

Reference number
ISO/IEC 14496-29:2015(E)

© ISO/IEC 2015

INTERNATIONAL
STANDARD

ISO/IEC
14496-29

First edition
2015-04-01

Information technology — Coding of
audio-visual objects —

Part 29:
Web video coding

Technologies de l'information — Codage des objets audiovisuels —

Partie 29: Codage vidéo Web

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any
means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission.
Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.

ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

© ISO/IEC 2014 – All rights reserved iii

Contents Page

1 Scope ...1
2 Normative references ...1
3 Definitions...1
4 Abbreviations ...7
5 Conventions ..8

5.1 Arithmetic operators .. 8
5.2 Logical operators ... 8
5.3 Relational operators ... 8
5.4 Bit-wise operators .. 9
5.5 Assignment operators ... 9
5.6 Range notation ... 9
5.7 Mathematical functions .. 9
5.8 Order of operation precedence.. 10
5.9 Variables, syntax elements, and tables .. 11
5.10 Text description of logical operations ... 12
5.11 Processes ... 13

6 Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships 13
6.1 Bitstream formats .. 13
6.2 Source, decoded, and output picture formats ... 14
6.3 Spatial subdivision of pictures and slices .. 15
6.4 Inverse scanning processes and derivation processes for neighbours ... 16

7 Syntax and semantics ... 26
7.1 Normative Syntax and Semantics ... 26
7.2 Specification of syntax functions, categories, and descriptors .. 28
7.3 Syntax in tabular form.. 30
7.4 Semantics .. 42

8 Decoding process .. 70
8.1 NAL unit decoding process .. 71
8.2 Slice decoding process ... 72
8.3 Intra prediction process .. 82
8.4 Inter prediction process .. 95
8.5 Transform coefficient decoding process and picture construction process prior to deblocking filter process . 107
8.6 (void) .. 118
8.7 Deblocking filter process ... 118

9 Parsing process ... 126
9.1 Parsing process for Exp-Golomb codes .. 127
9.2 CAVLC parsing process for transform coefficient levels... 131

 Annex A (normative) Profiles and levels ... 142
A.1 Requirements on video decoder capability .. 142
A.2 Profiles .. 142
A.3 Levels .. 143

 Annex B (normative) Byte stream format... 155
B.1 Byte stream NAL unit syntax and semantics ... 155
B.2 Byte stream NAL unit decoding process ... 156
B.3 Decoder byte-alignment recovery (informative) .. 156

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

iv © ISO/IEC 2015 – All rights reserved

 Annex C (normative) Hypothetical reference decoder ... 158
C.1 Operation of coded picture buffer (CPB) ... 161
C.2 Operation of the decoded picture buffer (DPB) .. 163
C.3 Bitstream conformance ... 165
C.4 Decoder conformance ... 166

 Annex D (normative) Supplemental enhancement information .. 170
 Annex E (normative) Video usability information ... 171

E.1 VUI syntax ... 172
E.2 VUI semantics .. 173

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved v

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work. In the field of information technology, ISO and IEC have established a joint
technical committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for
the different types of document should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights. Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does
not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO's adherence to the WTO principles in the Technical
Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/IEC JTC 1, Information technology, SC 29,
Coding of audio, picture, multimedia and hypermedia information.

ISO/IEC 14496 consists of the following parts, under the general title Information technology — Coding of
audio-visual objects:

— Part 1: Systems

— Part 2: Visual

— Part 3: Audio

— Part 4: Conformance testing

— Part 5: Reference software

— Part 6: Delivery Multimedia Integration Framework (DMIF)

— Part 7: Optimized reference software for coding of audio-visual objects

— Part 8: Carriage of ISO/IEC 14496 contents over IP networks

— Part 9: Reference hardware description

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

http://www.iso.org/iso/home/standards_development/resources-for-technical-work/foreword.htm
https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

vi © ISO/IEC 2015 – All rights reserved

— Part 10: Advanced Video Coding

— Part 11: Scene description and application engine

— Part 12: ISO base media file format

— Part 13: Intellectual Property Management and Protection (IPMP) extensions

— Part 14: MP4 file format

— Part 15: Advanced Video Coding (AVC) file format

— Part 16: Animation Framework eXtension (AFX)

— Part 17: Streaming text format

— Part 18: Font compression and streaming

— Part 19: Synthesized texture stream

— Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF)

— Part 21: MPEG-J Graphics Framework eXtensions (GFX)

— Part 22: Open Font Format

— Part 23: Symbolic Music Representation

— Part 24: Audio and systems interaction

— Part 25: 3D Graphics Compression Model

— Part 26: Audio conformance

— Part 27: 3D Graphics conformance

— Part 28: Composite font representation

— Part 29: Web video coding

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved vii

Introduction

This International Standard specifies Web Video Coding, a technology that is compatible with the Constrained
Baseline Profile of ISO/IEC 14996-10. Only the subset that is specified in Annex A for the Constrained Baseline
Profile is a normative specification, while all remaining aspects are informative. This text is derived from ISO/IEC
14996-10, with which the section numbers in this specification are aligned, and that specification may additionally
be consulted if desired, as an aid to understanding this Specification.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

INTERNATIONAL STANDARD ISO/IEC 14496-29:2015(E)

© ISO/IEC 2015 – All rights reserved 1

Information technology — Coding of audio-visual objects —
Part 29: Web video coding

1 Scope

This Part of ISO/IEC 14496 specifies Web Video Coding for coding of audio-visual objects.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the
edition cited applies. For undated references, the latest edition of the referenced document (including any amendments)
applies.

