

INTERNATIONAL STANDARD ISO/IEC 23003-3:2012 TECHNICAL CORRIGENDUM 3

Published 2015-04-01

Corrected version 2016-10-01

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION • МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ • ORGANISATION INTERNATIONALE DE NORMALISATION
INTERNATIONAL ELECTROTECHNICAL COMMISSION • МЕЖДУНАРОДНАЯ ЭЛЕКТРОТЕХНИЧЕСКАЯ КОМИССИЯ • COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

Information technology — MPEG audio technologies —

Part 3: Unified speech and audio coding

TECHNICAL CORRIGENDUM 3

Technologies de l'information — Technologies audio MPEG —

Partie 3: Discours unifié et codage audio

RECTIFICATIF TECHNIQUE 3

Technical Corrigendum 3 to ISO/IEC 23003-3:2012 was prepared by Joint Technical Committee ISO/IEC JTC 1, *Information technology*, Subcommittee SC 29, *Coding of audio, picture, multimedia and hypermedia information*.

This corrected version of Technical Corrigendum 3 to ISO/IEC 23003-3:2012 contains 2 replacement formulae in the text concerning 7.17 to improve legibility.

In 5.2, Table 12, replace:

Syntax	No. of bits	Mnemonic
SbrDfltHeader()		
{		
dflt_start_freq;	4	uimsbf
dflt_stop_freq;	4	uimsbf
dflt_header_extra1;	1	uimsbf
dflt_header_extra2;	1	uimsbf
if (dflt_header_extra1 == 1) {		
dflt_freq_scale;	2	uimsbf
dflt_alter_scale;	1	uimsbf
dflt_noise_bands;	2	uimsbf
}		
if (dflt_header_extra2 == 1) {		
dflt_limiter_bands;	2	uimsbf
dflt_limiter_gains;	2	uimsbf
dflt_interpol_freq;	1	uimsbf
dflt_smoothing_mode;	1	uimsbf
}		

with:

Syntax	No. of bits	Mnemonic
SbrDfltHeader()		
{		
dflt_start_freq;	4	uimsbf
dflt_stop_freq;	4	uimsbf
dflt_header_extra1;	1	uimsbf
dflt_header_extra2;	1	uimsbf
if (dflt_header_extra1 == 1) {		
dflt_freq_scale;	2	uimsbf
dflt_alter_scale;	1	uimsbf
dflt_noise_bands;	2	uimsbf
} else {		
dflt_freq_scale = 2;		
dflt_alter_scale = 1;		
dflt_noise_bands = 2;		
}		
if (dflt_header_extra2 == 1) {		
dflt_limiter_bands;	2	uimsbf
dflt_limiter_gains;	2	uimsbf
dflt_interpol_freq;	1	uimsbf
dflt_smoothing_mode;	1	uimsbf
} else {		
dflt_limiter_bands = 2;		
dflt_limiter_gains = 2;		
dflt_interpol_freq = 1;		
dflt_smoothing_mode = 1;		
}		

In 5.3.2 replace:

Table 27 – Syntax of tw_data()

Syntax	No. of bits	Mnemonic
<pre>tw_data() { tw_data_present; if (tw_data_present == 1) { for (i = 1 ; i < NUM_TW_NODES ; i++) { tw_ratio[i]; } } }</pre>	1 3	uimsbf uimsbf

with

Table 27 – Syntax of tw_data()

Syntax	No. of bits	Mnemonic
<pre>tw_data() { tw_data_present; if (tw_data_present == 1) { for (i = 0 ; i < NUM_TW_NODES ; i++) { tw_ratio[i]; } } }</pre>	1 3	uimsbf uimsbf

In 5.3.3, Table 45 replace:

```
sbr_grid(0, 0);
sbr_dtdf(0,0, indepFlag);
sbr_dtdf(1,0, indepFlag);
sbr_invf(0);
```

[...]

```
}
```

with:

```

sbr_grid(0, 0);
if(!bs_coupling) sbr_grid(1, 0);
sbr_dtdf(0, 0, indepFlag);
sbr_dtdf(1, 0, indepFlag);
sbr_invf(0);
if(!bs_coupling) sbr_invf(1);

```

NOTE 1

NOTE 1

[...]

```

}
}
```

NOTE 1: In coupling mode only the data for channel 0 is read. This data shall be copied to the same syntax element for channel 1.

In 5.3.3, Table 46 replace:

```
switch (bs_frame_class) {
```

2

uimsbf

with:

```
switch (bs_frame_class[ch]) {
```

2

uimsbf

In 5.3.3, Table 46, delete:

```

if (bs_num_env[ch] == 1)
    bs_amp_res = 0;
```

In 5.3.3, Table 47, replace:

Syntax	No. of bits	Mnemonic
<pre> sbr_envelope(ch, bs_coupling, bs_amp_res) { if (bs_coupling) { if (ch) { if (bs_amp_res) {</pre>		

[...]

with:

Syntax	No. of bits	Mnemonic
<pre>sbr_envelope(ch, bs_coupling, bs_amp_res) { amp_res = bs_amp_res; if (bs_frame_class[ch] == FIXFIX && bs_num_env[ch] == 1) { amp_res = 0; } if (bs_coupling) { if (ch) {</pre>		

[...]

Further, replace "bs_amp_res" with "amp_res" in the rest of the syntax element `sbr_envelope()`.

