimental. Further, the way it has
been experimentally defined is flawed in such a way that it may cause sessions to hang in
certain scenarios. This functionality MUST NOT be implemented by any UPnP devices or
control points that implement HTTP version 1.0.

HTTP/1.0 HEAD request
Some implementations utilize the HEAD request to try to predetermine the amount of memory
required to process a GET request. Some servers may not know that size of the content
because it may be dynamic. In such cases, the responses will not contain a CONTENT-
LENGTH header field. As such, control points MUST NOT rely on the CONTENT-LENGTH
header field being specified for a HEAD response.

HTTP/1.1 General
When a device or control point implements HTTP/1.1, all requirements of HTTP/1.0 MUST be
maintained, with the exception of the CONTENT-LENGTH header field, which MUST NOT be
specified when doing chunked transfers.

HTTP status codes
Servers MUST return appropriate HTTP status codes for invalid requests. A device or control
point MUST use a 4xx HTTP status code for responses that indicate a problem with the format
of a request or response. For example, if an HTTP client makes a PUT request to a server
that does not implement the PUT method, the server SHOULD return a "405 Method not
Allowed" HTTP status code and MUST return a 4xx series HTTP status code. Another
example is if an HTTP client makes a request to a server that is malformed HTTP or not well
formed XML, the server SHOULD return a "400 Bad Request" HTTP status code and MUST
return a 4xx series HTTP status code. While clients are not REQUIRED to understand specific
status codes, they MUST understand classes of status codes. For example, a 4xx series
HTTP status code signifies an improper request, whereas a 5xx series HTTP status code
signifies a processing error for a valid request.

HTTP/1.1 and HTTP/1.0 compatibility
Devices and control points that implement HTTP/1.1 MUST be able to interoperate with
HTTP/1.0 control points and devices. Care MUST be taken when devices and control points
process requests, such that the response generated is compatible with the HTTP version
specified in the request. For example, if an HTTP/1.0 request is made, the device or control
point MUST NOT return an HTTP/1.1 chunked response.

HTTP/1.1 HOST header field and use of the HOST header field with HTTP/1.0
The ‘HOST’ header field MUST be specified in all requests, because HTTP/1.1 allows support
for virtual domains, which rely on this header field to determine the target destination.

The HOST header field MUST also be included in HTTP/1.0 requests, for backwards
compatibility with UPnP 1.0, which REQUIRES the HOST header field to be present without
explicitly mentioning a HTTP version.

HTTP/1.1 EXPECT: 100-Continue
Servers MAY send a “100-Continue” HTTP status code to let the client know that the header
fields received have been processed. If a client will rely on this status response before
sending the body, it MUST send the “EXPECT: 100-Continue” header field in the request. If a
server received this header field in the request, it MUST NOT wait for the request body before
sending the continue response. However, a client MUST be prepared to handle cases when
the “EXPECT: 100-Continue” header field is not sent, but a “100-Continue” HTTP status code
is still received from the server.

HTTP/1.1 Chunked Encoding
Devices and control points that advertise support for HTTP/1.1 MUST have support for
decoding chunked encoded messages. Chunked encoded messages MAY contain Chunk-

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 38 —

Extensions, which are delineated with a ‘;’. Extensions that are not recognized MUST be
ignored, which includes the absence of an extension, but the presence of the delineator.

Chunked encoding also allows responses and requests to include trailer fields, which are
header fields that follow the body. Devices and control points MUST only send trailer fields if
the request contained the ‘TE’ header field (indicates trailer processing is supported), or if the
trailer fields in the response only contain OPTIONAL metadata that can be safely ignored.

Before a control point uses chunked encoding to make a request to a device, it MUST check
to ensure that the device is an HTTP/1.1 device. Devices MAY use different HTTP engines
(that support different versions) for description, control, eventing and presentation. Therefore,
to correctly identify which HTTP version is used for processing control requests, a HEAD
request MAY be issued to the corresponding control URL.

HTTP/1.1 Persistent Connections
Persistent connections is the default behavior defined by HTTP/1.1. It is strongly
RECOMMENDED that this behavior be maintained, as it may be beneficial in many scenarios,
as it allows for resources to be utilized more efficiently. Support for Pipelined request
handling is also RECOMMENDED if persistent connections are supported.

If a server responds with a “CONNECTION: close” header line, it MUST close the session
after responding. Similarly if a client specifies “CONNECTION: close” in the request, the
server MUST also close the session after responding.

When Requests are pipelined to a server, the server MUST answer the requests in the order
that they are received. Clients MUST also be prepared to retry connections if pipelining fails,
for example, if the server does not support them.

HTTP/1.1 Redirect restrictions
HTTP/1.1 defines OPTIONAL support for redirecting an HTTP request. UPnP 1.1 devices
MAY redirect a request, although this is NOT RECOMMENDED. If a UPnP 1.1 device
redirects a request, it MUST respond with a “307 Temporary Redirect” HTTP status code (see
also RFC 2616). UPnP 1.1 devices MUST NOT return any other HTTP/1.1 redirect options.
Control points MUST implement HTTP/1.1 redirect and SHOULD redirect the request upon
receiving a “307 Temporary Redirect” HTTP status code (see also RFC 2616).

2.2 Generic requirements on XML usage
XML namespace prefixes do not have to be the specific strings that are used in the examples
in this specification. They can be any value that obeys the rules of the general XML
namespace mechanism as outlined in the Namespaces in XML specification. Devices MUST
accept requests that use other legal XML namespace prefixes.

If an XML element has no value (i.e. it contains the empty string), it is valid to combine the
opening and closing XML tags (e.g., “<actionname/>” instead of
“<actionname></actionname>”).

2.3 Device description
The UPnP description for a device contains several pieces of vendor-specific information,
definitions of all embedded devices, URL for presentation of the device, and listings for all
services, including URLs for control and eventing. In addition to defining non-standard
devices (which MAY contain both vendor-defined and standard embedded devices and
services), UPnP vendors MAY add embedded devices and services to standard devices. To
illustrate these, below is a listing with placeholders (in italics) for actual elements and values.
Some of these placeholders would be specified by a UPnP Forum working committee (colored
red) or by a UPnP vendor (colored purple). For a non-standard device, all of these placeholders
would be specified by a UPnP vendor. Elements defined by the UPnP Device Architecture are
colored green. Immediately following the listing is a detailed explanation of the elements,
attributes, and values.

 <?xml version="1.0"?>
 <root xmlns="urn:schemas-upnp-org:device-1-0"

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 39 —

 configId="configuration number">
 <specVersion>
 <major>1</major>
 <minor>1</minor>
 </specVersion>
 <device>
 <deviceType>urn:schemas-upnp-org:device:deviceType:v</deviceType>
 <friendlyName>short user-friendly title</friendlyName>
 <manufacturer>manufacturer name</manufacturer>
 <manufacturerURL>URL to manufacturer site</manufacturerURL>
 <modelDescription>long user-friendly title</modelDescription>
 <modelName>model name</modelName>
 <modelNumber>model number</modelNumber>
 <modelURL>URL to model site</modelURL>
 <serialNumber>manufacturer's serial number</serialNumber>
 <UDN>uuid:UUID</UDN>
 <UPC>Universal Product Code</UPC>
 <iconList>
 <icon>
 <mimetype>image/format</mimetype>
 <width>horizontal pixels</width>
 <height>vertical pixels</height>
 <depth>color depth</depth>
 <url>URL to icon</url>
 </icon>
 <!-- XML to declare other icons, if any, go here -->
 </iconList>
 <serviceList>
 <service>
 <serviceType>urn:schemas-upnp-org:service:serviceType:v</serviceType>
 <serviceId>urn:upnp-org:serviceId:serviceID</serviceId>
 <SCPDURL>URL to service description</SCPDURL>
 <controlURL>URL for control</controlURL>
 <eventSubURL>URL for eventing</eventSubURL>
 </service>
 <!-- Declarations for other services defined by a UPnP Forum working committee
 (if any) go here -->
 <!-- Declarations for other services added by UPnP vendor (if any) go here -->
 </serviceList>
 <deviceList>
 <!-- Description of embedded devices defined by a UPnP Forum working committee
 (if any) go here -->
 <!-- Description of embedded devices added by UPnP vendor (if any) go here -->
 </deviceList>
 <presentationURL>URL for presentation</presentationURL>
 </device>
 </root>

Listed below are details for each of the elements, attributes, and values appearing in the
listing above. All elements and attributes are case sensitive; HTTP specifies case sensitivity
for URLs; other values are not case sensitive except where noted. The order of elements is
significant. Except where noted: REQUIRED elements MUST occur exactly once (no
duplicates), and RECOMMENDED or OPTIONAL elements MAY occur at most once. Note that
some implementations MAY strictly enforce the length limits for various elements noted below,
and therefore working committees are advised to heed all limits specified.

<?xml>
REQUIRED for all XML documents. Case sensitive.

<root>
REQUIRED. MUST have “urn:schemas-upnp-org:device-1-0” as the value for the xmlns attribute; this references the
UPnP Device Schema (described below). Case sensitive. Has the following attribute:

configId
REQUIRED. Specifies the configuration number to which the device description belongs. See clause 1,
“Discovery” for further definition and usage of the configuration number.

Contains all other elements describing the root device, i.e., contains the following child elements:

<specVersion>
REQUIRED. In device templates, defines the lowest version of the architecture on which the device can be
implemented. In actual UPnP devices, defines the architecture on which the device is implemented. Contains the
following sub elements:

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 40 —

<major>
REQUIRED. Major version of the UPnP Device Architecture. MUST be 1 for devices implemented on a
UPnP 1.1 architecture.

<minor>
REQUIRED. Minor version of the UPnP Device Architecture. MUST be 1 for devices implemented on a
UPnP 1.1 architecture. MUST accurately reflect the version number of the UPnP Device Architecture
supported by the device. Control points MUST be prepared to accept a higher version number than the
control point itself implements.

<URLBase>
Use of URLBase is deprecated in UPnP 1.1; UPnP 1.1 devices MUST NOT include URLBase in their description
documents. For full definition of URLBase, see the UPnP 1.0 specification.

<device>
REQUIRED. Contains the following sub elements:

<deviceType>
REQUIRED. UPnP device type. Single URI.

• For standard devices defined by a UPnP Forum working committee, MUST begin with
“urn:schemas-upnp-org:device:” followed by the standardized device type suffix, a
colon, and an integer device version i.e. urn:schemas-upnp-org:device:deviceType:ver.
The highest supported version of the device type MUST be specified.

• For non-standard devices specified by UPnP vendors, MUST begin with “urn:”, followed
by a Vendor Domain Name, followed by “:device:”, followed by a device type suffix,
colon, and an integer version, i.e., “urn:domain-name:device:deviceType:ver”. Period
characters in the Vendor Domain Name MUST be replaced with hyphens in accordance
with RFC 2141. The highest supported version of the device type MUST be specified.

The device type suffix defined by a UPnP Forum working committee or specified by a UPnP vendor
MUST be <= 64 chars, not counting the version suffix and separating colon.

<friendlyName>
REQUIRED. Short description for end user. MAY be localized (see ACCEPT-LANGUAGE and
CONTENT-LANGUAGE header fields). Specified by UPnP vendor. String. SHOULD be < 64
characters.

<manufacturer>
REQUIRED. Manufacturer's name. MAY be localized (see ACCEPT-LANGUAGE and CONTENT-
LANGUAGE header fields). Specified by UPnP vendor. String. SHOULD be < 64 characters.

<manufacturerURL>
OPTIONAL. Web site for Manufacturer. MAY have a different value depending on language requested
(see ACCEPT-LANGUAGE and CONTENT-LANGUAGE header fields). Specified by UPnP vendor.
Single URL.

<modelDescription>
RECOMMENDED. Long description for end user. MAY be localized (see ACCEPT-LANGUAGE and
CONTENT-LANGUAGE header fields). Specified by UPnP vendor. String. SHOULD be < 128
characters.

<modelName>
REQUIRED. Model name. MAY be localized (see ACCEPT-LANGUAGE and CONTENT-LANGUAGE
header fields). Specified by UPnP vendor. String. SHOULD be < 32 characters.

<modelNumber>
RECOMMENDED. Model number. MAY be localized (see ACCEPT-LANGUAGE and CONTENT-
LANGUAGE header fields). Specified by UPnP vendor. String. SHOULD be < 32 characters.

<modelURL>
OPTIONAL. Web site for model. MAY have a different value depending on language requested (see
ACCEPT-LANGUAGE and CONTENT-LANGUAGE header fields). Specified by UPnP vendor. Single
URL.

<serialNumber>
RECOMMENDED. Serial number. MAY be localized (see ACCEPT-LANGUAGE and CONTENT-
LANGUAGE header fields). Specified by UPnP vendor. String. SHOULD be < 64 characters.

<UDN>
REQUIRED. Unique Device Name. Universally-unique identifier for the device, whether root or
embedded. MUST be the same over time for a specific device instance (i.e., MUST survive reboots).
MUST match the field value of the NT header field in device discovery messages. MUST match the
prefix of the USN header field in all discovery messages. (Clause 1, “Discovery” explains the NT and
USN header fields.) MUST begin with “uuid:” followed by a UUID suffix specified by a UPnP vendor.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 41 —

See clause 1.1.4, “UUID format and RECOMMENDED generation algorithms” for the MANDATORY
UUID format.

<UPC>
OPTIONAL. Universal Product Code. 12-digit, all-numeric code that identifies the consumer package.
Managed by the Uniform Code Council. Specified by UPnP vendor. Single UPC.

<iconList>
REQUIRED if and only if device has one or more icons. Specified by UPnP vendor. Contains the
following sub elements:

<icon>
RECOMMENDED. Icon to depict device in a control point UI. MAY have a different value
depending on language requested (see ACCEPT-LANGUAGE and CONTENT-LANGUAGE
header fields). Icon sizes to support are vendor-specific. Contains the following sub
elements:

<mimetype>
REQUIRED. Icon's MIME type (see RFC 2045, 2046, and 2387). Single MIME image type.
At least one icon SHOULD be of type “image/png” (Portable Network Graphics, see IETF
RFC 2083).

<width>
REQUIRED. Horizontal dimension of icon in pixels. Integer.

<height>
REQUIRED. Vertical dimension of icon in pixels. Integer.

<depth>
REQUIRED. Number of color bits per pixel. Integer.

<url>
REQUIRED. Pointer to icon image. (XML does not support direct embedding of binary data.
See note below.) Retrieved via HTTP. MUST be relative to the URL at which the device
description is located in accordance with clause 5 of RFC 3986. Specified by UPnP vendor.
Single URL.

<serviceList>
OPTIONAL. Contains the following sub elements:

<service>
OPTIONAL. Repeated once for each service defined by a UPnP Forum working committee.
If UPnP vendor differentiates device by adding additional, standard UPnP services, repeated
once for each additional service. Contains the following sub elements:

<serviceType>
Required. UPnP service type. MUST NOT contain a hash character (#, 23 Hex in
UTF-8). Single URI.

• For standard service types defined by a UPnP Forum working committee, MUST begin with “urn:schemas-
upnp-org:service:” followed by the standardized service type suffix, colon, and an integer service version
i.e. urn:schemas-upnp-org:device:serviceType:ver. The highest supported version of the service type
MUST be specified.

• For non-standard service types specified by UPnP vendors, MUST begin with “urn:”, followed by a Vendor
Domain Name, followed by “:service:”, followed by a service type suffix, colon, and an integer service
version, i.e., “urn:domain-name:service:serviceType:ver”. Period characters in the Vendor Domain Name
MUST be replaced with hyphens in accordance with RFC 2141. The highest supported version of the
service type MUST be specified.

The service type suffix defined by a UPnP Forum working committee or specified
by a UPnP vendor MUST be <= 64 characters, not counting the version suffix and
separating colon.

<serviceId>
REQUIRED. Service identifier. MUST be unique within this device description.
Single URI.

• For standard services defined by a UPnP Forum working committee, MUST begin with “urn:upnp-
org:serviceId:” followed by a service ID suffix i.e. urn:upnp-org:serviceId:serviceID. If this instance of the
specified service type (i.e. the <serviceType> element above) corresponds to one of the services
defined by the specified device type (i.e. the <deviceType> element above), then the value of the
service ID suffix MUST be the service ID defined by the device type for this instance of the service.
Otherwise, the value of the service ID suffix is vendor defined. (Note that upnp-org is used instead of
schemas-upnp-org in this case because an XML schema is not defined for each service ID.)

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 42 —

• For non-standard services specified by UPnP vendors, MUST begin with “urn:”, followed by a Vendor
Domain Name, followed by “:serviceId:”, followed by a service ID suffix, i.e., “urn:domain-
name:serviceId:serviceID”. If this instance of the specified service type (i.e. the <serviceType> element
above) corresponds to one of the services defined by the specified device type (i.e. the <deviceType>
element above), then the value of the service ID suffix MUST be the service ID defined by the device
type for this instance of the service. Period characters in the Vendor Domain Name MUST be replaced
with hyphens in accordance with RFC 2141.

The service ID suffix defined by a UPnP Forum working committee or specified by
a UPnP vendor MUST be <= 64 characters.

<SCPDURL>
REQUIRED. URL for service description. (See clause 2.5, “Service description”
below.) MUST be relative to the URL at which the device description is located in
accordance with clause 5 of RFC 3986. Specified by UPnP vendor. Single URL.

<controlURL>
REQUIRED. URL for control (see clause 3, “Control”). MUST be relative to the
URL at which the device description is located in accordance with clause 5 of RFC
3986. Specified by UPnP vendor. Single URL.

<eventSubURL>
REQUIRED. URL for eventing (see clause 4, “Eventing”). MUST be relative to the
URL at which the device description is located in accordance with clause 5 of RFC
3986. MUST be unique within the device; any two services MUST NOT have the
same URL for eventing. If the service has no evented variables, this element
MUST be present but MUST be empty (i.e., <eventSubURL></eventSubURL>.)
Specified by UPnP vendor. Single URL.

<deviceList>
REQUIRED if and only if root device has embedded devices. Contains the following sub elements:

<device>
REQUIRED. Repeat once for each embedded device defined by a UPnP Forum working
committee. If UPnP vendor differentiates device by embedding additional UPnP devices,
repeat once for each embedded device. Contains sub elements as defined above for root
sub element device.

<presentationURL>
RECOMMENDED. URL to presentation for device (see clause 5, “Presentation”). MUST be relative to
the URL at which the device description is located in accordance with the rules specified in clause 5 of
RFC 3986. Specified by UPnP vendor. Single URL.

Control points SHOULD recognize and interoperate with services using serviceId values other
than the value defined by the device type. If multiple instances of a service exist, control
points SHOULD by default (unless directed otherwise by user action) use the service instance
associated with the serviceId value defined by the device type. If none of the instances of the
service have the serviceId value defined by the device type, the control point may use any
service instance. When only one instance of the service exists, control points SHOULD use
that instance even if the serviceId value does not match that defined by the device type.

For future extensibility and according to the requirements in clause 2.7, “Non-standard vendor
extensions” and clause 2.8, “UPnP Device Schema”, when processing XML like the listing
above, devices and control points MUST ignore: (a) any unknown elements and their sub
elements or content, and (b) any unknown attributes and their values.

Subject to the constraints defined in clause 2.7, “Non-standard vendor extensions” and clause
2.8, “UPnP Device Schema”, control points and devices MUST ignore any XML comments or
XML processing instructions embedded in UPnP device and service descriptions that they do
not understand. UPnP device descriptions MUST be encoded using UTF-8.

When the value of any text element or attribute contains one or more characters reserved as
markup (such as ampersand (“&”) or less than (“<”)), the text MUST be escaped in
accordance with the provisions of clause 2.4 of the XML specification and each such
character replaced with the equivalent numeric representation or string (such as “&” or
“<”). Such characters appearing in URLs MAY also be percent-encoded in accordance with
the URL percent-encoding rules specified in clauses 2.1 and 2.4 of RFC 3986.

XML does not support directly embedding binary data, e.g., icons in UPnP device descriptions.
Binary data MAY be converted into text (and thereby embedded into XML) using an XML data
type of either bin.base64 (a MIME-style base 64 encoding for binary data) or bin.hex

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 43 —

(hexadecimal digits represent octets). Alternatively, the data can be passed indirectly, as it
were, by embedding a URL in the XML and transferring the data in response to a separate
HTTP request; the icon(s) in UPnP device descriptions are transferred in this latter manner.

If any icons are included, at least one SHOULD be in the Portable Network Graphics (PNG)
format defined in RFC 2083, indicated by the MIME type “image/png”, and not use
progressive encoding. NO specific icon sizes are RECOMMENDED due to the wide variety
preferred by various control points; control point vendors are encouraged to publish
implementation guidelines.

The use of URLBase element is deprecated by this specification. UPnP 1.1 devices MUST
NOT include URLBase in their description documents. To ensure interoperability with UPnP
1.0 devices, control points MUST be able to process URLBase if it is specified and use it for
resolving relative URLs that appear elsewhere in the description. If relative URLs are included
in the device description, control points MUST resolve them into absolute URLs in accordance
with clause 5 of RFC 3986, using either URLBase (if specified) or the location from which the
device description was retrieved as the base URL, before using these URLs for their
respective purposes.

Note that in version 1.0 of the UPnP Device Architecture, the serviceList element was
REQUIRED, and it was REQUIRED to contain at least one service element. These
requirements were subsequently rescinded to accommodate the InternetGatewayDevice:1 and
Basic:1 device types. If the device has no services, the serviceList element MAY be omitted
entirely, or it MAY be present but contain no service elements.

2.4 UPnP Device Template
The listing above also illustrates the relationship between a UPnP device description and a
UPnP Device Template. As explained above, the UPnP device description is written by a
UPnP vendor, in XML, following a UPnP Device Template. A UPnP Device Template is
produced by a UPnP Forum working committee as a means to standardize devices.

By appropriate specification of placeholders, the listing above can be either a UPnP Device
Template or a UPnP device description. Recall that some placeholders would be defined by a
UPnP Forum working committee (colored red), i.e., the UPnP device type identifier,
REQUIRED UPnP services, and REQUIRED UPnP embedded devices (if any). If these were
defined, the listing would be a UPnP Device Template, codifying the standard for this type of
device. UPnP Device Templates are one of the key deliverables from UPnP Forum working
committees.

Taking this another step further, the remaining placeholders in the listing above would be
specified by a UPnP vendor (colored purple), i.e., vendor-specific information. If these
placeholders were specified (as well as the others), the listing would be a UPnP device
description, suitable to be delivered to a control point to enable control, eventing, and
presentation.

Put another way, the UPnP Device Template defines the overall type of device, and each
UPnP device description instantiates that template with vendor-specific information. The first
is created by a UPnP Forum working committee; the latter, by a UPnP vendor.

2.5 Service description
The UPnP description for a service defines actions and their arguments, and state variables
and their data type, range, and event characteristics.

Each service MUST have zero or more actions. Each action MUST have zero or more
arguments. Each argument is designated as either an input or an output argument. Input
arguments MUST be listed first. If an action has one or more output arguments, the first
output argument MAY be marked as a return value. Each argument MUST correspond to one
of the <stateVariable> elements in the <serviceStateTable> in the SCPD.

Each service MUST have one or more state variables.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 44 —

In addition to defining non-standard services, UPnP vendors MAY add actions and services to
standard devices, and MAY embed standard services and devices in non-standard devices.

To illustrate these points, below is a listing with placeholders (in italics) for actual elements
and values. For a standard UPnP service, some of these placeholders would be defined by a
UPnP Forum working committee (colored red) or specified by a UPnP vendor (purple). For a
non-standard service, all of these placeholders would be specified by a UPnP vendor.
Elements defined by the UPnP Device Architecture are colored green. Immediately following
the listing is a detailed explanation of the elements, attributes, and values.

 <?xml version="1.0"?>
 <scpd
 xmlns="urn:schemas-upnp-org:service-1-0"
 xmlns:dt1="urn:domain-name:more-datatypes"
 <!-- Declarations for other namespaces added by UPnP Forum working committee (if any) go
 here -->
 <!-- The value of the attribute must remain as defined by the UPnP Forum working
committee.
 -->
 xmlns:dt2="urn:domain-name:vendor-datatypes"
 <!-- Declarations for other namespaces added by UPnP vendor (if any) go here -->
 <!-- Vendors must change the URN’s domain-name to a Vendor Domain Name -->
 <!-- Vendors must change vendor-datatypes to reference a vendor-defined namespace -->
 configId="configuration number">
 <specVersion>
 <major>1</major>
 <minor>1</minor>
 </specVersion>
 <actionList>
 <action>
 <name>actionName</name>
 <argumentList>
 <argument>
 <name>argumentNameIn1</name>
 <direction>in</direction>
 <relatedStateVariable>stateVariableName</relatedStateVariable>
 </argument>
 <!-- Declarations for other IN arguments defined by UPnP Forum working
 Committee (if any) go here -->
 <argument>
 <name>argumentNameOut1</name>
 <direction>out</direction>
 <retval/>
 <relatedStateVariable>stateVariableName</relatedStateVariable>
 </argument>
 <argument>
 <name>argumentNameOut2</name>
 <direction>out</direction>
 <relatedStateVariable>stateVariableName</relatedStateVariable>
 </argument>
 <!-- Declarations for other OUT arguments defined by UPnP Forum working
 committee (if any) go here -->
 </argumentList>
 </action>
 <!-- Declarations for other actions defined by UPnP Forum working committee
 (if any)go here -->
 <!-- Declarations for other actions added by UPnP vendor (if any) go here -->
 </actionList>
 <serviceStateTable>
 <stateVariable sendEvents="yes"|"no" multicast="yes"|"no">
 <name>variableName</name>
 <dataType>basic data type</dataType>
 <defaultValue>default value</defaultValue>
 <allowedValueRange>
 <minimum>minimum value</minimum>
 <maximum>maximum value</maximum>
 <step>increment value</step>
 </allowedValueRange>
 </stateVariable>
 <stateVariable sendEvents="yes"|"no" multicast="yes"|"no">
 <name>variableName</name>
 <dataType type="dt1:variable data type">string</dataType>
 <defaultValue>default value</defaultValue>
 <allowedValueList>
 <allowedValue>enumerated value</allowedValue>

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 45 —

 <!-- Other allowed values defined by UPnP Forum working committee
 (if any) go here -->
 <!-- Other allowed values defined by vendor (if any) go here -->
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="yes"|"no" multicast="yes"|"no">
 <name>variableName</name>
 <dataType type="dt2:vendor data type">string</dataType>
 <defaultValue>default value</defaultValue>
 </stateVariable>
 <!-- Declarations for other state variables defined by UPnP Forum working committee
 (if any) go here -->
 <!-- Declarations for other state variables added by UPnP vendor (if any) go here -
->
 </serviceStateTable>
 </scpd>

Listed below are details for each of the elements, attributes, and values appearing in the
listing above. All elements and attributes (including action, argument, and state variable
names) are case sensitive; values are not case sensitive except where noted. Except where
noted, REQUIRED elements MUST occur exactly once (no duplicates), and RECOMMENDED
or OPTIONAL elements MAY occur at most once.

<?xml>
REQUIRED for all XML documents. Case sensitive.

<scpd>
REQUIRED. MUST have “urn:schemas-upnp-org:service-1-0” as the value for the xmlns attribute; this references the
UPnP Service Schema (explained below). Case sensitive. Has the following attribute:

configId
REQUIRED. Specifies the configuration number to which the service description belongs. See clause 1,
“Discovery” for further definition and usage of the configuration number.

Contains all other elements describing the service, i.e., contains the following sub elements:

<specVersion>
REQUIRED. In service templates, defines the lowest version of the architecture on which the service can be
implemented. In actual UPnP services, defines the architecture on which the service is implemented. Contains
the following sub elements:

<major>
REQUIRED. Major version of the UPnP Device Architecture. MUST be 1 for services implemented on
a UPnP 1.1 architecture.

<minor>
REQUIRED. Minor version of the UPnP Device Architecture. MUST be 1 for services implemented on
a UPnP 1.1 architecture. MUST accurately reflect the version number of the UPnP Device Architecture
supported by the device. Control points MUST be prepared to accept a higher version number than the
control point itself implements.

<actionList>
REQUIRED if and only if the service has actions. (Each service MAY have >= 0 actions.) Contains the following
sub element(s):

<action>
REQUIRED. Repeat once for each action defined by a UPnP Forum working committee. If UPnP
vendor differentiates service by adding additional actions, repeat once for each additional action.
Contains the following sub elements:

<name>
REQUIRED. Name of action. MUST NOT contain a hyphen character (“-”, 2D Hex in UTF-8)
nor a hash character (“#”, 23 Hex in UTF-8). Case sensitive. First character MUST be a
USASCII letter (“A”-“Z”, “a”-“z”), USASCII digit (“0”-“9”), an underscore (“_”), or a non-
experimental Unicode letter or digit greater than U+007F. Succeeding characters MUST be
a USASCII letter (“A”-“Z”, “a”-“z”), USASCII digit (“0”-“9”), an underscore (“_”), a period (“.”),
a Unicode combiningchar, an extender, or a non-experimental Unicode letter or digit greater
than U+007F. The first three letters MUST NOT be “XML” in any combination of case.

• For standard actions defined by a UPnP Forum working committee, MUST NOT begin with “X_” nor “A_”.

• For non-standard actions specified by a UPnP vendor and added to a standard service, MUST begin with
“X_”, followed by a Vendor Domain Name, followed by the underscore character (“_”), followed by the
vendor-assigned action name. The vendor-assigned action name must comply with the syntax rules
defined above.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 46 —

String. SHOULD be < 32 characters.

<argumentList>
REQUIRED if and only if parameters are defined for action. (Each action MAY have >= 0
parameters.) Contains the following sub element(s):

<argument>
REQUIRED. Repeat once for each parameter. UPnP vendors MUST NOT add
vendor-defined arguments to actions defined by a UPnP Forum working
committees. Contains the following sub elements:

<name>
REQUIRED. Name of formal parameter. The name SHOULD be chosen
to reflect the semantic use of the argument. MUST NOT contain a
hyphen character (“-”, 2D Hex in UTF-8). First character MUST be a
USASCII letter (“A”-“Z”, “a”-“z”), USASCII digit (“0”-“9”), an underscore
(“_”), or a non-experimental Unicode letter or digit greater than U+007F.
Succeeding characters MUST be a USASCII letter (“A”-“Z”, “a”-“z”),
USASCII digit (“0”-“9”), an underscore (“_”), a period (“.”), a Unicode
combiningchar, an extender, or a non-experimental Unicode letter or
digit greater than U+007F. The first three letters MUST NOT be “XML”
in any combination of case. String. Case sensitive. SHOULD be < 32
characters.

<direction>
REQUIRED. Defines whether argument is an input or output parameter.
MUST be either “in” or “out” and not both. All input arguments MUST
be listed before any output arguments.

<retval>
OPTIONAL. Identifies at most one output argument as the return value.
If included, MUST be included as a subelement of the first output
argument. (Element only; no value.)

<relatedStateVariable>
REQUIRED. MUST be the name of a state variable. Case Sensitive.
Defines the type of the argument; see further explanation below in this
clause.

<serviceStateTable>
REQUIRED. (Each service MUST have => 1 state variables.) Contains the following sub element(s):

<stateVariable>
REQUIRED. Repeat once for each state variable defined by a UPnP Forum working committee. If
UPnP vendor differentiates service by adding additional state variables, repeat once for each
additional state variable. Has the following attributes:

sendEvents
OPTIONAL. Defines whether event messages will be generated when the value of this state
variable changes. Default value is “yes”. Non-evented state variables MUST set this attribute
to “no”.

• For standard state variables defined by a UPnP Forum working committee, the working committee decides
whether the variable is evented and the value of the sendEvents attribute MUST NOT be altered by a
vendor.

• For non-standard state variables specified by a UPnP vendor and added to a standard service, the vendor
MAY decide whether the non-standard state variable will be evented or not.

multicast
OPTIONAL. Defines whether event messages will be delivered using multicast eventing.
Default value is “no”. If the multicast is set to “yes”, then all events sent for this state variable
MUST be unicast AND multicast.

• For standard state variables defined by a UPnP Forum working committee, the working committee decides
whether the state variable is multicast and the value of the multicast attribute MUST NOT be altered by
a vendor.

• For non-standard variables specified by a UPnP vendor and added to a standard service, the vendor may
decide whether the non-standard variable will be delivered using multicast eventing.

The <stateVariable> element contains the following sub elements:

<name>
REQUIRED. Name of state variable. MUST NOT contain a hyphen character (“-”, 2D Hex in
UTF-8). First character MUST be a USASCII letter (“A”-“Z”, “a”-“z”), USASCII digit (“0”-“9”),
an underscore (“_”), or a non-experimental Unicode letter or digit greater than U+007F.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 47 —

Succeeding characters MUST be a USASCII letter (“A”-“Z”, “a”-“z”), USASCII digit (“0”-“9”),
an underscore (“_”), a period (“.”), a Unicode combiningchar, an extender, or a non-
experimental Unicode letter or digit greater than U+007F. The first three letters MUST NOT
be “XML” in any combination of case. Case sensitive.

• For standard state variables defined by a UPnP Forum working committee, MUST NOT begin with “X_”
nor “A_”.

• For non-standard state variables specified by a UPnP vendor and added to a standard service, MUST
begin with “X_”, followed by a Vendor Domain Name, followed by the underscore character (“_”), followed
by the vendor-assigned state variable name. The vendor-assigned state variable name must comply with
the syntax rules defined above.

String. SHOULD be < 32 characters.

<dataType>
REQUIRED. Same as data types defined by XML Schema, Part 2: Datatypes. Defined by a
UPnP Forum working committee for standard state variables; specified by UPnP vendor for
extensions. Has an OPTIONAL type attribute:

type
OPTIONAL. If the type attribute is present, the value of the <dataType>
element MUST be “string”. The value of the type attribute overrides the “string”
value; it defines the data type using a fully qualified data type name according to
the conventions of XML schema and can refer to XML Schema simple types,
service-local complex types and service-local extended simple types. Service-
local data types are defined in a corresponding UPnP Service Template or they
MAY be vendor-specific. See also clause 2.5.1, “Defining and processing
extended data types” and clause 2.5.2, “String equivalents of extended data
types”.

For example: <dataType type="xsd:byte">string</dataType>

For a state variable using an extended data type via the type attribute and
containing complex data, the <defaultValue>, <allowedValueList> and
<allowedValueRange> elements MUST NOT be present. In such case the
restrictions for the data type MUST be described in the data type schema
provided in the service template document.

The <dataType> element MUST have one of the following values:

ui1
Unsigned 1 Byte int. Same format as int without leading sign.

ui2
Unsigned 2 Byte int. Same format as int without leading sign.

ui4
Unsigned 4 Byte int. Same format as int without leading sign.

i1
1 Byte int. Same format as int.

i2
2 Byte int. Same format as int.

i4
4 Byte int. Same format as int. MUST be between -2147483648 and 2147483647.

int
Fixed point, integer number. MAY have leading sign. MAY have leading zeros,
which SHOULD be ignored by the recipient. (No currency symbol.) (No grouping
of digits to the left of the decimal, e.g., no commas.)

r4
4 Byte float. Same format as float. MUST be between 3.40282347E+38 to
1.17549435E-38.

r8
8 Byte float. Same format as float. MUST be between -1.79769313486232E308
and -4.94065645841247E-324 for negative values, and between
4.94065645841247E-324 and 1.79769313486232E308 for positive values, i.e.,
IEEE 64-bit (8-Byte) double.

number
Same as r8.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 48 —

fixed.14.4
Same as r8 but no more than 14 digits to the left of the decimal point and no more
than 4 to the right.

float
Floating point number. Mantissa (left of the decimal) and/or exponent MAY have a
leading sign. Mantissa and/or exponent MAY have leading zeros, which SHOULD
be ignored by the recipient. Decimal character in mantissa is a period, i.e., whole
digits in mantissa separated from fractional digits by period (“.”). Mantissa
separated from exponent by “E”. (No currency symbol.) (No grouping of digits in
the mantissa, e.g., no commas.)

char
Unicode string. One character long.

string
Unicode string. No limit on length.

date
Date in a subset of ISO 8601 format without time data.

dateTime
Date in ISO 8601 format with OPTIONAL time but no time zone.

dateTime.tz
Date in ISO 8601 format with OPTIONAL time and OPTIONAL time zone.

time
Time in a subset of ISO 8601 format with no date and no time zone.

time.tz
Time in a subset of ISO 8601 format with OPTIONAL time zone but no date.

boolean
“0” for false or “1” for true. The values “true”, “yes”, “false”, or “no” are deprecated
and MUST NOT be sent but MUST be accepted when received. When received,
the values “true” and “yes” MUST be interpreted as true and the values “false”
and “no” MUST be interpreted as false.

bin.base64
MIME-style Base64 encoded binary BLOB. Takes 3 Bytes, splits them into 4 parts,
and maps each 6 bit piece to an octet. (3 octets are encoded as 4.) No limit on
size.

bin.hex
Hexadecimal digits representing octets. Treats each nibble as a hex digit and
encodes as a separate Byte. (1 octet is encoded as 2.) No limit on size.

uri
Universal Resource Identifier.

uuid
Universally Unique ID. See clause 1.1.4, “UUID format and RECOMMENDED
generation algorithms” for the MANDATORY UUID format.

<defaultValue>
RECOMMENDED. Expected, initial value. Defined by a UPnP Forum working committee or
delegated to UPnP vendor. MUST match data type. MUST satisfy <allowedValueList>
or <allowedValueRange> constraints. For a state variable using an extended data type
via the type attribute and containing complex data, the <defaultValue> element MUST
NOT be present.

<allowedValueList>
RECOMMENDED. Enumerates legal string values. PROHIBITED for data types other than
string. At most one of the <allowedValueRange> or <allowedValueList> elements
MAY be specified. Sub elements are ordered. For a state variable using an extended data
type via the type attribute and containing complex data, the <allowedValueList>
element MUST NOT be present. Contains the following sub elements:

<allowedValue>
REQUIRED. A legal value for a string variable. Defined by a UPnP Forum working
committee for standard state variables; if the UPnP Forum working committee
permits it, UPnP vendors MAY add vendor-specific allowed values to standard
state variables. Specified by UPnP vendor for extensions. String. MUST be < 32
characters.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 49 —

<allowedValueRange>
RECOMMENDED. Defines bounds for legal numeric values; defines resolution for numeric
values. Defined only for numeric data types (i.e. integers and floats). At most one of the
<allowedValueRange> or <allowedValueList> elements MAY be specified. For a
state variable using an extended data type via the type attribute and containing complex
data, the <allowedValueRange> element MUST NOT be present. Contains the following
sub elements which MUST have the same type as the state variable:

<minimum>
REQUIRED. Inclusive lower bound. Defined by a UPnP Forum working committee
or delegated to UPnP vendor. Single numeric value. The value of the <minimum>
element MUST be less than the value of the <maximum> element. If a working
committee has assigned an explicit value for this element, then vendors MUST
use that value. Otherwise, vendors MUST choose their own value, but always
within the allowed range for the data type of this state variable. If the working
committee defines an allowed range for this state variable, then the value MUST
be within that allowed range as defined by the <step> value (See below).