In 7.5.5.2, add to the requirements:

- The largest interval from the f_{Master} , i.e. $f_{Master}(N_{Master}) - f_{Master}(N_{Master} - 1)$ shall satisfy $f_{Master}(N_{Master}) - f_{Master}(N_{Master} - 1) \leq k_0 - 2$

In 7.13.3 replace:

In addition to the 1 to 4 LPC filters of the superframe, an optional LPC0 is transmitted for the first super-frame of each segment encoded using the LPD core codec. This is indicated to the LPC decoding procedure by a flag `first_lpd_flag` set to 1.

with:

In addition to the 1 to 4 LPC filters of the superframe, an optional LPC0 is transmitted for the first super-frame of each segment encoded using the LPD core codec. This is indicated to the LPC decoding procedure by a flag `first_lpd_flag` set to 1. In case of `first_lpd_flag==0`, LPC0 shall be equal to LPC4 of the previous super frame.

In 7.14.4, replace:

In case of a transition from FD to ACELP, the past excitation buffer $u'(n)$ and the buffer containing the past pre-emphasized synthesis $\hat{s}(n)$ are updated using the past FD synthesis (including FAC) and LPC0 prior to the decoding of the ACELP excitation.

with:

In case of a transition from FD to LPD, the past excitation buffer $u'(n)$ and the buffer containing the past pre-emphasized synthesis $\hat{s}(n)$ are updated using the past FD synthesis (including FAC or the overlapped TCX-signal) and LPC0 prior to the decoding of the ACELP excitation.

In 7.14.5.1, replace:

When the pitch value is encoded on 6 bits, a pitch resolution of 1/4 is always used in the range $[T1-8, T1+7\frac{3}{4}]$, where $T1$ is nearest integer to the fractional pitch lag of the previous subframe.

With:

When the pitch value is encoded with 6 bits, a pitch resolution of 1/4 is always used in the range $[T1-8, T1+7\frac{3}{4}]$, where $T1$ is the rounded down integer of the fractional pitch lag of the previous subframe. To be able to use as many different pitch lags as possible $T1$ has to be between $TMIN+8$ and $TMAX-7$. So in case $T1 < TMIN+8$ set $T1=TMIN+8$, just as if $T1 > TMAX-7$ set $T1=TMAX-7$.

In 7.14.6.3, replace:

$$c'(n) = c(n) - c_{pe}(c(n+1) + c(n-1))$$

(...)

$$u(n) = \hat{g}_p v(n) + \hat{g}_{sc} c(n) - \hat{g}_{sc} c_{pe}(c(n+1) + c(n-1))$$

With:

$$c'(n) = \begin{cases} c(0) - c_{pe}c(1) & \text{if } n = 0 \\ c(n) - c_{pe}(c(n+1) + c(n-1)) & \text{if } 0 < n < 63 \\ c(63) - c_{pe}c(62) & \text{if } n = 63 \end{cases}$$

(...)

$$u(n) = \begin{cases} \hat{g}_p v(0) + \hat{g}_{sc} c(0) - \hat{g}_{sc} c_{pe} c(1) & \text{if } n = 0 \\ \hat{g}_p v(n) + \hat{g}_{sc} c(n) - \hat{g}_{sc} c_{pe}(c(n+1) + c(n-1)) & \text{if } 0 < n < 63 \\ \hat{g}_p v(63) + \hat{g}_{sc} c(63) - \hat{g}_{sc} c_{pe} c(62) & \text{if } n = 63 \end{cases}$$

After the following paragraph in 7.17:

After LP synthesis, the reconstructed signal can be post-processed using low-frequency pitch enhancement. The received bass-post filter control information controls whether bass-post filtering which results in a pitch enhancement in the low frequency range is enabled or not. For speech signals, the post processing filter reduces inter-harmonic noise in the decoded signal, which leads to an improved quality. However, for music signals, which are commonly of multi-pitch nature, the post filtering may suppress signal components that reside below the dominating pitch frequency or between its harmonics. For the post filtering a two-band decomposition is used and adaptive filtering is applied only to the lower band. This results in a total post-processing that is mostly targeted at frequencies near the first harmonics of the synthesized signal.

Add:

To avoid additional delay due to bass-post filtering, bass-post filter operation is modified for high values of T. Therefore, T_{lim} is defined as follows.

In case of LPD:

- For the first $\frac{M}{2} + 64$ samples of a superframe:

$$T_{\text{lim}} = M - L_{\text{fac}} - N_z$$

- For the last $\frac{M}{2} - 64$ samples of a superframe:

$$T_{\text{lim}} = 2M - L_{\text{fac_next}} - N_z$$

In case of FD (the FAC-area):

$$T_{\text{lim}} = \frac{M}{2} - N_z$$

Where $M = \text{coreCoderFrameLength}$, L_{fac} is the length of the FAC area from the last frame of the current superframe. With $L_{\text{fac}} = 0$ for ACELP and $L_{\text{fac}} = 96/128$ for TCX ($\text{coreCoderFrameLength} = 768/1024$). $L_{\text{fac_next}}$ is the length of the FAC area from the last frame of the next superframe. N_z is the number of samples of the superframe up to and including the sample currently being bass post filtered.

And in chapter 7.17 replace:

[...] where $P_{LT}(z)$ is the transfer function of the long-term predictor filter given by

$$P_{LT}(z) = 1 - 0.5z^T - 0.5z^{-T}$$

with:

[...] where $P_{LT}(z)$ is the transfer function of the long-term predictor filter given by

$$P_{LT}(z) = \begin{cases} 1 - 0.5z^T - 0.5z^{-T} & , \text{if } T \leq T_{\text{lim}} \\ 1 - z^{-T} & , \text{if } T > T_{\text{lim}} \end{cases}$$