<maximum>
REQUIRED. Inclusive upper bound. Defined by a UPnP Forum working
committee or delegated to UPnP vendor. Single numeric value. The value of the
<maximum> element MUST be greater than the value of the <minimum> element.
If a working committee has assigned an explicit value for this element, then
vendors MUST use that value. Otherwise, vendors MUST choose their own value,
but always within the allowed range for the data type of this state variable. If the
working committee defines an allowed range for this state variable, then the value
MUST be within that allowed range as defined by the <step> value (See below).

<step>
RECOMMENDED. Defines the set of allowed values permitted for the state
variable between the <minimum> and <maximum>. The value of the <step>
element divides the inclusive range from <minimum> value to <maximum> value
into an integral number of equal parts. Additionally, <maximum> value =
<minimum> value + n * <step> value, where n is a positive integer. Defined by a
UPnP Forum working committee or delegated to UPnP vendor. If a working
committee has assigned an explicit value for this element, then vendors MUST
use that value. Otherwise, vendors MAY choose their own value. When the
<step> element is omitted and the data type of the state variable is an integer,
the default value of step is 1; otherwise, when step is omitted, the state variable
MAY be set to any value within the inclusive range of <minimum> value to
<maximum> value. Single numeric value.

Note: care must be taken when dealing with floating point values so that
conversions and/or rounding errors do not cause inaccurate comparison
operations.

The <relatedStateVariable> element of an <argument> element definition MUST be
the name of a state variable defined in the same service description. The
<relatedStateVariable> element defines the data type of the argument; there is not
necessarily any semantic relationship between an argument and the related state variable
used to define its type. The <relatedStateVariable> element MUST specify the name of
a state variable in the service state table which has the same data type, allowed value list, or
allowed value range as the argument. If no state variable exists with an appropriate definition,
the working committee (or vendor) MUST define an additional state variable for that purpose;
state variables which are defined solely for the purpose of describing the type of an argument
MUST have a name that includes the prefix “A_ARG_TYPE_”.

The <allowedValueList> and <allowedValueRange> elements MAY be used to indicate
optional device capabilities. Working committees MAY REQUIRE all values in the list or range
to be supported by all vendors (no options), REQUIRE a minimum subset with additional
values being OPTIONAL, or allow vendors to entirely decide which portions of the list or range
to support. Vendors MAY add additional, vendor-specific values to the allowed value list by
using the “X_” prefix on the vendor-defined allowed values, if permitted by working committees.
However, it should be noted that greater flexibility in OPTIONAL capabilities reduces the
number of values that control points can depend on to be present, with corresponding impacts
on interoperability. If device capabilities are expected to change during device operation,
working committees SHOULD define evented state variables or separate actions to detect
device capabilities rather than embedding capabilities information in the service description,
because the latter requires cancellation of advertisements and readvertisement each time the
service description document is changed. If the service description is used to convey

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 50 —

capabilities information, the device MUST omit from the service description any OPTIONAL
elements (actions, allowed values, etc.) that are not implemented.

For a state variable using an extended data type via the type attribute and containing
complex data, the <defaultValue>, <allowedValueList> and <allowedValueRange>
elements MUST NOT be present. In such case the restrictions for the data type MUST be
described in the data type schema typically provided in the service template document.

2.5.1 Defining and processing extended data types
The optional type attribute of the <dataType> element as defined in clause 2.5, “Service
description” above allows a service description document (SCPD) to include extended data
types (defined by the UPnP technical committee, a UPnP working committee or vendor-
specific data types) that have more structure and expression than the existing XSD data types.
As mentioned above, this type attribute can only be applied when the base data type is of
type string. The value attached to the type attribute refers to a data type from a separate
schema defined outside this document.

As a first RECOMMENDATION on the use of extended data types, if UPnP actions only have
simple arguments, these SHOULD be declared using UPnP defined data types, instead of
XML schema simple types. This enables use of such UPnP actions by UPnP 1.0 stacks that
are not XML-schema enabled.

As a further RECOMMENDATION on extended data types that MAY be defined, arrays
SHOULD be declared by using a sequence with an element type of which the number of
occurrences is restricted. For example, if an array-type “myArrayType” of 50 long integers
needs to be declared, this could be the corresponding schema fragment:

 <xsd:complexType name="myArrayType">
 <xsd:sequence>
 <xsd:element name="x" type="xsd:long" minOccurs="50" maxOccurs="50"/>
 </xsd:sequence>
 </xsd:complexType>

References to this type (as with any XML namespace) can be made in one of two ways. The
first option is a fully qualified namespace reference in the type attribute alone. In this case
the namespace reference in the type attribute MUST not only refer to the schema, but also to
the type within that schema.

 <scpd xmlns="urn:schemas-upnp-org:service-1-0"
 configId="configuration number">
 ...
 <dataType type="urn:domain-name:schema-name:datatype-name">
 string
 </dataType>
 ...
 </scpd>

The second option is to define the namespace at the beginning of the SCPD document and
then make a reference in the type definition. In this case, the type attribute contains a prefix
that identifies the namespace, followed by the data type-named.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 51 —

 <scpd xmlns="urn:schemas-upnp-org:service-1-0"
 xmlns:dt="urn:domain-name:schema-name"
 configId="configuration number">
 ...
 <dataType type="dt:datatype-name">
 string
 </dataType>
 ...
 </scpd>

Implementations MUST support both formats. The first format is potentially easier to
parse, while the second format may result in shorter description files (i.e. when the
same namespace is used multiple times in the same document).

These data types written in XSD Schema need not be processed at run-time. Instead, an
implementer MAY use the referred schema as a standard description of the type to parse
for that particular type attribute. To allow run-time schema processing of extended
data types, an optional location of the extended data type schema MAY be expressed in
the SCPD using the standard XSD xsi:schemaLocation and xsi:noNamespaceSchemaLocation

attributes as defined in clause 4.3.2 of XML Schema Part 1. These attributes can be
used in the root SCPD element (essentially an instance document) where the extended
data type is defined, as illustrated below:

 <scpd xmlns="urn:schemas-upnp-org:service-1-0"
 xmlns:dt="urn:domain-name:schema-name"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:domain-name:schema-name
 http://some.company.com/dir/file.xsd"
 configId="configuration number">
 ...
 <dataType type="dt:datatype-name">
 string
 </dataType>
 ...
 </scpd>

Alternatively, these attributes MAY be declared on use in the <dataType> element where
the existing fully qualified namespace and type name for the extended data type are
defined. An example for reference is given below:

 <scpd xmlns="urn:schemas-upnp-org:service-1-0"
 configId="configuration number">
 ...
 <dataType type="urn:domain-name:schema-name:datatype-name"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://some.company.com/dir/file.xsd">
 string
 </dataType>
 ...
 </scpd>

2.5.2 String equivalents of extended data types
A number of working committees have created services based on UPnP 1.0 (which does not
support extended data types) that define their own encoding of information inside specific
string-type state variables. To provide these working committees with an upgrade path to
extended datatypes written in native XML 3 , a mechanism is defined that gives working
committees the option to define the “string equivalent” of an extended data type (working
committees can decide not to). If a string equivalent of an extended data type is defined,

3 In this text “native XML” refers to datatypes formatted according to XML-schema using the
normal XML format, while “string-equivalent of an extended datatype” refers to encoding a
complex data type inside a UPnP string, examples of which (escaped XML, comma-separated
lists) can be found in the ContentDirectory:1 specification.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 52 —

there are two valid ways to represent the value of the data type: either as an extended data
type, written in native XML, or as a string, that encodes the datatype as specified by the
working committee.

The mechanism uses the USER-AGENT header field in action invocations and event
subscriptions (see also clause 2.1, “Generic requirements on HTTP usage”). If a control point
invokes an action without a USER-AGENT header field, or if the USER-AGENT header field
does not specify UPnP version 1.1 or greater, the values of in-arguments and out-arguments
MUST be encoded using the “string equivalent”.

If a control point invokes an action with a USER-AGENT header field that specifies UPnP
version 1.1 or greater, the values of in-arguments and out-arguments MUST be encoded
using the extended data type written in native XML.

If a control point has subscribed to events without a USER-AGENT header field, or if the
USER-AGENT header field specifies a UPnP version less than 1.1, all values of complex-type
evented state variables that are sent to the control point MUST be encoded using the “string
equivalent”. If no “string equivalent” is defined for an evented state variable, subscription
without the correct USER-AGENT header field MUST be refused.

If a control point has subscribed to events with a USER-AGENT header field that specifies
UPnP version 1.1 or greater, all values of complex-type evented state variables that are sent
to the control point MUST be encoded using the extended data type written in native XML.

2.5.3 Generic requirements
For future extensibility and according to the requirements in clause 2.7, “Non-standard vendor
extensions” and clause 2.8, “UPnP Device Schema”, when processing XML like the listing
above, devices and control points MUST ignore: (a) any unknown elements and their sub
elements or content, and (b) any unknown attributes and their values.

Subject to the constraints defined in clause 2.7, “Non-standard vendor extensions” and clause
2.8, “UPnP Device Schema”, control points and devices MUST ignore any XML comments or
XML processing instructions embedded in UPnP device and service descriptions that they do
not understand. UPnP service descriptions MUST be encoded using UTF-8.

When the value of any text element or attribute contains one or more characters reserved as
markup (such as ampersand (“&”) or less than (“<”)), the text MUST be escaped in
accordance with the provisions of clause 2.4 of the XML specification and each such
character replaced with the equivalent numeric representation or string (such as “&” or
“<”). Such characters appearing in URLs MAY also be percent-encoded in accordance with
the URL percent-encoding rules specified in clauses 2.1 and 2.4 of RFC 3986. Note that it is
logically possible for a service to have no actions but have state variables and eventing;
though unlikely, such a service would be an autonomous information source. However, a
service with no state variables is PROHIBITED.

Unlike device descriptions, service descriptions and associated values MUST NOT use locale-
specific values; this includes service descriptions, values of action arguments, and values of
state variables. Instead, most action arguments and state variables MUST use values that are
expressed in a locale-independent manner; control points MAY convert and/or format the
information from a standard form into the correct language and/or format for the locale. For
example, dates are represented in a locale-independent format (ISO 8601), and integers are
represented without locale-specific formatting (e.g., no currency symbol, no grouping of digits).
String values MUST be represented in a locale-independent manner. Variables with an
allowedValueList MUST use token values in the language of UPnP standards and not reflect
strings intended to be displayed in a localized user interface.

2.5.4 Ordering of Elements
The order of XML elements in device and service description documents MUST adhere to the
order as defined in the corresponding specification as defined by the working committee for
that device or service type. Furthermore, the order of elements (e.g. arguments) in control
messages and in their responses MUST adhere to the order defined in the device’s service
description document.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 53 —

Note: UPnP 1.0 does NOT REQUIRE that the order of XML elements in device and service
description documents adheres to the order as defined in the corresponding schema (as
defined by the working committee) for that device or service type. However, it does
REQUIRE that control messages and responses are ordered according to the corresponding
device’s service description, a REQUIREMENT that is sometimes overlooked. Therefore,
when receiving messages from UPnP 1.0 services, control points SHOULD be able to process
out-of-order elements; and when transmitting messages to UPnP 1.0 services, control points
MUST send elements in the order defined by that particular device’s service description.

2.5.5 Versioning
Services standardized by UPnP Forum working committees have an integer version. Every
later version of a service MUST be a superset of the previous version, i.e., it MUST include all
actions and state variables exactly as they are defined by earlier versions of the service. The
UPnP service type remains the same across all versions of a service whereas the service
version MUST be larger for later versions. Versions of device and service templates MAY
have non-integer versions (such as “0.9”) during development in the working committee, but
this MUST become an integer upon standardization. Devices and services MAY have a
version number greater than the major version number of the architecture they are designed
for (e.g., “Power:2” may be designed to work on UDA version 1.0).

2.6 UPnP Service Template
The listing above also illustrates the relationship between a UPnP service description and a
UPnP Service Template. As explained above, the UPnP description for a service is written by
a UPnP vendor, in XML, following a UPnP Service Template. A UPnP Service Template is
produced by a UPnP Forum working committee as a means to standardize devices.

By appropriate specification of placeholders, the listing above can be either a UPnP Service
Template or a UPnP service description. Recall that some placeholders would be defined by a
UPnP Forum working committee (colored red), i.e., actions and their parameters, and states
and their data type, range, and event characteristics. If these were specified, the listing above
would be a UPnP Service Template, codifying the standard for this type of service. Along with
UPnP Device Templates (see clause 2, “Description”), UPnP Service Templates are one of
the key deliverables from UPnP Forum working committees.

Taking this another step further, the remaining placeholders in the listing above would be
specified by a UPnP vendor (colored purple), i.e., additional, vendor-specified actions and
state variables. If these placeholders were specified (as well as the others), the listing would
be a UPnP service description, suitable for effective control of the service within a device.

Put another way, the UPnP Service Template defines the overall type of service, and each
UPnP service description instantiates that template with vendor-specific additions. The first is
created by a UPnP Forum working committee; the latter by a UPnP vendor.

2.7 Non-standard vendor extensions and limitations
As explained above, UPnP vendors MAY differentiate their devices and extend a standard
device by including additional services and embedded devices. Similarly, UPnP vendors MAY
extend a standard service by including additional actions, state variables or allowed values.
Naming conventions and conditions for each of these are listed in the table below and
explained in detail above.

Table 2-1: — Vendor extensions

Type of extension Standard Non-Standard

device type urn:schemas-upnp-org:device:deviceType:v urn:domain-name:device:deviceType:v

service type urn:schemas-upnp-org:service:serviceType:v urn:domain-name:service:serviceType:v

service ID urn:upnp-org:serviceId:serviceID urn:domain-name:serviceId:serviceID

action name MUST comply with the syntax rules of the
standardized action name as defined in clause 2.5,
“Service description”.

MUST comply with the syntax rules of the
non-standardized action name as defined in
clause 2.5, “Service description”.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 54 —

Type of extension Standard Non-Standard

stateVariable name MUST comply with the syntax rules of the
standardized stateVariable name as defined in
clause 2.5, “Service description”.

MUST comply with the syntax rules of the
non-standardized stateVariable name as
defined in clause 2.5, “Service
description”.

allowedValue value MUST be a legal value for a string variable. Only
values explicitly defined by a working committee
are allowed.

Permitted only if allowed by the working
committee. MUST begin with a Vendor
Domain Name, followed by the underscore
character (“_”), followed by a legal value
for a string variable.

XML elements and
their attributes in
device or service
description

Defined by the UPnP Device and Service Schemas. Arbitrary XML, scoped by one or more XML
namespaces owned by the vendor. MUST be
enclosed in an element that begins with
“X_”.

XML attributes of
standard elements in
device or service
description

Defined by the UPnP Device and Service Schemas. Arbitrary attributes, scoped by one or more
XML namespaces, owned by the vendor.
MUST begin with “X_”.

As the last two rows of the table above indicate, UPnP vendors MAY also add non-standard
XML to a device or service description. Each addition MUST be scoped by a vendor-owned
XML namespace. Arbitrary XML MUST be enclosed in an element that begins with “X_,” and
this element MUST be a sub element of a standard complex type. Non-standard attributes
MAY be added to standard elements provided these attributes are scoped by a vendor-owned
XML namespace and begin with “X_”.

To illustrate this, below are listings with placeholders (in italics) for actual elements and
values. Some of these placeholders would be specified by a UPnP vendor (purple) and some
are defined by the UPnP Device Architecture (green).

 <RootStandardElement
 xmlns="urn:schemas-upnp-org:device-1-0"
 xmlns:n="domain-name:schema-name">
 <!-- other XML -->
 <AnyStandardElement n:X_VendorAttribute="arbitrary string value">
 <!-- other XML -->
 </AnyStandardElement>
 <!-- other XML -->
 </RootStandardElement>

<RootStandardElement>
A standard root element. xmlns attribute defines namespaces, in this case, a standard UPnP namespace and a non-
standard namespace with the prefix n. (Note: n is just a placeholder. A vendor can specify any prefix to identify the
namespace that is valid according to the Namespaces in XML specification.)

• For device descriptions, MUST be <root>.

• For service descriptions, MUST be <scpd>.

<AnyStandardElement>
Any standard element, root or otherwise, content of text or element only. MUST already be included as part of
the standard device or service description. X_VendorAttribute MUST begin with “X_”. (Prefix “A_” is reserved.)
MAY have an arbitrary string value.

 <StandardComplexType n:X_VendorAttribute="vendor value">
 <n:X_VendorElement xmlns:n="domain-name:schema-name">
 <!-- arbitrary XML -->
 </n:X_VendorElement>
 </StandardComplexType>

<StandardComplexType>
Element of complex type. MUST already be included as part of the standard device or service description.

• For device descriptions, MUST be one of: <root>, <specVersion>, <device>, <iconList>, <icon>,
<serviceList>, <service>, or <deviceList>.

• For service descriptions, MUST be one of: <scpd>, <actionList>, <action>, <argumentList>, <argument>,
<serviceStateTable>, <stateVariable>, <allowedValueList>, or <allowedValueRange>.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 55 —

<X_VendorElement>

MUST begin with “X_”. (Prefix “A_” is reserved.) MUST have a value for the xmlns attribute. MAY contain arbitrary XML.

2.7.1 Placement of Additional Elements and Attributes
Instances of any UPnP schema, including device and service descriptions, control actions,
errors and event notifications, MAY include additional XML elements (other than those defined
by the UPnP Forum) only at the end of an ordered sequence of elements corresponding to a
given complex type. Additionally, instances of any UPnP schema MAY include additional
attributes with any element.

Exception for UPnP 1.0 devices:

UPnP 1.0 allows the inclusion of additional elements anywhere within device and service
descriptions, control actions, errors and event notifications, provided that the XML is well-
formed. Therefore, when receiving messages from UPnP 1.0 devices, control points MUST
handle unknown elements and attributes found anywhere within the message.

2.8 UPnP Device Schema
The paragraphs above explain UPnP device descriptions and illustrate how one would be
instantiated from a UPnP Device Template. As explained, UPnP Device Templates are
produced by UPnP Forum working committees, and these templates are based upon the
UPnP Device Schema. This schema defines the structures and data types used to create
UPnP Device Templates. clause B.1, “UPnP Device Schema” contains the schema; below is
an explanation of this schema.

The UPnP Device Schema is written in XML and according to the conventions of XML Schema
(Part 1: Structures, Part 2: Datatypes). XML Schema provides a method of describing the
structure of an XML document. The XML Schema description language itself is based upon
XML. The language is very robust; it specifies which elements are REQUIRED vs. OPTIONAL,
element nesting, data types for values (as well as other properties not of interest here) and
much more. The UPnP Device Schema uses these XML Schema constructions to define
elements like <specVersion>, <URLBase>, <deviceType>, etc., listed in detail above.
Because the UPnP Device Schema is constructed using a precise description language, it is
unambiguous. As the UPnP Device Schema, UPnP Device Templates, and UPnP device
descriptions are all machine-readable, software tools MAY be devised to validate the latter
two, checking that they contain all the REQUIRED elements, are correctly nested, and have
values of the correct data types.

2.9 UPnP Service Schema
The paragraphs above explain UPnP service descriptions and illustrate how one would be
instantiated from a UPnP Service Template. Like UPnP Device Templates, UPnP Service
Templates are produced by UPnP Forum working committees, and these templates are based
upon the UPnP Service Schema. This schema defines the structure and data types used to
create UPnP Service Templates. As explained above, the UPnP Service Schema is written in
XML according to the conventions of XML Schema (Part 1: Structures, Part 2: Datatypes).
clause B.2, “UPnP Service Schema” contains a listing of this schema

2.10 UPnP Datatype Schema
The UPnP basic data types for state variables are defined in clause 2.5, “Service description”.
For any extended data types for state variables used by a service template, the service
template MUST include either a reference to all relevant schemas for the extended data types
or include a new service specific datatype schema with a corresponding unique target
namespace. If any extended data types are used for state variables within an SCPD, the
corresponding namespace for each extended data type MUST be referenced within the SCPD
according to the “Namespaces in XML” specification. Clause 2.5, “Service description”
contains an example SCPD with namespace declarations.

2.11 Retrieving a description using HTTP
As explained above, after a control point has discovered a device, it still knows very little
about the device. To learn more about the device and its capabilities, the control point MUST
retrieve the UPnP description for the device using the URL provided by the device in the

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 56 —

discovery message. Then, the control point MUST retrieve one or more service descriptions
using the URL(s) provided in the device description. This is a simple HTTP-based process
and uses the following subset of the overall UPnP protocol stack. (The overall UPnP protocol
stack is listed at the beginning of this document.)

A multi-homed device MUST send description documents using the UPnP-enabled interface
on which the HTTP GET request was received. To retrieve the UPnP description using a
particular interface, a multi-homed control point MUST use the URL provided in the discovery
message which arrived on that interface.

Figure 2-2: — Description retrieval protocol stack

UPnP vendor [purple-italic]

UPnP Forum [red-italic]

UPnP Device Architecture [green-bold]

HTTP [black]

TCP [black]

IP [black]

At the highest layer, description messages contain vendor-specific information, e.g., device
type, service type, and required services. Moving down the stack, vendor content is
supplemented by information from a UPnP Forum working committee, e.g., model name,
model number, and specific URLs. Messages from the layers above are hosted in UPnP-
specific protocols, defined in this document. In turn, the above messages are delivered via
HTTP over TCP over IP. For reference, colors in [square brackets] above indicate which
protocol defines specific header fields and body elements in the description messages listed
below.

When a control point discovers a device on the network, it MAY wish to retrieve the Device
Description document and Service Description Documents. Retrieving the UPnP device
description is simple: the control point issues an HTTP GET request to the URL in the
discovery message, and the device returns its description in the body of an HTTP response.
Similarly, to retrieve a UPnP service description, the control point issues an HTTP GET
request to the corresponding URL in the device description, and the device returns the
description in the body of an HTTP response. The header fields and body for the response
and request are explained in detail below.

First, a control point MUST send a request with method GET in the following format. Values in
italics are placeholders for actual values.

 GET /descriptionPath HTTP/1.1
 HOST: hostname:portNumber
 ACCEPT-LANGUAGE: language preferred by control point

(No body for request to retrieve a description, but note that the message MUST have a blank
line following the last HTTP header field.)

Listed below are details for the request line and header fields appearing in the listing above.
Field names are not case sensitive. All field values are case sensitive except where noted.
See RFC 2616 and RFC 1945 for further requirements on encoding of values of these fields.

Request line

GET
Method defined by HTTP. Can be GET or HEAD.

descriptionPath
Path component of device description URL (LOCATION header field in discovery message) or of the fully qualified service
description URL. (If the SCPDURL sub element of the service element in the device description is an absolute URL, the
fully qualified service description URL is the SCPDURL sub element. Otherwise (the SCPDURL sub element is a relative

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 57 —

URL), the fully qualified service description URL is the URL resolved from the SCPDURL sub element in accordance with
clause 5 of RFC 3986, using either the URLBase element, if specified, or the URL from which the device description was
retrieved as the base URL.) Single, absolute path (see also RFC 2616).

HTTP/1.1
The version supported by the control point. (Note: the control point MUST implement all MANDATORY components of the
version specified). MAY be any HTTP version that is backwards compatible to HTTP/1.0 (like HTTP/1.1).

Header fields
HOST

REQUIRED. Field value contains domain name or IP address and optional port components of device description URL
(LOCATION header field in discovery message) or of the fully qualified service description URL. (If the SCPDURL sub
element of the service element in the device description is an absolute URL, the fully qualified service description URL is
the SCPDURL sub element. Otherwise (the SCPDURL sub element is a relative URL), the fully qualified service
description URL is the URL resolved from the SCPDURL sub element in accordance with clause 5 of RFC 3986, using
either the URLBase element, if specified, or the URL from which the device description was retrieved as the base URL.) If
the port is empty or not given, port 80 is assumed.

ACCEPT-LANGUAGE
OPTIONAL. RECOMMENDED for retrieving device descriptions. Field value contains preferred language(s) for description.
If no description is available in this language, device MAY return a description in a default language. See RFC 1766
language tag(s).

After a control point sends a request, the device takes the second step and responds with a
copy of its description. Including expected transmission time, a device MUST respond within
30 seconds. If it fails to respond within this time, the control point SHOULD re-send the
request. A device MUST send a response in the following format and in accordance with
clause 2.1, “Generic requirements on HTTP usage”. Two example responses are provided
below: one that uses the CONTENT-LENGTH header field, and one that uses chunked
encoding (with 2 chunks). Values in italics are placeholders for actual values.

Note: XML namespace prefixes do not have to be the specific examples shown below (e.g.,
“s” or “u”); they can be any value that obeys the rules of the general XML namespace
mechanism; a device MUST accept action invocations that use other legal XML namespace
prefixes.

Response using CONTENT-LENGTH header field – Valid with HTTP/1.0 or HTTP/1.1

 HTTP/1.1 200 OK
 CONTENT-LANGUAGE: language used in description
 CONTENT-LENGTH: bytes in body
 CONTENT-TYPE: text/xml; charset="utf-8"
 DATE: when responded

 Body

Response using chunked encoding – Valid with HTTP/1.1 only

 HTTP/1.1 200 OK
 TRANSFER-ENCODING: chunked
 CONTENT-TYPE: text/xml; charset="utf-8"
 CONTENT-LANGUAGE: language used in description
 DATE: when responded

 Length of chunk 1 in hexadecimal notation
 Chunk 1
 Length of chunk 2 in hexadecimal notation
 Chunk 2
 0

The body of this response is a UPnP device or service description as explained in detail
above. Listed below are details for the header fields appearing in the listing above. Field
names are not case sensitive. All field values are case sensitive except where noted.

Status Line

HTTP/1.1
The highest version supported by the origin server that is compatible with the control point that issued the request. For
example, if the control point specified support for HTTP/1.0 in the request, the response MUST contain HTTP/1.0.

200 OK

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 58 —

HTTP defined status code indicating that no HTTP errors have occurred.

Header fields

CONTENT-LANGUAGE
REQUIRED if and only if request included an ACCEPT-LANGUAGE header field. Field value contains language of
description. RFC 1766 language tag(s).

CONTENT-LENGTH
REQUIRED if Origin Server does not close the session after sending the response AND Origin Server does not send the
response using chunked encoding.

PROHIBITED if Origin Server sends the response using chunked encoding. OPTIONAL otherwise.

Field value specifies the length of the body in bytes. Integer.

TRANSFER-ENCODING
OPTIONAL for HTTP/1.1 and above. Field value specifies whether the response is chunked encoded by having field value
“chunked”. MUST NOT be specified if CONTENT-LENGTH header field is present.

CONTENT-TYPE
REQUIRED. Field value MUST be “text/xml; charset="utf-8" ” for description documents.

DATE
RECOMMENDED according to RFC 2616, clause 14.18. Field value contains date when response was generated.
“rfc1123-date” as defined in RFC 2616.

SERVER
(No SERVER header field is required for description messages.)

Note that because HTTP 1.1 allows use of chunked encoding, some devices MAY send the
description using chunked encoding if the GET request specifies HTTP 1.1. Therefore all
implementations that include HTTP 1.1 client support MUST support receiving chunked
encoding.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 59 —

2.12 References
ISO 8601, ISO (International Organization for Standardization). Representations of dates and
times, 1988-06-15. Available at: http://www.w3.org/TR/1998/NOTE-datetime-19980827.

RFC 822, Standard for the format of ARPA Internet text messages. Available at:
http://www.ietf.org/rfc/rfc822.txt.

RFC 1123, Includes format for dates, for, e.g., HTTP DATE header field. Available at:
http://www.ietf.org/rfc/rfc1123.txt.

RFC 1766, Format for language tag for, e.g., HTTP ACCEPT-LANGUAGE header field. Available at:
http://www.ietf.org/rfc/rfc1766.txt. See also http://www.loc.gov/standards/iso639-2 for language
codes.

RFC 2045, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies. Available at: http://www.ietf.org/rfc/rfc2045.txt.

RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types. Available at:
http://www.ietf.org/rfc/rfc2046.txt.

RFC 2083, PNG (Portable Network Graphics) Specification Version 1.0. Available at:
http://www.ietf.org/rfc/rfc2083.txt. See also http://www.w3.org/TR/REC-png.html.

RFC 2387, Format for representing content type, e.g., mimetype element for an icon.
Available at: http://www.ietf.org/rfc/rfc2387.txt.

RFC 2616, HTTP: Hypertext Transfer Protocol 1.1. Available at: http://www.ietf.org/rfc/rfc2616.txt.

RFC 3986, Uniform Resource Identifiers (URI): Generic Syntax. Available at:
http://www.ietf.org/rfc/rfc3986.txt.

UPC, Universal Product Code. 12-digit, all-numeric code that identifies the consumer package.
Managed by the Uniform Code Council. Available at: http://www.uc-
council.org/main/ID_Numbers_and_Bar_Codes.html.

XML, Extensible Markup Language. Available at: http://www.w3.org/TR/2000/REC-xml-20001006.

XML Schema (Part 1: Structures, Part 2: Datatypes). Available at:
http://www.w3.org/TR/xmlschema-1, http://www.w3.org/TR/xmlschema-2.

Namespaces in XML, Available at: http://www.w3.org/TR/REC-xml-names/.

3 Control

Control is Step 3 in UPnP™ networking. Control comes after addressing (Step 0) where
devices get a network address, after discovery (Step 1) where control points find interesting
device(s), and after description (Step 2) where control points learn about device capabilities.
Control is independent of eventing (Step 4) where control points listen to state changes in
device(s). Through control, control points invoke actions on devices and poll for values.
Control and eventing are complementary to presentation (Step 5) where control points display
a user interface provided by device(s).

Given knowledge of a device and its services, a control point can ask those services to invoke
actions and receive responses indicating the result of the action. Invoking actions is a kind of
remote procedure call; a control point sends the action to the device's service, and when the
action has completed (or failed), the service returns any results or errors.

Figure 3-1: — Control architecture

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 60 —

control point

root device

service

service

device

service

SOAP action

SOAP resp

To control a device, a control point invokes an action on the device's service. To do this, a
control point sends a suitable control message to the fully qualified control URL for the
service obtained from the controlURL sub element of the service element of the device
description. If the controlURL sub element is an absolute URL, the fully qualified control URL
for the service is the controlURL sub element. Otherwise (the controlURL sub element is a
relative URL), the fully qualified control URL for the service is the URL resolved from the
controlURL sub element in accordance with clause 5 of RFC 3986, using either the URLBase
element of the device description, if specified, or the URL from which the device description
was retrieved as the base URL. A multi-homed control point that sends the control message
on a particular interface MUST use the fully qualified control URL from the description
document received on that interface. In response, the service returns any results or errors
from the action. The effects of the action, if any, MAY also be modeled by changes in the
variables that describe the run-time state of the service. When these state variables change,
events are published to all interested control points. This clause explains the protocol stack
for, and format of, control messages. Clause 4, “Eventing” explains event publication.

Working committees and vendors MAY define actions to allow control points to determine the
current value of one or more state variables. Similar to invoking an action, a control point
sends the defined query message to the control URL for the service. In response, the service
provides the value of the variable or variables; each service is responsible for keeping its
state table consistent so control points can poll and receive meaningful values for those state
variables for which query actions are defined. Clause 4, “Eventing”explains automatic
notification of variable values.

As long as one of the discovery advertisements from a device have not expired, a control
point MAY assume that the device and its services are available. If a device cancels at least
one of its advertisements, a control point MUST assume the device and its services are no
longer available.

Control points and devices MUST use UTF-8 for all UPnP control messages and responses.

While UDA does define a means to invoke actions and poll for values, UDA does not specify
or constrain the design of an API for applications running on control points; OS vendors MAY
create APIs that suit their customers’ needs.

If a large amount of data must be sent in association with an action (particularly if the amount
of data is not known in advance), it is NOT RECOMMENDED to send the data as part of a
SOAP argument or as a MIME attachment to the SOAP message. Instead, it is
RECOMMENDED that out-of-band transfer be used. For example, a URL could be sent as an
argument value, and an HTTP GET, PUT, or POST be used to transfer the data. HTTP
chunked encoding can be used when the amount of data is not known in advance.

Responses to SOAP messages during the Control phase MUST be sent to the same IP
address from which the request was received. Any fully-qualified URLs contained in an action
or response that refer to a resource on the device itself MUST have the HOST portion of the

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 61 —

URL set appropriately so that the resource will be reachable by the control point that
requested the action. This might be accomplished by using the field value specified in the
HTTP HOST header field of the control request.

Services that use complex datatype arguments MUST follow the requirements in clause 2.5,
“Service description”

The remainder of this clause explains in detail how control messages are formatted and sent
to devices.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 62 —

3.1 Control protocols
To invoke actions and poll for values, control points (and devices) use the following subset of
the overall UPnP protocol stack. (The overall UPnP protocol stack is listed at the beginning of
this document.)

Figure 3-2: — Control protocol stack

UPnP vendor [purple-italic]

UPnP Forum [red-italic]

UPnP Device Architecture [green-bold]

SOAP [blue]

HTTP [black]

TCP [black]

IP [black]

At the highest layer, control messages contain vendor-specific information, e.g., argument
values. Moving down the stack, vendor content is supplemented by information from a UPnP
Forum working committee, e.g., action names, argument names, variable names. Messages
from the layers above are hosted in UPnP-specific protocols, defined in this document. In turn,
the above messages are formatted using a Simple Object Access Protocol (SOAP) header
and body elements, and the messages are delivered via HTTP over TCP over IP. For
reference, colors in [square brackets] above indicate which protocol defines specific header
field elements in the subscription messages listed below.

The generic requirements on HTTP usage in UPnP 1.1 (as defined in clause 2.1, “Generic
requirements on HTTP usage” of this document) MUST be followed by devices and control
points that implement Control.

3.1.1 SOAP Profile
UPnP profiles SOAP 1.1, NOT REQUIRING that all devices support all OPTIONAL features of
SOAP 1.1, but devices and control points MUST support all MANDATORY features of SOAP
1.1. The following table summarizes the UPnP profiling of SOAP.

Table 3-1: — SOAP 1.1 UPnP Profile

UPnP Control Request

Mandatory
Optional

Prohibited Comment

<Envelope> element M

encodingStyle attribute of <Envelope> O If present, must be
"http://schemas.xmlsoap.org/soap/encoding
/"

<Header> element (child element of
<Envelope>)

O

actor attribute of <Header> O

mustUnderstand attribute of <Header> O Only allowed if defined by the service to
which it is directed

encodingStyle attribute of <Header> O If present, must be
"http://schemas.xmlsoap.org/soap/encoding
/"

<Body> element (child element of <Envelope>) M Exactly one <Body> child element allowed

encodingStyle attribute of <Body> element P

root Attribute of <Body> child element O SHOULD NOT be used

UPnP Control Response

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 63 —

UPnP Control Request

Mandatory
Optional

Prohibited Comment

<Envelope> element M

encodingStyle attribute of <Envelope> O If present, must be
"http://schemas.xmlsoap.org/soap/encoding
/"

<Header> element (child element of
<Envelope>)

O

actor attribute of <Header> O

mustUnderstand attribute of <Header> O Only allowed if defined by the service to
which it is directed

encodingStyle Attribute of <Header> O If present, must be
"http://schemas.xmlsoap.org/soap/encoding
/"

<Body> element (child element of <Envelope>) M Exactly one <Body> child element allowed

encodingStyle attribute of <Body> element P

root attribute of <Body> child element O SHOULD NOT be used

UPnP Control Error Response

<Envelope> element M

encodingStyle attribute of <Envelope> O If present, must be
"http://schemas.xmlsoap.org/soap/encoding
/"

<Body> element (child element of <Envelope>) M Exactly one <Body> child element allowed
containing exactly one <Fault> child
element

<Fault> child element of <Body> M

<faultcode> child element of <Fault> M

<faultstring> child element of <Fault> M

<detail> child element of <Fault> M

SOAP 1.1 allows the use of footers, which are disallowed in SOAP 1.2. A UPnP message
MUST NOT have any child elements of the <Envelope> element following the <Body> element.

SOAP <Header> element
UPnP working committees and the UPnP technical committee MAY define OPTIONAL or
MANDATORY SOAP header entries that are included in the SOAP <Header> element of UPnP
action and UPnP action response messages. In addition, vendors MAY include other SOAP
header entries in the SOAP <Header> element of UPnP action and UPnP action response
messages. If there are no SOAP header entries in a message, the SOAP <Header> element
can be omitted.

SOAP mustUnderstand Attribute of <Header> element
The mustUnderstand attribute MUST NOT be added to SOAP <Header> element targeted at
(see also actor attribute below) standardized UPnP services or targeted at control points that
interact with standardized UPnP services, unless its use has been explicitly defined by the
UPnP technical committee or a working committee (e.g. UPnP security).

The mustUnderstand header attribute MUST NOT be included on non-standard header entries
that are targeted at (see also actor attribute) standardized services, as this breaks the basic
interoperability of UPnP. mustUnderstand header entries MAY be included on non-standard
header entries that are neither targeted at (see also actor attribute) standardized services
(e.g. vendor defined services), nor targeted at control points interacting with standardized
services.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 64 —

Table 3-2: — mustUnderstand attribute

SOAP Node Type v1.0 v1.1

Transmitting Node
targeting a standardized
service or a control point
that interacts with a
standardized service.

The mustUnderstand attribute MUST NOT be added to SOAP header entries,
unless the UPnP technical committee or a working committee has explicitly
defined its use.

Transmitting Node
targeting a vendor
specific service or a
vendor specific SOAP
node.

MUST target endpoint (see actor
clause below).

The mustUnderstand attribute MAY
be used at the discretion of the
vendor.

MAY target intermediaries (see actor
clause below).

The mustUnderstand attribute MAY
be used at the discretion of the
vendor.

Receiving Node All unknown <Header> entries are
ignored, except when explicitly
defined differently by a working
committee (UPnP Security).

All devices MUST honor the actor
(see actor clause below) and
mustUnderstand attributes. If a
header entry with
mustUnderstand="1" is not
understood, the whole message fails
and a <Faultcode> element MUST be
returned.

The SOAP mustUnderstand attribute has a restricted type of "xsd:boolean" that takes only “0”
or “1” with “1” being true and “0” being false. A header entry with the mustUnderstand attribute
set to a value of “1” MUST be processed by targeted nodes or message processing MUST fail.
Such elements are considered “MANDATORY header entries”. A SOAP node is considered to
understand a SOAP header entry if that SOAP node understands the semantics specified for
the XML expanded name of the outer-most element information item of that header entry.
MANDATORY SOAP header entries are presumed to modify the semantics of other SOAP
header entries or SOAP <Body> elements and therefore MUST be understood for correct
semantics. UPnP nodes receiving header entries flagged with the mustUnderstand attribute
MUST process and understand MANDATORY header entries that are targeted at that node or
the node MUST NOT process the SOAP message at all. If a node fails to process or
understand a MANDATORY entry, that node MUST generate a SOAP Fault with the
<faultcode> element set to "MustUnderstand". Support for MANDATORY header entries
assures that key message parts that are targeted at a particular SOAP node will not be
erroneously ignored.

If a <Header> entry is a MANDATORY <Header> entry and contains entries not understood
by the targeted SOAP node, the SOAP node MAY attempt processing without understanding
the semantics of the extensions. MANDATORY extensions are not possible.

SOAP actor Attribute of <Header> element
The SOAP actor attribute is used in SOAP 1.1 to identify the URI of SOAP node that is to
process the <Header> entry. All SOAP nodes play the role of
"http://schemas.xmlsoap.org/soap/actor/next" , which is the first node (device or control point)
that processes the message. The lack of an actor attribute indicates that the entry is targeted
at the destination. All UPnP defined <Header> elements MUST be targeted at the destination,
unless explicitly defined otherwise by the UPnP technical committee or a working committee.
Therefore, it is RECOMMENDED that the actor attribute is not included on UPnP <Header>
entries.

<Header> entries within messages that are sent to UPnP 1.0 devices or control points MUST
NOT be targeted at intermediaries (no actor attribute), since UPnP 1.0 devices and control
points might ignore the actor attribute and parse a <Header> entry that is not intended for
them.

If <Header> entries with an actor attribute are targeted at an intermediary and tagged
mustUnderstand="1", the device or control point MUST NOT return a SOAP Fault containing
the <faultcode> element set to "MustUnderstand" due to failure to process the relevant
<Header> element targeted at another entity.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 65 —

SOAP root Attribute
UPnP 1.1 REQUIRES that the first child element of the <Body> element MUST be the root of
the RPC request. Since UPnP 1.1 defines an RPC-architecture, there can only be one root.
The serialization root SHOULD NOT use the root attribute, but it is NOT PROHIBITED.

SOAP encodingStyle Attribute
UPnP 1.1 REQUIRES that devices and control points MUST be able to receive messages that
do not contain the SOAP encodingStyle attribute, as well as messages that contain the SOAP
encodingStyle attribute with value "http://schemas.xmlsoap.org/soap/encoding/". When
encodingStyle is not included, the encodingStyle is
“http://schemas.xmlsoap.org/soap/encoding/”.

When communicating with UPnP 1.0 devices or control points, an encodingStyle attribute
MUST be included on the SOAP <Envelope> element with value
"http://schemas.xmlsoap.org/soap/encoding/”. When communicating with UPnP 1.1 devices or
control points, the encodingStyle attribute SHOULD be included and, if present, MUST have
the value "http://schemas.xmlsoap.org/soap/encoding/".

If additional encodings are needed for application data, applications MAY use out of band
data encoding for the relevant data.

SOAP <Body> element
UPnP 1.1 REQUIRES a <Body> element. It contains body entries for UPnP Actions and
Responses. The actual entries are derived from the Service Description for the chosen Action.
A response is either successful, in which case it contains output arguments, or unsuccessful,
when it contains a <Fault> element as the only entry.

SOAP <Fault> element of <Body> element
UPnP REQUIRES the use of SOAP <Fault> elements when a failure response is returned.
Please see Table 3-2, “mustUnderstand attribute” on usage of the mustUnderstand attribute
for how the <detail> element MUST be constructed. When a <Header> element is
encountered that is a MANDATORY <Header> element, the control point or device MUST
either recognize the element or return the appropriate SOAP <Fault> element, containing the
<faultcode> element set to “MustUnderstand”. Backwards-compatible services MUST NOT use
MANDATORY <Header> elements since previous UDAs allowed unknown <Header>
elements to be ignored.

Acceptable SOAP Character Encodings
All messages MUST use UTF-8 serialization. The device or control point MUST indicate the
content type for all control messages using the HTTP “charset” parameter.

3.2 Actions
Control points MAY invoke actions on a device's services and receive results or errors back.
The action, results, and errors are encapsulated in SOAP, sent via HTTP requests, and
received via HTTP responses.

3.2.1 Action invocation
The Simple Object Access Protocol (SOAP) defines the use of XML and HTTP for remote
procedure calls. UPnP 1.1 uses HTTP to deliver SOAP 1.1 encoded control messages to
devices and return results or errors back to control points. See clause 2.1, “Generic
requirements on HTTP usage” on use of HTTP in UPnP 1.1.

UPnP 1.1 deprecates the use of the HTTP Extension Framework (RFC 2774) for control.
Specifically, control points MUST send a request with method POST and MUST NOT use the
M-POST method. Devices MUST NOT reject POST methods with a “405 Method Not Allowed”
HTTP status code since this causes UPnP 1.0 control points to issue a request using M-POST.

Below is a listing of a control message sent using the POST method followed by an
explanation of the header fields and body. To invoke an action on a device's service, a control

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 66 —

point MUST send a request with method POST in the following format. Two examples are
provided: one using the CONTENT-LENGTH header and one using chunked encoding (with 2
chunks). Values in italics are placeholders for actual values.

Note: XML namespace prefixes do not have to be the specific examples shown below (e.g.,
“s” or “u”); they can be any value that obeys the rules of the general XML namespace
mechanism; a device MUST accept action invocations that use other legal XML namespace
prefixes.

Action invocation using the CONTENT-LENGTH header – Valid with HTTP/1.0 or
HTTP/1.1

 POST path control URL HTTP/1.0
 HOST: hostname:portNumber
 CONTENT-LENGTH: bytes in body
 CONTENT-TYPE: text/xml; charset="utf-8"
 USER-AGENT: OS/version UPnP/1.1 product/version
 SOAPACTION: "urn:schemas-upnp-org:service:serviceType:v#actionName"

 <?xml version="1.0"?>
 <s:Envelope
 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <s:Body>
 <u:actionName xmlns:u="urn:schemas-upnp-org:service:serviceType:v">
 <argumentName>in arg value</argumentName>
 <!-- other in args and their values go here, if any -->
 </u:actionName>
 </s:Body>
 </s:Envelope>

Action invocation using chunked encoding – Valid with HTTP/1.1 only

 POST path control URL HTTP/1.1
 HOST: hostname:portNumber
 TRANSFER-ENCODING: "chunked"

 CONTENT-TYPE: text/xml; charset="utf-8"
 USER-AGENT: OS/version UPnP/1.1 product/version
 SOAPACTION: "urn:schemas-upnp-org:service:serviceType:v#actionName"

 Length of first chunk in hexadecimal notation

 <?xml version="1.0"?>
 <s:Envelope

 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"

 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <s:Body>
 <u:actionName xmlns:u="urn:schemas-upnp-org:service:serviceType:v">
 <argumentName>in arg value</argumentName>
 <!-- other in args and their value go here, if any -->
 </u:actionName>
 </s:Body>

 Length of second chunk in hexadecimal notation

 </s:Envelope>

 0

Listed below are details for the request line, header fields, and body elements appearing in
the listing above. Field names are not case sensitive. All HTTP field values and XML element
names are case sensitive; XML values are not case sensitive except where noted. Except
where noted, REQUIRED elements MUST occur exactly once (no duplicates), and
RECOMMENDED or OPTIONAL elements MAY occur at most once.

Request line

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 67 —

POST

Method defined by HTTP.

path control URL
Path component of the fully qualified control URL for this service. Single, absolute path (see also RFC 2616, clause 3.2.2).

HTTP/1.1
The version supported by the control point. (Note: the control point MUST implement all MANDATORY components of the

version specified). MAY be any HTTP version that is backwards compatible to HTTP/1.0 (like HTTP/1.1).

Header fields

HOST
REQUIRED. Field value contains domain name or IP address and OPTIONAL port components of fully qualified control
URL for this service. If the port is empty or not given, port 80 is assumed.

ACCEPT-LANGUAGE
PROHIBITED. The ACCEPT-LANGUAGE header field MUST NOT be used in control messages.

CONTENT-LENGTH
REQUIRED if Origin Server does not close the session after sending the action invocation AND Origin Server does not
send the action invocation using chunked encoding.

PROHIBITED if Origin Server sends the action invocation using chunked encoding. OPTIONAL otherwise.

Field value specifies the length of the body in bytes. Integer.

TRANSFER-ENCODING
OPTIONAL for HTTP/1.1 and above. Field value specifies whether the action invocation is chunked encoded by having
field value “chunked”. MUST NOT be specified if CONTENT-LENGTH header field is present.

CONTENT-TYPE
REQUIRED. Field value MUST be “text/xml; charset="utf-8" ”.

USER-AGENT
OPTIONAL. Specified by UPnP vendor. String. Field value MUST begin with the following “product tokens” (defined by
HTTP/1.1). The first product token identifes the operating system in the form OS name/OS version, the second token
represents the UPnP version and MUST be UPnP/1.1, and the third token identifes the product using the form
product name/product version. For example, “USER-AGENT: unix/5.1 UPnP/1.1 MyProduct/1.0”. Control points MUST be
prepared to accept a higher minor version number of the UPnP version than the control point itself implements. For
example, control points implementing UDA version 1.0 will be able to interoperate with devices implementing
UDA version 1.1. See clause 2.5, “Service description”.

SOAPACTION
REQUIRED header field defined by SOAP. Field value MUST be the service type, hash mark, and name of action to be
invoked, all enclosed in double quotes. The specified service version MUST indicate the version of the service that the
control point wants to use while invoking the action. Its value may be any version of the service type in which the specified
action was defined. When a control point invokes an action that has been defined in version K of a service, version number
v MUST be equal or higher than K. For example, if an action has been defined in version 2 of a service, it MUST NOT be
invoked using v=1. Furthermore; version v MUST be a version that is supported by the device. For example, for devices
that support only version 1 of a service, v MUST be 1. Single URI.

Body

<Envelope>
REQUIRED element defined by SOAP. xmlns namespace attribute MUST be
"http://schemas.xmlsoap.org/soap/envelope/". MUST include encodingStyle attribute with value
"http://schemas.xmlsoap.org/soap/encoding/". A receiver MUST generate a fault if it encounters a message whose
<document> element has a local name of "Envelope" but a namespace name that is not
"http://schemas.xmlsoap.org/soap/envelope/". Contains the following sub elements:

<Body>
REQUIRED element defined by SOAP. MUST be qualified with SOAP namespace. Contains the following entry:

<actionName>
REQUIRED. Name of element is name of action to invoke. xmlns namespace attribute MUST be the
service type enclosed in double quotes. The version specified MUST be the same version specified in
the SOAPACTION header field. Case sensitive. MUST be the first child element of <Body>. Contains
the following, ordered sub element(s):

<argumentName>
REQUIRED if and only if action has in arguments. Value to be passed to action. Repeat
once for each in argument. (An element name is not qualified by a namespace; element
nesting context is sufficient.) Case sensitive. Single data type as defined by UPnP service
description. Every “in” argument in the definition of the action in the service description

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 68 —

MUST be included, in the same order as specified in the service description (SCPD) that is
available from the device.

If the CONTENT-TYPE header field specifies an unsupported field value (other then “text/xml”)
the device MUST return a “415 Unsupported Media Type” HTTP status code.

For future extensibility and according to the requirements in clause 2.7, “Non-standard vendor
extensions” and clause 2.8, “UPnP Device Schema”, when processing XML like the listing
above, devices and control points MUST ignore: (a) any unknown elements and their sub
elements or content, and (b) any unknown attributes and their values.

Subject to the constraints defined in clause 2.7, “Non-standard vendor extensions” and clause
2.8, “UPnP Device Schema”, control points and devices MUST ignore any XML comments or
XML processing instructions embedded in action requests that they do not understand.

When the value of any argument contains one or more characters reserved as markup (such
as ampersand (“&”) or less than (“<”)), then the text MUST be escaped in accordance with the
provisions of clause 2.4 of the XML specification and each such character replaced with the
equivalent numeric representation or string (such as “&” or “<”). Such characters
appearing in URLs MAY also be percent-encoded in accordance with the URL percent-
encoding rules specified in clauses 2.1 and 2.4 of RFC 3986.

Note that because HTTP 1.1 allows use of chunked encoding, some control points MAY send
the action request using chunked encoding if the POST method specifies HTTP 1.1. Device
implementations that only support HTTP/1.0 and thus do not support receiving action requests
using chunked encoding MUST return a “505 HTTP Version Not Supported” HTTP status code.
Control points MUST NOT make HTTP 1.1 chunked POST requests to devices that are known
to support only HTTP 1.0.

On a multi-homed control point, all fully qualified URLs contained in the action arguments that
refer to resources on the control point MUST be reachable on the interface on which the
action request is sent.

3.2.2 Action Response
The service MUST complete invoking the action and respond within 30 seconds, including
expected transmission time (measured from the time the action message is transmitted until
the time the associated response is received). Actions that take longer than this SHOULD be
defined to return early and send an event when complete. If the service fails to respond within
this time, what the control point SHOULD do is application-specific. A multi-homed device
MUST send the response on the same UPnP-enabled interface on which the request was
received. The service MUST send a successful completion response using the following
format. The following two examples illustrate an action response using the CONTENT-
LENGTH header and an action response using chunked encoding. The values in italics are
placeholders for actual values.

Note; XML namespace prefixes do not have to be the specific examples shown below (e.g.,
“s” or “u”); they can be any value that obeys the rules of the general XML namespace
mechanism; control points MUST accept action responses that use other legal XML
namespace prefixes.

Action response using the CONTENT-LENGTH header – Valid with HTTP/1.0 or HTTP/1.1

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 69 —

 HTTP/1.0 200 OK
 CONTENT-TYPE: text/xml; charset="utf-8"
 DATE: when response was generated
 SERVER: OS/version UPnP/1.1 product/version
 CONTENT-LENGTH: bytes in body <?xml version="1.0"?>
 <s:Envelope

 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"

 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <s:Body>
 <u:actionNameResponse xmlns:u="urn:schemas-upnp-org:service:serviceType:v">
 <argumentName>out arg value</argumentName>
 <!-- other out args and their values go here, if any -->
 </u:actionNameResponse>
 </s:Body>
 </s:Envelope>

Action response using chunked encoding – Valid with HTTP/1.1 only

 HTTP/1.1 200 OK
 TRANSFER-ENCODING: "chunked"
 CONTENT-TYPE: text/xml; charset="utf-8"
 DATE: when response was generated
 SERVER: OS/version UPnP/1.1 product/version

 Length of first chunk in hexadecimal notation

 <?xml version="1.0"?>
 <s:Envelope
 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <s:Body>
 <u:actionNameResponse xmlns:u="urn:schemas-upnp-org:service:serviceType:v">
 <argumentName>out arg value</argumentName>
 <!-- other out args and their values go here, if any -->
 </u:actionNameResponse>
 </s:Body>
 </s:Envelope>
 0

Listed below are details for the response line, header fields, and body elements appearing in
the listing above. Field names are not case sensitive. All HTTP field values and XML element
names are case sensitive; XML values are not case sensitive except where noted. Except
where noted, REQUIRED elements MUST occur exactly once (no duplicates), and
RECOMMENDED or OPTIONAL elements MAY occur at most once.

Response line

HTTP/1.1
The highest version supported by the origin server that is compatible with the control point that issued the request.

For example, if the control point specified support for HTTP/1.0 in the request, the response MUST contain HTTP/1.0.

200 OK
HTTP defined status code indicating that no HTTP errors were detected.

Header fields

CONTENT-LANGUAGE
PROHIBITED. The CONTENT-LANGUAGE header field MUST NOT be used in control messages.

CONTENT-LENGTH
REQUIRED if Origin Server does not close the session after sending the response AND Origin Server does not send the
response using chunked encoding.

PROHIBITED if Origin Server sends the response using chunked encoding. OPTIONAL otherwise.

Field value specifies the length of the body in bytes. Integer.

TRANSFER-ENCODING

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 70 —

OPTIONAL for HTTP/1.1 and above. Field value specifies whether the response is chunked encoded by having field value
“chunked” (in the example, the entire body is sent in a single chunk). MUST NOT be specified if CONTENT-LENGTH
header field is present.

CONTENT-TYPE
REQUIRED. Field value MUST be “text/xml; charset="utf-8" ”.

DATE
RECOMMENDED. Field value contains date when response was generated. “rfc1123-date” as defined in RFC 2616.

SERVER
REQUIRED. Specified by UPnP vendor. String. Field value MUST begin with the following “product tokens” (defined by
HTTP/1.1). The first product token identifes the operating system in the form OS name/OS version, the second token
represents the UPnP version and MUST be UPnP/1.1, and the third token identifes the product using the form
product name/product version. For example, “SERVER: unix/5.1 UPnP/1.1 MyProduct/1.0”. Control points MUST be
prepared to accept a higher minor version number of the UPnP version than the control point itself implements. For
example, control points implementing UDA version 1.0 will be able to interoperate with devices implementing
UDA version 1.1.

Body

<Envelope>
REQUIRED element defined by SOAP. xmlns namespace attribute MUST be
"http://schemas.xmlsoap.org/soap/envelope/". MUST include encodingStyle attribute with value
"http://schemas.xmlsoap.org/soap/encoding/". A receiver MUST generate a fault if it encounters a message whose
document element has a local name of "Envelope" but a namespace name that is not
"http://schemas.xmlsoap.org/soap/envelope/". Contains the following sub elements:

<Body>
REQUIRED element defined by SOAP. MUST be qualified with SOAP namespace. Contains the following entry:

<actionNameResponse>
REQUIRED. Name of element is action name prepended to Response. xmlns namespace attribute
MUST be service type enclosed in double quotes. Devices that support the same action in multiple
namespaces MUST use the same namespace in the response as was used in the action invocation.
For example, if an action was invoked using namespace:

urn:schemas-upnp-org:service:ContentDirectory:2
The response MUST also use namespace:

urn:schemas-upnp-org:service:ContentDirectory:2
Case sensitive. MUST be the first sub element of <Body>. Contains the following sub element:

<argumentName>
REQUIRED if and only if action has out arguments. Value returned from action. Repeat
once for each out argument. If action has an argument marked with the <retval/>
element, this argument MUST be the first element. (An element name not qualified by a
namespace; element nesting context is sufficient.) Case sensitive. Single data type as
defined by UPnP service description. Every out argument in the definition of the action in the
service description MUST be included, in the same order as specified in the service
description (SCPD) available from the device.

For future extensibility and according to the requirements in clause 2.7, “Non-standard vendor
extensions” and clause 2.8, “UPnP Device Schema”, when processing XML like the listing
above, devices and control points MUST ignore: (a) any unknown elements and their sub
elements or content, and (b) any unknown attributes and their values.

Subject to the constraints defined in clause 2.7, “Non-standard vendor extensions” and clause
2.8, “UPnP Device Schema”, control points and devices MUST ignore any XML comments or
XML processing instructions embedded in action responses that they do not understand.

On a multi-homed device, all fully qualified URLs contained in response arguments that refer
to resources on the device MUST be reachable on the UPnP-enabled interface on which the
response message is sent.

3.2.3 UPnP Action Schema
The UPnP Action Schema defines the structures and data types used in the body of UPnP
actions and action responses. As explained with the UPnP Device and Service Schemas, the
UPnP Action Schema is written in XML syntax according to the conventions of XML Schema
(Part 1: Structures, Part 2: Datatypes). The UPnP Action Schema is defined within a UPnP

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 71 —

service template; however, the schema MUST conform to the format as defined in clause B.3,
“UPnP Control Schema”. The elements it defines are used in actions and action responses.

3.2.4 Recommendations and additional requirements
Control points and devices MUST ignore any XML comments or XML processing instructions
they may receive that they do not understand.

XML namespace prefixes do not have to be the specific examples given above (e.g., “s” or
“u”); they can be any value that obeys the rules of the general XML namespace mechanism;
control points MUST accept responses that use other legal XML namespace prefixes.

If an action has no “out” arguments, it is valid to combine the opening and closing XML tags
(e.g., “<actionNameResponse/>” instead of
“<actionNameResponse></actionNameResponse>”).

When the value of any argument contains one or more characters reserved as markup (such
as ampersand (“&”) or less than (“<”)), the text MUST be escaped in accordance with the
provisions of clause 2.4 of the XML specification and each such character replaced with the
equivalent numeric representation or string (such as “&” or “<”). Such characters
appearing in URLs MAY also be percent-encoded in accordance with the URL percent-
encoding rules specified in clauses 2.1 and 2.4 of RFC 3986.

3.2.5 Action error response
Where the normal outcome of processing a SOAP message would have resulted in the
transmission of a SOAP response, but rather a SOAP Fault is generated instead, a receiver
MUST transmit a SOAP Fault message in place of the response. If the service encounters an
error while invoking the action sent by a control point, the service MUST send a response
within 30 seconds, including expected transmission time. Out arguments MUST only be used
to return data and MUST NOT be used to convey error information. Error responses MUST be
sent using the following format. The following two examples illustrate an error response using
the CONTENT-LENGTH header and an error response using chuncked encoding. Values in
italics are placeholders for actual values.

Note: XML namespace prefixes do not have to be the specific examples shown below (e.g.,
“s” or “u”); they can be any value that obeys the rules of the general XML namespace
mechanism; control points MUST error responses that use other legal XML namespace
prefixes.

Error response using the CONTENT-LENGTH header – Valid using HTTP/1.0 and
HTTP/1.1

 HTTP/1.0 500 Internal Server Error
 CONTENT-TYPE: text/xml; charset="utf-8"
 DATE: when response was generated
 SERVER: OS/version UPnP/1.1 product/version
 CONTENT-LENGTH: bytes in body <?xml version="1.0"?>
 <s:Envelope
 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <s:Body>
 <s:Fault>
 <faultcode>s:Client</faultcode>
 <faultstring>UPnPError</faultstring>
 <detail>
 <UPnPError xmlns="urn:schemas-upnp-org:control-1-0">
 <errorCode>error code</errorCode>
 <errorDescription>error string</errorDescription>
 </UPnPError>
 </detail>
 </s:Fault>
 </s:Body>
 </s:Envelope>

Error response using chunked encoding – Valid using HTTP/1.1 only

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 72 —

 HTTP/1.1 500 Internal Server Error
 TRANSFER-ENCODING: "chunked"
 CONTENT-TYPE: text/xml; charset="utf-8"
 DATE: when response was generated
 SERVER: OS/version UPnP/1.1 product/version

 Length of first chunk in hexadecimal notation

 <?xml version="1.0"?>
 <s:Envelope
 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <s:Body>
 <s:Fault>
 <faultcode>s:Client</faultcode>
 <faultstring>UPnPError</faultstring>
 <detail>
 <UPnPError xmlns="urn:schemas-upnp-org:control-1-0">
 <errorCode>error code</errorCode>
 <errorDescription>error string</errorDescription>
 </UPnPError>
 </detail>
 </s:Fault>
 </s:Body>

 Length of second chunk in hexadecimal notation

 </s:Envelope>
 0

Listed below are details for the response line, header fields, and body elements appearing in
the listing above. HTTP field names are not case sensitive. All HTTP field values and XML
element names are case sensitive; XML values are not case sensitive except where noted.
Except where noted, REQUIRED elements MUST occur exactly once (no duplicates), and
RECOMMENDED or OPTIONAL elements MAY occur at most once.

Response line

HTTP/1.1
The highest version supported by the origin server that is compatible with the control point that issued the request.

For example, if the control point specified support for HTTP/1.0 in the request, the response MUST contain HTTP/1.0.

500 Internal Server Error
HTTP defined status code indicating that an error has been detected.

Header fields

CONTENT-LANGUAGE
PROHIBITED. The CONTENT-LANGUAGE header field MUST NOT be used in control messages.

CONTENT-LENGTH
REQUIRED if Origin Server does not close the session after sending the response AND Origin Server does not send the
response using chunked encoding.

PROHIBITED if Origin Server sends the response using chunked encoding. OPTIONAL otherwise.

Field value specifies the length of the body in bytes. Integer.

TRANSFER-ENCODING
OPTIONAL for HTTP/1.1 and above. Field value specifies whether the response is chunked encoded by having field value
“chunked” (in the example above the body is sent in 2 chunks). MUST NOT be specified if CONTENT-LENGTH header
field is present.

CONTENT-TYPE
REQUIRED. Field value MUST be “text/xml; charset="utf-8" ”.

DATE
RECOMMENDED. Field value contains date when response was generated. “rfc1123-date” as defined in RFC 2616.

SERVER
REQUIRED. Specified by UPnP vendor. String. Field value MUST begin with the following “product tokens” (defined by
HTTP/1.1). The first product token identifes the operating system in the form OS name/OS version, the second token
represents the UPnP version and MUST be UPnP/1.1, and the third token identifes the product using the form

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 73 —

product name/product version. For example, “SERVER: unix/5.1 UPnP/1.1 MyProduct/1.0”. Control points MUST be
prepared to accept a higher minor version number of the UPnP version than the control point itself implements. For
example, control points implementing UDA version 1.0 will be able to interoperate with devices implementing
UDA version 1.1.

Body

<Envelope>
REQUIRED element defined by SOAP. xmlns namespace attribute MUST be
"http://schemas.xmlsoap.org/soap/envelope/". MUST include encodingStyle attribute with value
"http://schemas.xmlsoap.org/soap/encoding/". A receiver MUST generate a fault if it encounters a message whose
document element has a local name of "Envelope" but a namespace name that is not
"http://schemas.xmlsoap.org/soap/envelope/". Contains the following sub elements:

<Body>
REQUIRED element defined by SOAP. MUST be qualified with SOAP namespace. Contains the following sub
element:

<Fault>
REQUIRED element defined by SOAP. Error encountered while invoking action. MUST be qualified
with SOAP namespace. Contains the following sub elements:

<faultcode>
REQUIRED element defined by SOAP. Value MUST be qualified with the SOAP namespace.
MUST be “Client” for DCP specific errors. When MANDATORY header XML elements
within the SOAP header cannot be processed it MUST be the SOAP fault code
“MustUnderstand”.

<faultstring>
REQUIRED element defined by SOAP. MUST be “UPnPError” for DCP specific errors.

<detail>
REQUIRED element defined by SOAP. Contains the following subelement:

<UPnPError>
REQUIRED element for DCP specific errors. MAY be empty for other errors.
Contains the following subelements:

<errorCode>
REQUIRED element defined by UDA. Code identifying what error was
encountered. See Table 3-3, “UPnP Defined Action error codes” for
values. Integer.

<errorDescription>
RECOMMENDED element defined by UDA. Short description. See
Table 3-3, “UPnP Defined Action error codes” for RECOMMENDED
values; other values MAY be used by vendors. Human-readable string.
RECOMMENDED < 256 characters.

The following table summarizes defined error types and the corresponding value for the
<errorCode> and <errorDescription> elements.

Table 3-3: — UPnP Defined Action error codes

ErrorCode errorDescription Description

401 Invalid Action No action by that name at this service.

402 Invalid Args Could be any of the following: not enough in args, args in the wrong
order, one or more in args are of the wrong data type.

403 (Do Not Use) (This code has been deprecated.)

501 Action Failed MAY be returned if current state of service prevents invoking that
action.

600 Argument Value Invalid The argument value is invalid

601 Argument Value Out of
Range

An argument value is less than the minimum or more than the
maximum value of the allowed value range, or is not in the allowed
value list.

602 Optional Action Not
Implemented

The requested action is optional and is not implemented by the device.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 74 —

ErrorCode errorDescription Description

603 Out of Memory The device does not have sufficient memory available to complete the
action. This MAY be a temporary condition; the control point MAY
choose to retry the unmodified request again later and it MAY succeed
if memory is available.

604 Human Intervention
Required

The device has encountered an error condition which it cannot resolve
itself and required human intervention such as a reset or power cycle.
See the device display or documentation for further guidance.

605 String Argument Too
Long

A string argument is too long for the device to handle properly.

606-6124 Reserved These ErrorCodes are reserved for UPnP DeviceSecurity.

613-699 TBD Common action errors. Defined by UPnP Forum Technical Committee.

700-799 TBD Action-specific errors defined by UPnP Forum working committee.

800-899 TBD Action-specific errors for non-standard actions. Defined by UPnP
vendor.

3.2.6 UPnP Error Schema
The UPnP Error Schema defines the structures and data types used in the body of UPnP error
messages. As with the UPnP Device and Service Schemas, the UPnP Error Schema is written
in XML syntax and according to the conventions of XML Schema (Part 1: Structures, Part 2:
Datatypes). clause B.4, “UPnP Error Schema” contains a listing of this schema. The elements
it defines are used in error messages.

For future extensibility and according to the requirements in clause 2.7, “Non-standard vendor
extensions” and clause 2.8, “UPnP Device Schema”, when processing XML like the listing
above, devices and control points MUST ignore: (a) any unknown elements and their sub
elements or content, and (b) any unknown attributes and their values.

Subject to the constraints defined in clause 2.7, “Non-standard vendor extensions” and clause
2.8, “UPnP Device Schema”, control points and devices MUST ignore any XML comments or
XML processing instructions embedded in UPnP device and service descriptions that they do
not understand.

XML namespace prefixes do not have to be the specific examples given above (e.g., “s” or
“u”); they can be any value that obeys the rules of the general XML namespace mechanism;
control points MUST accept responses that use other legal XML namespace prefixes.

3.3 Query for variable
The QueryStateVariable action has been deprecated by the UPnP Forum and MUST NOT be
used by control points except in limited testing scenarios. Working committees and vendors
MUST explicitly define actions for querying of state variables for which this capability is
desired. Such explicit query actions MAY include multiple state variables, if desired. For the
full definition of QueryStateVariable see the UPnP 1.0 specification.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 75 —

3.4 References
RFC 1123, Includes format for dates, for, e.g., HTTP DATE header field. Available at:
http://www/ietf.org/rfc/rfc1123.txt.

RFC 2616, HTTP: Hypertext Transfer Protocol 1.1. Available at: http://www.ietf.org/rfc/rfc2616.txt.

RFC 2774, HTTP Extension Framework. Available at: http://www.ietf.org/rfc/rfc2774.txt.

RFC 3986, Uniform Resource Identifiers (URI): Generic Syntax.Available at:
http://www.ietf.org/rfc/rfc3986.txt.

SOAP, Simple Object Access Protocol. Available at: http://www.w3.org/TR/2000/NOTE-SOAP-
20000508.

XML, Extensible Markup Language. Available at: http://www.w3.org/XML.

XML Schema (Part 1: Structures, Part 2: Datatypes), Available at:
http://www.w3.org/TR/xmlschema-1, http://www.w3.org/TR/xmlschema-2.

4 Eventing

Eventing is Step 4 in UPnP™ networking. Eventing comes after addressing (Step 0) where
devices get a network address, after discovery (Step 1) where control points find interesting
device(s), and after description (Step 2) where control points learn about device capabilities.
Eventing is intimately linked with control (Step 3) where control points send actions to devices.
Through eventing, control points listen to state changes in device(s). Control and eventing are
complementary to presentation (Step 5) where control points display a user interface provided
by device(s).

After a control point has (1) discovered a device and (2) retrieved a description of the device
and its services, the control point has the essentials for eventing. As clause 2, “Description”
explains, a UPnP service description includes a list of actions the service responds to and a
list of variables that model the state of the service at run time. If one or more of these state
variables are evented, then the service publishes updates when these variables change, and
a control point MAY subscribe to receive this information. Two types of eventing are
supported by this specification: unicast eventing as found in version 1.0 of the UPnP
specification where a control point MAY subscribe to receive variable updates; and multicast
eventing where variables MAY be defined as multicast events and can be additionally sent
over UDP to any listening device on the multicast event address. This form of eventing is
useful when events which are not relevant to a specific UPnP interaction SHOULD be
delivered to control points to inform users, and when multiple controlled devices MAY want to
inform multiple other controlled devices. Throughout this clause, publisher refers to the
source of the events (typically a device's service), subscriber refers to the destination of
events (typically a control point), and the term receiver refers to the listener of multicast
events (typically a control point, but MAY also be a controlled device).

4.1 Unicast eventing
Figure 4-1: — Unicast eventing architecture

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 76 —

root device

service

device

service

control point 1
SID1 subscribe

renewal:SID1

cancel:SID1

event:SID1

control point 2
Previously subscribed
SID0

event:SID0

subscribeRsp:SID1

renewalRsp:SID1

To subscribe to eventing, a subscriber sends a subscription message. If the subscription is
accepted, the publisher responds with a duration for the subscription. To keep the
subscription active, a subscriber MUST renew its subscription before the subscription expires.
When a subscriber no longer needs eventing from a publisher, the subscriber SHOULD cancel
its subscription. This clause explains subscription, renewal, and cancellation messages in
detail below.

The publisher notes changes to state variables by sending event messages. Event messages
contain the names of one of more state variables and the current value of those variables,
expressed in XML. A special initial event message is sent when a subscriber first subscribes;
this event message contains the names and values for all evented variables and allows the
subscriber to initialize its model of the state of the service. To support scenarios with multiple
control points, eventing can be used to keep interested control points informed about the
effects of actions performed by other control points or using other mechanisms for device
control (such as front panel controls). All subscribers are sent all event messages,
subscribers receive event messages for all evented variables (not just some), and event
messages are sent no matter why the state variable changed (either in response to a
requested action or because the state the service is modeling changed). This clause explains
the format of event messages in detail below.

Some state variables MAY change value too rapidly for eventing to be useful. One alternative
is to filter, or moderate, the number of event messages sent due to changes in a variable's
value. Some state variables may contain values too large for eventing to be useful; for this, or
other reasons, a service MAY designate one or more state variables as non evented and
never send event messages to subscribers. To determine the current value for such non-
evented variables, control points MUST poll the service explicitly, presuming that an action is
provided to obtain the value of the state variable. This clause explains how variable eventing
is described within a service description.

To send and receive subscription and event messages, control points and services use the
following subset of the overall UPnP protocol stack. (The overall UPnP protocol stack is listed
at the beginning of this document.)

Figure 4-2: — Unicast eventing protocol stack

UPnP vendor [purple-italic]

UPnP Forum [red-italic]

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 77 —

UPnP Device Architecture [green-bold]

GENA [navy-bold]

HTTP [black]

TCP [black]

IP [black]

At the highest layer, subscription and event messages contain vendor-specific information like
URLs for subscription and duration of subscriptions or specific variable values. Moving down
the stack, vendor content is supplemented by information from a UPnP Forum working
committee, like service identifiers or variable names. Messages from the layers above are
hosted in UPnP-specific protocols, defined in this document. In turn, the above messages are
delivered via HTTP that has been extended using additional methods and header fields. The
HTTP messages are delivered via TCP over IP. For reference, colors in [square brackets]
above indicate which protocol defines specific header fields in the subscription messages
listed below.

The remainder of this clause first explains subscription, including details of subscription
messages, renewal messages, and cancellation messages. Second, it explains in detail how
event messages are formatted and sent to control points, and the initial event message.
Finally, it explains the UPnP Device and Service Schemas as they pertain to eventing.

The generic requirements on HTTP usage in UPnP 1.1 (as defined in clause 2.1, “Generic
requirements on HTTP usage” of this document) MUST be followed by devices and control
points that implement eventing.

Services that use evented complex datatypes MUST follow the requirements in clause 2.5,
“Service description”.

4.1.1 Subscription
A service has eventing if and only if one or more of the state variables are evented.

If a service has eventing, it publishes event messages to interested subscribers. The
publisher maintains a list of subscribers, keeping for each subscriber the following information.

unique subscription identifier
REQUIRED. MUST be unique over the lifetime of the subscription, however long or short that may be. Generated by
publisher in response to subscription message. RECOMMEND universally-unique identifiers to ensure uniqueness. Single
URI.

delivery URL for event messages
REQUIRED. Provided by subscriber in subscription message. Single URL.

event key
REQUIRED. Key is 0 for initial event message. Key MUST be sequentially numbered for each subsequent event message;
subscribers can verify that no event messages have been lost if the subscriber has received sequentially numbered event
keys. MUST wrap from 4294967295 to 1 (32-bit unsigned decimal integer). Some implementations MAY include leading “0”
characters in the event key, which MUST be ignored.

subscription duration
REQUIRED. Amount of time, or duration until subscription expires. Single integer, preceded in subscription messages by
the keyword “Second-” (no spaces). UPnP 1.0 defines the use of the keyword infinite instead of an integer. This keyword
is deprecated in UPnP 1.1 (it leads to problems if control points disappear without unsubscribing and is hardly used): UPnP
1.1 control points MUST NOT subscribe using keyword infinite, UPnP 1.1 devices MUST NOT set actual subscription
durations to “infinite”. The presence of infinite in a request MUST be silently ignored by a UPnP 1.1 device (the presence
of infinite is handled by the device as if the TIMEOUT header field in a request was not present) . The keyword infinite
MUST NOT be returned by a UPnP 1.1 device.

HTTP version supported by the subscriber
REQUIRED if the publisher supports chunked encoding of event notification messages, so that chunked messages are not
sent to subscribers that do not support them.

A multi-homed publisher MUST also maintain information on the UPnP-enabled interface on which each subscription message
was received. The same interface MUST be used when publishing event messages to the corresponding subscriber.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 78 —

The publisher SHOULD accept as many subscriptions as it can reasonably maintain, taking
into account that the number of event messages that need to be delivered per event, which
increases linearly with the number of subscriptions.

The list of subscribers is updated via subscription, renewal, and cancellation messages
explained immediately below and event messages explained later in this clause.

To subscribe to eventing for a service, a subscriber sends a subscription message containing
a URL for the publisher, a service identifier for the publisher, and a delivery URL for event
messages. The subscription message MAY also include a requested duration for the
subscription. The URL and service identifier for the publisher come from a description
message. As clause 2, “Description” explains, a description message contains a device
description. A device description contains (among other things), for each service, an eventing
URL (obtained from the eventSubURL element) and a service identifier (in the serviceId
element); these correspond to the URL and service identifier for the publisher, respectively. If
eventSubURL is an absolute URL, the fully qualified event subscription URL is the
eventSubURL. If eventSubURL is a relative URL, the fully qualified event subscription URL is
the URL resolved from eventSubURL in accordance with clause 5 of RFC 3986, using either
the URLBase element, if specified, or the URL from which the device description was
retrieved as the base URL. If the eventSubURL is empty, no subscriptions are possible. The
fully qualified event subscription URL for the publisher MUST be unique to a particular service
within this device. A multi-homed control point that sends the subscription message on a
particular UPnP-enabled interface MUST use the fully qualified eventing URL from the
description document received on that UPnP-enabled interface. The delivery URL contained
in the subscription message MUST be reachable on that interface.

The subscription message is a request to receive all event messages. No mechanism is
provided to subscribe to event messages on a variable-by-variable basis. A subscriber is sent
all event messages from the service. This is one factor to be considered when designing a
service.

If the subscription is accepted, the publisher responds with a unique identifier for this
subscription and a duration for this subscription. A duration SHOULD be chosen that matches
assumptions about how frequently control points are removed from the network; if control
points are removed every few minutes, then the duration SHOULD be similarly short, allowing
a publisher to rapidly deprecate any expired subscribers; if control points are expected to be
semi-permanent, then the duration SHOULD be very long, minimizing the processing and
traffic associated with renewing subscriptions.

As soon as possible after the subscription is accepted, the publisher also sends the first, or
initial event message to the subscriber. This message includes the names and current values
for all evented variables. (The data type and range for each variable is described in a service
description. Clause 2, “Description” explains this in more detail.) This initial event message is
always sent, even if the control point unsubscribes before it is delivered. The device MUST
insure that the control point has received the response to the subscription request before
sending the initial event message, to insure that the control point has received the SID
(subscription ID) and can thereby correlate the event message to the subscription.

To keep the subscription active, a subscriber MUST renew its subscription before the
subscription expires by sending a renewal message. The renewal message is sent to the
same URL as the subscription message, but the renewal message does not include a delivery
URL for event messages; instead the renewal message includes the subscription identifier.
The response for a renewal message is the same as one for a subscription message.

If a subscription expires, the subscription identifier becomes invalid, and the publisher stops
sending event messages to the subscriber and can clean up its list of subscribers. If the
subscriber tries to send any message other than a subscription message, the publisher MUST
reject the message because the subscription identifier is invalid.

When a subscriber no longer needs eventing from a particular service, the subscriber
SHOULD cancel its subscription. Canceling a subscription generally reduces service, control
point, and network load. If a subscriber is removed abruptly from the network, it might be

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 79 —

impossible to send a cancellation message. As a fallback, the subscription will eventually
expire on its own unless renewed.

It is strongly RECOMMENDED that subscribers monitor discovery messages from the
publisher. If the publisher cancels its advertisements or if the value of the
BOOTID.UPNP.ORG is increased without a prior ssdp:update message with a matching
NEXTBOOTID.UPNP.ORG field value, subscribers MUST assume that their subscriptions
have been cancelled.

Below is an explanation of the specific format of requests, responses, and errors for
subscription, renewal, and cancellation messages.

4.1.2 SUBSCRIBE with NT and CALLBACK
For each service in a device, a description message contains an event subscription URL
(obtained from the eventSubURL sub element of service element in the device description)
and the UPnP service identifier (serviceId sub element in service element in device
description). To subscribe to eventing for a particular service, a subscription message is sent
to that service's fully qualified event subscription URL. If eventSubURL is an absolute URL,
the fully qualified event subscription URL is the eventSubURL. Otherwise, if eventSubURL is
a relative URL, the fully qualified event subscription URL is the URL resolved from
eventSubURL in accordance with clause 5 of RFC 3986, using either the URLBase element, if
specified, or the URL from which the device description was retrieved as the base URL. The
message contains that service's identifier as well as a delivery URL for event messages. A
multi-homed control point that sends the subscription message on a particular UPnP-enabled
interface MUST use the fully qualified eventing URL from the description document received
on that interface. The delivery URL contained in the subscription message MUST be
reachable on that interface. A subscription message MAY also include a requested
subscription duration.

To subscribe to eventing for a service, a subscriber MUST send a request with method
SUBSCRIBE and NT and CALLBACK header fields in the following format. Values in italics
are placeholders for actual values.

 SUBSCRIBE publisher path HTTP/1.1
 HOST: publisher host:publisher port
 USER-AGENT: OS/version UPnP/1.1 product/version
 CALLBACK: <delivery URL>
 NT: upnp:event
 TIMEOUT: Second-requested subscription duration

(No body for request with method SUBSCRIBE, but note that the message MUST have a
blank line following the last HTTP header field.)

Listed below are details for the request line and header fields appearing in the listing above.
Field names are not case sensitive. All field values are case sensitive except where noted.

Request line

SUBSCRIBE
Method to initiate or renew a subscription.

publisher path
Path component of the fully qualified event subscription URL. Single, absolute path (see also RFC 2616, clause 3.2.2).

HTTP/1.1
The version supported by the control point. (Note: the control point MUST implement all MANDATORY components of the

version specified). MAY be any HTTP version that is backwards compatible to HTTP/1.0 (like HTTP/1.1).

Header fields

HOST
REQUIRED. Field value contains domain name or IP address and optional port components of the fully qualified event
subscription URL. If the port is missing or empty, port 80 is assumed.

USER-AGENT

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 80 —

OPTIONAL. Specified by UPnP vendor. String. Field value MUST begin with the following “product tokens” (defined by
HTTP/1.1). The first product token identifes the operating system in the form OS name/OS version, the second token
represents the UPnP version and MUST be UPnP/1.1, and the third token identifes the product using the form
product name/product version. For example, “USER-AGENT: unix/5.1 UPnP/1.1 MyProduct/1.0”. Control points MUST be
prepared to accept a higher minor version number of the UPnP version than the control point itself implements. For
example, control points implementing UDA version 1.0 will be able to interoperate with devices implementing
UDA version 1.1. See clause 2.5, “Service description”.

CALLBACK
REQUIRED. Field value contains location to send event messages to. Defined by UPnP vendor. If there is more than one
URL, when the service sends events, it will try these URLs in order until one succeeds. One or more URLs each enclosed
by angle brackets (“<” and “>”). Each URL MUST be an HTTP over TCP URL (prefixed by “http://”). The device MUST NOT
truncate this URL in any way; if insufficient memory is available to store the entire CALLBACK URL, the device MUST
reject the subscription. At least one of the delivery URLs MUST be reachable by the device.

NT
REQUIRED. Field value contains Notification Type. MUST be upnp:event.

SID
(No SID header field is used to subscribe.)

TIMEOUT
RECOMMENDED. Field value contains requested duration until subscription expires. Consists of the keyword Second-
followed (without an intervening space) by an integer. UPnP 1.0 defined that the integer can be replaced by the keyword
infinite. This has been deprecated in UPnP 1.1: UPnP 1.1 control points MUST NOT subscribe using keyword infinite.

If there are enough resources to maintain the subscription, the publisher SHOULD accept it.
To accept the subscription, the publisher assigns a unique identifier for the subscription,
assigns a duration for the subscription, and sends an initial event message (explained in
detail later in this clause). To accept a subscription request, a publisher MUST send a
response in the following format within 30 seconds, including expected transmission time. A
multi-homed publisher MUST send the response on the same UPnP-enabled interface on
which the subscription message was received. Values in italics are placeholders for actual
values.

 HTTP/1.1 200 OK
 DATE: when response was generated
 SERVER: OS/version UPnP/1.1 product/version
 SID: uuid:subscription-UUID
 CONTENT-LENGTH: 0
 TIMEOUT: Second-actual subscription duration

(No body for response to a request with method SUBSCRIBE, but note that the message
MUST have a blank line following the last HTTP header field.)

If the device sends the response over HTTP/1.0 without setting the KeepAlive token, or over
HTTP/1.1 with the CONNECTION: close header field, the device MUST insure that the TCP
FIN flag is sent BEFORE sending the initial event message. In all other cases, (unless the
response is chunked), a CONTENT-LENGTH MUST be specified, (and set to 0), prior to
sending the initial event.

Listed below are details for header fields appearing in the listing above. Field names are not
case sensitive. All field values are case sensitive except where noted.

Response line

HTTP/1.1
The highest version supported by the origin server that is compatible with the control point that issued the request.

For example, if the control point specified support for HTTP/1.0 in the request, the response MUST contain HTTP/1.0.

200 OK
HTTP defined status code indicating that no HTTP errors were detected..

Header fields

DATE
RECOMMENDED. Field value contains date when the response was generated. “rfc1123-date” as defined in RFC 2616.

SERVER

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 81 —

REQUIRED. Specified by UPnP vendor. String. Field value MUST begin with the following “product tokens” (defined by
HTTP/1.1). The first product token identifes the operating system in the form OS name/OS version, the second token
represents the UPnP version and MUST be UPnP/1.1, and the third token identifes the product using the form
product name/product version. For example, “SERVER: unix/5.1 UPnP/1.1 MyProduct/1.0”. Control points MUST be
prepared to accept a higher minor version number of the UPnP version than the control point itself implements. For
example, control points implementing UDA version 1.0 will be able to interoperate with devices implementing
UDA version 1.1.

SID
REQUIRED. Field value contains Subscription Identifier. MUST be universally unique. MUST begin with uuid:. Defined by
UPnP vendor. See clause 1.1.4, “UUID format and RECOMMENDED generation algorithms” for the MANDATORY UUID
format.

TIMEOUT
REQUIRED. Field value contains actual duration until subscription expires. Keyword “Second-” followed by an integer (no
space). SHOULD be greater than or equal to 1800 seconds (30 minutes).

CONTENT-LENGTH
REQUIRED if TCP FIN flag cannot be guaranteed to be sent before the initial event is sent. MUST have field value “0”.

If a publisher cannot accept the subscription, or if there is an error with the subscription
request, the publisher MUST send a response with one of the following errors. The response
MUST be sent within 30 seconds, including expected transmission time.

Table 4-4: — HTTP Status Codes indicating a Subscription Error

ErrorCode errorDescription Description

400 Incompatible header
fields

An SID header field and one of NT or CALLBACK header fields are
present.

412 Precondition Failed CALLBACK header field is missing or does not contain a valid HTTP URL;

or the NT header field does not equal upnp:event.

5xx Unable to accept
renewal

If the publisher is unable to accept a renewal, it MUST respond with an
appropriate 500-series HTTP status code.

Other errors, including other HTTP status codes, MAY be returned by layers in the protocol
stack below the UPnP protocols. Consult documentation on those protocols for details.

4.1.3 Renewing a subscription with SUBSCRIBE with SID
To renew a subscription to eventing for a particular service, a renewal message is sent to that
service's fully qualified event subscription URL (See clause 4.1.2, “SUBSCRIBE with NT and
CALLBACK”). However, unlike an initial subscription message, a renewal message does not
contain either the service's identifier nor a delivery URL for event messages. Instead, the
message contains the subscription identifier assigned by the publisher, providing an
unambiguous reference to the subscription to be renewed. Like a subscription message, a
renewal message MAY also include a requested subscription duration. A multi-homed control
point MUST send the renewal message using the same pair of UPnP-enabled interfaces used
for the initial subscription.

The renewal message uses the same method as the subscription message, but the two
messages use a disjoint set of header fields; renewal uses SID and subscription uses NT and
CALLBACK. A message that includes SID and either of NT or CALLBACK header fields is an
error.

To renew a subscription to eventing for a service, a subscriber MUST send a request with
method SUBSCRIBE and SID header field in the following format. Values in italics are
placeholders for actual values.

 SUBSCRIBE publisher path HTTP/1.1
 HOST: publisher host:publisher port
 SID: uuid:subscription UUID
 TIMEOUT: Second-requested subscription duration

(No body for method with request SUBSCRIBE, but note that the message MUST have a
blank line following the last HTTP header field.)

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 82 —

Listed below are details for the request line and header fields appearing in the listing above.
Field names are not case sensitive. All field values are case sensitive except where noted.

Request line

SUBSCRIBE
Method to initiate or renew a subscription.

publisher path
Path component of the fully qualified event subscription URL. Single, absolute path (see also RFC 2616, clause 3.2.2).

HTTP/1.1
The version supported by the control point. (Note: the control point MUST implement all MANDATORY components of the

version specified). MAY be any HTTP version that is backwards compatible to HTTP/1.0 (like HTTP/1.1)

Header fields

HOST
REQUIRED. Field value contains domain name or IP address and optional port components of fully qualified event
subscription URL. If the port is missing or empty, port 80 is assumed.

CALLBACK
(No CALLBACK header field is used to renew an event subscription.)

NT
(No NT header field is used to renew an event subscription.)

SID
REQUIRED. Field value contains Subscription Identifier. MUST be the subscription identifier assigned by publisher in
response to subscription request. MUST be universally unique. MUST begin with uuid:. Defined by UPnP vendor. See
clause 1.1.4, “UUID format and RECOMMENDED generation algorithms for the MANDATORY UUID format.

TIMEOUT
RECOMMENDED. Field value contains requested duration until subscription expires. Keyword Second- followed by an
integer (no space). UPnP 1.0 defined that the integer can be replaced by the keyword infinite. This has been deprecated
in UPnP 1.1: UPnP 1.1 control points MUST NOT subscribe using keyword infinite. See reference above.

To accept a renewal, the publisher reassigns a duration for the subscription and MUST send a
response in the same format and with the same conditions as a response to a request for a
new subscription, except that the initial event message is not sent again.

If a publisher cannot accept the renewal, or if there is an error with the renewal request, the
publisher MUST send a response with one of the following errors. The response MUST be
sent within 30 seconds, including expected transmission time.

Table 4-5: — HTTP Status Codes indicating a Resubscription Error

ErrorCode errorDescription Description

400 Incompatible header
fields

An SID header field and one of NT or CALLBACK header fields are
present.

412 Precondition Failed An SID does not correspond to a known, un-expired subscription;
or the SID header field is missing or empty.

5xx Unable to accept
renewal

If the publisher is unable to accept a renewal, it MUST respond with an
appropriate 500-series HTTP status code.

Other errors, including other HTTP status codes, MAY be returned by layers in the protocol
stack below the UPnP protocols. Consult documentation on those protocols for details.

4.1.4 Canceling a subscription with UNSUBSCRIBE
When eventing is no longer needed from a particular service, a cancellation message
SHOULD be sent to that service's fully qualified event subscription URL (see clause 4.1.2,
“SUBSCRIBE with NT and CALLBACK”). The message contains the subscription identifier. A
multi-homed control point MUST send the cancellation message using the same pair of UPnP-
enabled interfaces used for the initial subscription. Canceling a subscription generally
reduces service, control point, and network load. If a control point is removed abruptly from
the network, it might be impossible to send a cancellation message. As a fallback, the
subscription will eventually expire on its own unless renewed.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 83 —

To explicitly cancel a subscription to eventing for a service, a subscriber MUST send a
request with method UNSUBSCRIBE in the following format. Values in italics are placeholders
for actual values.

 UNSUBSCRIBE publisher path HTTP/1.1
 HOST: publisher host:publisher port
 SID: uuid:subscription UUID

(No body for request with method UNSUBSCRIBE, but note that the message MUST have a
blank line following the last HTTP header field.)

Listed below are details for the request line and header fields appearing in the listing above.
Field names are not case sensitive. All field values are case sensitive except where noted.

Request line

UNSUBSCRIBE
Method to cancel a subscription.

publisher path
Path component of the fully qualified event subscription URL. Single, absolute path (see also RFC 2616, clause 3.2.2).

HTTP/1.1
The version supported by the control point. (Note: the control point MUST implement all MANDATORY components of the

version specified). MAY be any HTTP version that is backwards compatible to HTTP/1.0 (like HTTP/1.1)

Header fields

HOST
REQUIRED. Field value contains domain name or IP address and optional port components of fully qualified event
subscription URL. If the port is missing or empty, port 80 is assumed.

CALLBACK
(No CALLBACK header field is used to cancel an event subscription.)

NT
(No NT header field is used to cancel an event subscription.)

SID
REQUIRED. Field value contains Subscription Identifier. MUST be the subscription identifier assigned by publisher in
response to subscription request. Must be universally unique. Must begin with uuid:. Defined by UPnP vendor. See clause
1.1.4, “UUID format and RECOMMENDED generation algorithms” for the MANDATORY UUID format.

TIMEOUT
(No TIMEOUT header field is used to cancel an event subscription.)

To cancel a subscription, a publisher MUST send a response in the following format within 30
seconds, including expected transmission time.

 HTTP/1.1 200 OK

Response line

HTTP/1.1
The highest version supported by the origin server that is compatible with the control point that issued the request.

For example, if the control point specified support for HTTP/1.0 in the request, the response MUST contain HTTP/1.0.

200 OK
HTTP defined status code indicating that no HTTP errors were detected.

If there is an error with the cancellation request, the publisher MUST send a response with
one of the following errors. The response MUST be sent within 30 seconds, including
expected transmission time.

Table 4-6: — HTTP Status Codes indicating a Cancel Subscription Error

ErrorCode errorDescription Description

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 84 —

ErrorCode errorDescription Description

400 Incompatible header
fields

An SID header field and one of NT or CALLBACK header fields are
present.

412 Precondition Failed An SID does not correspond to a known, un-expired subscription;
or the SID header field is missing or empty.

Other errors, including other HTTP status codes, MAY be returned by layers in the protocol
stack below the UPnP protocols. Consult documentation on those protocols for details.

4.2 Multicast Eventing
Figure 4-3: — Multicast eventing architecture

control point 4

control point 3

control point 2

control point 1

root device 4

root device 3

root device 2

root device 1

Multicast event

Multicast event

Multicast event

Multicast event

multicast

Multicast event

Multicast event

Multicast event

Multicast event

root device 0

service

device

service

multicast
 event

The publisher MAY note changes to state variables by sending multicast event messages.
Multicast event messages contain the names of one or more state variables and the current
value of those variables, expressed in XML. To send and receive multicast event messages,
control points and services use the following subset of the overall UPnP protocol stack. (The
overall UPnP protocol stack is listed at the beginning of this document.)

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 85 —

Figure 4-4: — Mulitcast eventing protocol stack

UPnP vendor [purple-italic]

UPnP Forum [red-italic]

UPnP Device Architecture [green-bold]

Multicast Eventing [navy-bold]

UDP [black]

IP [black]

At the highest layer, multicast event messages contain vendor-specific information like
vendor-specific state variable or specific variable values. Moving down the stack, vendor
content is supplemented by information from a UPnP Forum working committee, such as
service identifiers or variable names. Messages from the layers above are hosted in UPnP-
specific protocols to transport events in a similar format to unicast UPnP events, but over a
multicast address where subscriptionless eventing fits the desired usage. These messages
are based on the HTTP protocol header and body format, but are not HTTP compliant
because they are defined over UDP sockets. Throughout this clause, the same formatting and
extension rules for SSDP as set forth in clause 1.1.2, “SSDP message header fields” and
clause 1.1.3, “SSDP header field extensions” are used to give HTTP-like header field
formatting. In addition, services that use evented complex datatypes MUST follow the
requirements in clause 2.5, “Service description”. Lastly, like SSDP, to limit network
congestion, the time-to-live (TTL) of each IP packet for each multicast message SHOULD
default to 2 and SHOULD be configurable. This SHOULD be the same value as that used in
SSDP. When the TTL is greater than 1, it is possible for multicast messages to traverse
multiple routers; therefore control points and devices using non-AutoIP addresses MUST send
an IGMP Join message so that routers will forward multicast messages to them (this is not
necessary when using an Auto-IP address since packets with Auto-IP addresses will not be
forwarded by routers).

Multicast eventing is inherently unreliable since it is based on UDP. In addition, there will be a
greater possibility of message loss with greater packet size. To increase the probability of
successful transmission, each message MAY be retransmitted one or more times. Therefore,
UPnP working committees MUST specify the event size and event retransmission rules,
based on their need for reliability.

4.3 Event messages
A service publishes changes to certain state variables by sending event messages. These
messages contain the names of one or more state variables and the current value of those
variables. Event messages MUST be sent in a timely manner so that subscribers are
accurately informed about the state of the service and can provide a responsive user interface.
If the value of more than one variable is changing at the same time, the publisher SHOULD
bundle these changes into a single event message to reduce processing and network traffic.

As explained above, an initial event message is sent when a subscriber first subscribes; this
event message contains the names and values for all evented variables and allows the
subscriber to initialize its model of the state of the service. This message SHOULD be sent as
soon as possible after the publisher accepts a subscription. This message MUST be sent,
even if the control point unsubscribes before the message is delivered. Subscription does not
cause multicast event messages.

Multicast event messages are constrained to being transported in a single UDP payload. This
consideration is important when identifying variables that are to be multicast. If the cumulative
size of the variables that are eligible for being sent by multicast exceeds the UDP packet’s
capacity, it may be necessary to send multiple, distinct multicast events.

Both unicast and multicast event messages are tagged with an event key. In unicast eventing,
a separate event key MUST be maintained by the publisher for each subscription to facilitate
error detection (as explained below). The event key for a subscription is initialized to 0 when
the publisher sends the initial event message. For each subsequent event message, the

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 86 —

publisher increments (by one) the event key for a subscription, and includes that updated key
in the event message. The event key for multicast events is also initialized to 0 when the
publisher sends the initial event message. For each subsequent multicast event message, the
publisher increments (by one) the event key for the multicast events, and includes that
updated key in the event message. Any implementation of event keys MUST handle overflow
and wrap the event key from 4294967295 back to 1 (not 0). Unicast subscribers and multicast
receivers MUST also handle this special case when the next event key is not an increment of
the previous key. The key MUST be implemented as a 4 Byte (32 bit) unsigned integer.

All UPnP event messages MUST be encoded using UTF-8.

4.3.1 Error Cases
For unicast eventing, the publisher MUST send all event messages to the subscriber until the
subscription expires even when the subscriber fails to respond. When a subscriber has
missed one or more event messages, the subscriber MAY synchronize with the device’s
evented state by unsubscribing and re-subscribing. By doing so, the subscriber will get a new
subscription identifier, a new initial event message, and a new event key.

For multicast eventing, since UDP is inherently unreliable, retransmission of a multicast event
message (using the same SEQ field value) can increase the reliability. The receiver MUST
interpret the same SEQ field value from separate multicast event messages from a same
service (identified by USN field value) as being the exactly the same message sent multiple
times and MUST therefore ignore such duplicates. Some state variables may change value
too rapidly for some environments, for example enterprises. Working committees MUST
specify traffic constraints for the DCP given these concerns and guidelines. Working
committees SHOULD consider both the interval for transmission of multicast events per event
type (LVL:) and the retransmission rules for particular event instances.

4.3.2 Unicast eventing: Event messages: NOTIFY
To send an event message, a publisher MUST send a request with method NOTIFY using the
following format. The following two examples illustrate an event message using the
CONTENT-LENGTH header and an event message using chunked encoding. Values in italics
are placeholders for actual values.

Event messages sent to different subscribers that have the same sequence number MUST
contain the same content except for the HOST header field. A multi-homed device MUST
send the event message using the same pair of UPnP-enabled interfaces used for the initial
subscription.

Note: XML namespace prefixes do not have to be the specific examples shown below (e.g.,
“s” or “u”); they can be any value that obeys the rules of the general XML namespace
mechanism; control points MUST accept event messages that use other legal XML
namespace prefixes.

Event message using the CONTENT-LENGTH header – Valid with HTTP/1.0 or HTTP/1.1

 NOTIFY delivery path HTTP/1.0
 HOST: delivery host:delivery port
 CONTENT-TYPE: text/xml; charset="utf-8"
 NT: upnp:event
 NTS: upnp:propchange
 SID: uuid:subscription-UUID
 SEQ: event key
 CONTENT-LENGTH: bytes in body

 <?xml version="1.0"?>
 <e:propertyset xmlns:e="urn:schemas-upnp-org:event-1-0">
 <e:property>
 <variableName>new value</variableName>
 </e:property>
 Other variable names and values (if any) go here.
 </e:propertyset>

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 87 —

Event message using chunked encoding – Valid with HTTP 1.1 only

 NOTIFY delivery path HTTP/1.1
 HOST: delivery host:delivery port
 CONTENT-TYPE: text/xml; charset="utf-8"
 NT: upnp:event
 NTS: upnp:propchange
 SID: uuid:subscription-UUID
 TRANSFER-ENCODING: "chunked"
 SEQ: event key

 Length of chunk 1 in hexadecimal notation

 <?xml version="1.0"?>
 <e:propertyset xmlns:e="urn:schemas-upnp-org:event-1-0">
 <e:property>
 <variableName>new value</variableName>
 </e:property>
 Other variable names and values (if any) go here.
 </e:propertyset>
 0

Listed below are details for the request line, header fields, and body elements appearing in
the listing above. Field names are not case sensitive. All field values are case sensitive
except where noted. All body elements and attributes are case sensitive; body values are not
case sensitive except where noted. Except where noted, REQUIRED elements MUST occur
exactly once (no duplicates), and RECOMMENDED or OPTIONAL elements MAY occur at
most once. In particular, a single propertyset element MUST NOT include more than one
property element that specifies the same variableName element; separate event notification
messages MUST be used.

Request line

NOTIFY
Method to notify client about event.

delivery path
Path component of delivery URL (CALLBACK header field in subscription message). Destination for event message. Single,
absolute path (see also RFC 2616). MUST be from one of the URLs contained in the CALLBACK header field, without
truncation or modification.

HTTP/1.1
Highest HTTP version supported by the device. (Note: chunked encoding MUST NOT be used if the control point supports
only HTTP 1.0).

Header fields

HOST
REQUIRED. Field value contains domain name or IP address and optional port components of delivery URL (CALLBACK
header field in subscription message). If the port is missing or empty, port 80 is assumed.

ACCEPT-LANGUAGE
(No ACCEPT-LANGUAGE header field is used in event messages.)

CONTENT-LENGTH
REQUIRED if Origin Server does not close the session after sending the response AND Origin Server does not send the
response using chunked encoding.

PROHIBITED if Origin Server sends the response using chunked encoding. OPTIONAL otherwise.

Field value specifies the length of the body in bytes. Integer.

TRANSFER-ENCODING
OPTIONAL for HTTP/1.1 and above. Field value specifies whether the response is chunked encoded by having field value
“chunked” (in the example above the body is sent in a single chunk). MUST NOT be specified if CONTENT-LENGTH
header field is present.

CONTENT-TYPE
REQUIRED. Field value MUST be “text/xml; charset="utf-8" ”

NT
REQUIRED. Field value contains Notification Type. MUST be upnp:event.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 88 —

NTS

REQUIRED. Field value contains Notification Sub Type. MUST be upnp:propchange.

SID
REQUIRED. Field value contains Subscription Identifier. MUST be universally unique. MUST begin with uuid:. Defined by
UPnP vendor. See clause 1.1.4, “UUID format and RECOMMENDED generation algorithms” for the MANDATORY UUID
format.

SEQ
REQUIRED. Field value contains Event Key. MUST be 0 for initial event message. MUST be incremented by 1 for each
event message sent to a particular subscriber. To prevent overflow, MUST be wrapped from 4294967295 to 1. 32-bit
unsigned value represented as a single decimal integer without leading zeroes (some implementations MAY include
leading zeroes, which SHOULD be ignored by the recipient).

Body

<propertyset>
REQUIRED. xmlns namespace attribute MUST be urn:schemas-upnp-org:event-1-0. Contains the following sub element:

≤property>
REQUIRED. Repeat once for each variable name and value in the event message. MUST be qualified by the
namespace prefix defined in the xmlns attribute of the <propertyset> element. Contains the following sub
element:

<variableName>
REQUIRED. Element is name of a state variable that changed (<name> sub element of
<stateVariable> element in service description). MUST NOT be qualified with any namespace.
Value is the new value for this state variable. Case sensitive. Single data type as specified by UPnP
service description.

For future extensibility and according to the requirements in clause 2.7, “Non-standard vendor
extensions” and clause 2.8, “UPnP Device Schema”, when processing XML like the listing
above, devices and control points MUST ignore: (a) any unknown elements and their sub
elements or content, and (b) any unknown attributes and their values. Note that when
subscribing to eventing with a service that is of a higher version than what is supported by the
control point, event notifications MAY be sent by the service to the control point containing
state variable names that are not recognized by the control point. The control point SHOULD
discard and ignore such unrecognized state variables within event notification messages.

When the new value of any variable contains one or more characters reserved as markup
(such as ampersand (“&”) or less than (“<”)), the text MUST be escaped in accordance with
the provisions of clause 2.4 of the XML specification and each such character replaced with
the equivalent numeric representation or string (such as “&” or “<”). Such characters
appearing in URLs that appear as values MAY also be percent-encoded in accordance with
the URL percent-encoding rules specified in clauses 2.1 and 2.4 of RFC 3986.

On a multi-homed device, all fully-qualified URLs contained in event body that refer to
resources on the device MUST be reachable on the UPnP-enabled interface on which the
event message is sent.

Subject to the constraints defined in clause 2.7, “Non-standard vendor extensions” and clause
2.8, “UPnP Device Schema”, control points and devices MUST ignore any XML comments or
XML processing instructions embedded in UPnP event messages that they do not understand.
Note that because HTTP 1.1 allows use of chunked encoding, some devices MAY send the
event notification using chunked encoding if the SUBSCRIBE request specified HTTP 1.1. It is
therefore RECOMMENDED that all implementations that include HTTP 1.1 in the SUBSCRIBE
request support receiving chunked encoding.

To acknowledge receipt of this event message, a subscriber MUST respond within 30
seconds, including expected transmission time. A multi-homed subscriber MUST send the
response using the same pair of UPnP-enabled interfaces used for the event message. If a
subscriber does not respond within 30 seconds, or if the publisher is unable to connect to the
subscription URL, the publisher SHOULD abandon sending this message to the subscriber
but MUST keep the subscription active and send future event messages to the subscriber
until the subscription expires or is cancelled. The subscriber MUST send a response in the
following format.

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 89 —

 HTTP/1.1 200 OK

Response line

HTTP/1.1
Highest HTTP version supported by the control point that is compatible with the device that sent the event message.

200 OK
HTTP defined status code indicating that no HTTP errors were detected.

 (No body for a request with method NOTIFY, but note that the message MUST have a blank
line following the last HTTP header field.)

If a device sends an event to a control point using HTTP/1.0 without the KeepAlive token, the
control point MUST close the socket after responding. If a device sends an event to a control
point using HTTP/1.1 and sets the Connection:CLOSE token, the control point MUST close
the socket after responding.

If there is an error with the event message, the subscriber MUST respond with one of the
following errors. The response MUST be sent within 30 seconds, including expected
transmission time.

Table 4-7: — HTTP Status Codes indicating a Notify Error

ErrorCode errorDescription Description

400 Bad request The NT or NTS header field is missing;
or the request is malformed.

412 Precondition Failed An SID does not correspond to a known, un-expired subscription;
or the NT header field does not equal upnp:event;
or the NTS header field does not equal upnp:propchange;
or the SID header field is missing or empty.

Other errors, including other HTTP status codes, MAY be returned by layers in the protocol
stack below the UPnP protocols. Consult documentation on those protocols for details.

4.3.3 Multicast Eventing: Event messages: NOTIFY
To send a multicast event message, a publisher MUST send a message with method NOTIFY
using the following format. The following example illustrates an event message using the
CONTENT-LENGTH header. Values in italics are placeholders for actual values.

A multi-homed publisher MUST multicast the event message on each of its UPnP-enabled
interfaces. Event messages sent on different UPnP-enabled interfaces that have the same
sequence number MUST contain the same content except for possibly the HOST header field
and any fully-qualified URLs contained in the event body. The HOST header field of an
advertisement MUST be the standard multicast eventing address specified for the protocol
(IPv4 or IPv6) used on the interface. All fully-qualified URLs contained in the event body that
refer to resources on the device MUST be reachable on the UPnP-enabled interface on which
the event message is sent.

Note: XML namespace prefixes do not have to be the specific example shown below (e.g., “s”
or “u”); they can be any value that obeys the rules of the general XML namespace mechanism;
control points MUST accept event messages that use other legal XML namespace prefixes.

Multicast event message using the CONTENT-LENGTH header – Valid with HTTP/1.0 or
HTTP/1.1

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 90 —

 NOTIFY * HTTP/1.0
 HOST: 239.255.255.246:7900 *** note the port number is different than SSDP ***
 CONTENT-TYPE: text/xml; charset="utf-8"
 USN: Unique Service Name for the publisher
 SVCID: ServiceID from SCPD
 NT: upnp:event
 NTS: upnp:propchange
 SEQ: monotonically increasing sequence count
 LVL: event importance
 BOOTID.UPNP.ORG: number increased each time device sends an initial announce or update
message
 CONTENT-LENGTH: bytes in body <?xml version="1.0"?>
 <e:propertyset xmlns:e="urn:schemas-upnp-org:event-1-0">
 <e:property>
 <variableName>new value</variableName>
 </e:property>
 <!-- Other variable names and values (if any) go here. -->
 </e:propertyset>

Listed below are details for the request line, header fields, and body elements appearing in
the listing above. Field names are not case sensitive. All field values are case sensitive
except where noted. All body elements and attributes are case sensitive; body values are not
case sensitive except where noted. Except where noted, REQUIRED elements MUST occur
exactly once (no duplicates), and RECOMMENDED or OPTIONAL elements MAY occur at
most once. In particular, a single propertyset element MUST NOT include more than one
property element that specifies the same variableName element; separate event notification
messages MUST be used.

Request line
MUST be “NOTIFY * HTTP/1.1”

Header fields

HOST
REQUIRED. Field value MUST be 239.255.255.246:7900. Please note that port number 7900 is different from SSDP
port number 1900.

CONTENT-LENGTH
REQUIRED. Field value specifies the length of the body in bytes. Integer. Chunked encoding MUST NOT be used for
multicast event messages.

CONTENT-TYPE
REQUIRED. Field value MUST be “text/xml; charset="utf-8" ”.

USN
REQUIRED. Field value contains Unique Service Name for the publisher. Identifies a unique instance of a service in a
unique instance of a device. It MUST be one of the following forms. The prefix (before the double colon) MUST match the
value of the UDN element in the device description. (Clause 2, “Description” explains the UDN element.) Single URI.

uuid:device-UUID::urn:schemas-upnp-org:service:serviceType:ver
where device-UUID is specified by the UPnP vendor; serviceType and ver are defined by the UPnP Forum
working committee. See clause 1.1.4, “UUID format and RECOMMENDED generation algorithms” for the
MANDATORY UUID format.

uuid:device-UUID::urn:domain-name:service:serviceType:ver
where device-UUID, domain-name, serviceType and ver are defined by the UPnP vendor. See clause 1.1.4,
“UUID format and RECOMMENDED generation algorithms” for the MANDATORY UUID format. Period
characters in the domain name MUST be replaced by hyphens in accordance with RFC 2141.

SVCID
REQUIRED. Field value contains ServiceID from the SCPD to uniquely identify which service generated the event. As
defined in clause 2.2, “Generic requirements on XML usage”

NT
REQUIRED. Field value contains Notification Type. MUST be upnp:event.

NTS
REQUIRED. Field value contains Notification Sub Type. MUST be upnp:propchange.

SEQ

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

XXXX: © IEC:2010 — 91 —

REQUIRED. Field value contains Event Key. The numeric sequence count MUST be 0 for initial multicast event message.
MUST be incremented by 1 for each multicast event message per a service; however, when a multicast message is
retransmitted, it MUST be sent with its original event key. To prevent overflow, MUST be wrapped from 4294967295 to 1.
32-bit unsigned value represented as a single decimal integer without leading zeroes (leading zeroes, if present, MUST be
ignored by the recipient).

LVL
REQUIRED. Field value MUST be a string in UTF-8. Event level allows the receiver to first level filter messages based on
the value and is defined by the UPnP Technical Committee. See Table 4-8, “Multicast event levels” for the Event Levels
defined with this version of the UPnP architecture. UPnP Working Committees MUST specify event level values when
defining events that will be multicast.

The following table summarizes defined event levels and the expected meaning of those values. Event levels defined by
the UPnP Forum Technical Committee start with the prefix “upnp:”. Vendor and other extensions outside the UPnP Forum
MUST be prefixed by the domain name of the defining organization. For example: “domain.org:/alerts/level/”

Table 4-8: — Multicast event levels

Event Level Description

upnp:/emergency The event carries critical information that the
device SHOULD act upon immediately.

upnp:/fault The event carries information related to an
error case

upnp:/warning The event carries information that is a non-
critical condition that the device MAY want to
process or pass to the user

upnp:/info The event carries information about the normal
operation of the device that may be of interest
to end-users. This information is simply
informative and does not indicate any abnormal
condition or status such as a warning or fault.
Other event levels are defined for those
purposes.

upnp:/debug The event carries debug information typically
used by programmers and test engineers to
evaluate the internal operation of the device.
This information is typically not displayed to
end users.

upnp:/general For events that fit into no other defined
category

<domain>:/<level> Example vendor extension. Domain is the ICANN
domain name for the vendor and level is an
arbitrary string defined by the vendor. E.g.
domain.org:/alerts/type/

BOOTID.UPNP.ORG
REQUIRED. As defined in clause 1.2, and 1.2.2.

Body

<propertyset>
REQUIRED. xmlns namespace MUST be “urn:schemas-upnp-org:event-1-0”. Contains the following sub element:

<property>
REQUIRED. Repeat once for each variable name and value in the event message. MUST be qualified by the
namespace prefix defined in the xmlns attribute of the <propertyset> element. Contains the following sub
element:

<variableName>
REQUIRED. Element is name of a state variable that changed (name sub element of stateVariable
element in service description). MUST NOT be qualified with any namespace. Value is the new value
for this state variable. Case sensitive. Single data type as specified by UPnP service description.

Note that for simplicity many of the header fields for multicast eventing are the same as for
unicast eventing. These include: HOST, CONTENT-TYPE, USN, NT, NTS, and SEQ. In
addition, the body of the message (propertyset) has the same format as unicast events.

For future extensibility and according to the requirements in clause 2.7, “Non-standard vendor
extensions” and clause 2.8, “UPnP Device Schema”, when processing XML like the listing
above, devices and control points MUST ignore: (a) any unknown elements and their sub

29341-1-1 © ISO/IEC:2011(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
34

1-1
-1:

20
11

https://standardsiso.com/api/?name=4cab817b07b859803c40de19545faf9a