– ISO 11664-1, Colorimetry — Part 1: CIE standard colorimetric observers.

– ISO/IEC 14496-10: Information technology – Coding of audio-visual objects – Part 10: Advanced Video
Coding

3 Definitions

For the purposes of this document, the following definitions apply:

3.1 access unit: A set of NAL units that are consecutive in decoding order and contain exactly one primary coded
picture. In addition to the primary coded picture, an access unit may also contain one auxiliary coded picture, or
other NAL units not containing slices of a coded picture. The decoding of an access unit always results in a decoded
picture.

3.2 AC transform coefficient: Any transform coefficient for which the frequency index in one or both dimensions is
non-zero.

3.3 bitstream: A sequence of bits that forms the representation of coded pictures and associated data forming one or
more coded video sequences. Bitstream is a collective term used to refer either to a NAL unit stream or a byte
stream.

3.4 block: An MxN (M-column by N-row) array of samples, or an MxN array of transform coefficients.

3.5 [void]

3.6 broken link: A location in a bitstream at which it is indicated that some subsequent pictures in decoding order may
contain serious visual artefacts due to unspecified operations performed in the generation of the bitstream.

3.7 byte: A sequence of 8 bits, written and read with the most significant bit on the left and the least significant bit on
the right. When represented in a sequence of data bits, the most significant bit of a byte is first.

3.8 byte-aligned: A position in a bitstream is byte-aligned when the position is an integer multiple of 8 bits from the
position of the first bit in the bitstream. A bit or byte or syntax element is said to be byte-aligned when the position
at which it appears in a bitstream is byte-aligned.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

2 © ISO/IEC 2015 – All rights reserved

3.9 byte stream: An encapsulation of a NAL unit stream containing start code prefixes and NAL units as specified in
Annex B.

3.10 can: A term used to refer to behaviour that is allowed, but not necessarily required.

3.11 [void]

3.12 chroma: An adjective specifying that a sample array or single sample is representing one of the two colour
difference signals related to the primary colours. The symbols used for a chroma array or sample are Cb and Cr.

NOTE – The term chroma is used rather than the term chrominance in order to avoid the implication of the use of linear
light transfer characteristics that is often associated with the term chrominance.

3.13 coded frame: A coded representation of a frame.

3.14 coded picture: A coded representation of a picture.

3.15 coded picture buffer (CPB): A first-in first-out buffer containing access units in decoding order specified in the
hypothetical reference decoder in Annex C.

3.16 coded representation: A data element as represented in its coded form.

3.17 [void]

3.18 coded slice NAL unit: A NAL unit containing a slice that is not a slice of an auxiliary coded picture.

3.19 coded video sequence: A sequence of access units that consists, in decoding order, of an IDR access unit followed
by zero or more non-IDR accessunits including all subsequent access units up to but not including any subsequent
IDR access unit.

3.20 component: An array or single sample from one of the three arrays (luma and two chroma) that make up a frame in
4:2:0 colour format.

3.21 DC transform coefficient: A transform coefficient for which the frequency index is zero in all dimensions.

3.22 decoded picture: A decoded picture is derived by decoding a coded picture. A decoded picture is a decoded frame.

3.23 decoded picture buffer (DPB): A buffer holding decoded pictures for reference, output reordering, or output delay
specified for the hypothetical reference decoder in Annex C.

3.24 decoder: An embodiment of a decoding process.

3.25 decoder under test (DUT): A decoder that is tested for conformance to this International Standard by operating
the hypothetical stream scheduler to deliver a conforming bitstream to the decoder and to the hypothetical
reference decoder and comparing the values and timing of the output of the two decoders.

3.26 decoding order: The order in which syntax elements are processed by the decoding process.

3.27 decoding process: The process specified in this International Standard that reads a bitstream and derives decoded
pictures from it.

3.28 [void]

3.29 display process: A process not specified in this International Standard having, as its input, the cropped decoded
pictures that are the output of the decoding process.

3.30 emulation prevention byte: A byte equal to 0x03 that may be present within a NAL unit. The presence of
emulation prevention bytes ensures that no sequence of consecutive byte-aligned bytes in the NAL unit contains a
start code prefix.

3.31 encoder: An embodiment of an encoding process.

3.32 encoding process: A process, not specified in this International Standard, that produces a bitstream conforming to
this International Standard.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 3

3.33 flag: A variable that can take one of the two possible values 0 and 1.

3.34 frame: A frame contains an array of luma samples and two corresponding arrays of chroma samples in 4:2:0
format.

3.35 frame macroblock: A macroblock representing samples of a coded frame. All macroblocks of a coded frame are
frame macroblocks.

3.36 [void]

3.37 frequency index: A one-dimensional or two-dimensional index associated with a transform coefficient prior to an
inverse transform part of the decoding process.

3.38 hypothetical reference decoder (HRD): A hypothetical decoder model that specifies constraints on the variability
of conforming NAL unit streams or conforming byte streams that an encoding process may produce.

3.39 hypothetical stream scheduler (HSS): A hypothetical delivery mechanism for the timing and data flow of the
input of a bitstream into the hypothetical reference decoder. The HSS is used for checking the conformance of a
bitstream or a decoder.

3.40 I slice: A slice that is decoded using intra prediction only.

3.41 informative: A term used to refer to content provided in this International Standard that is not an integral part of
this International Standard. Informative content does not establish any mandatory requirements for conformance to
this International Standard.

3.42 instantaneous decoding refresh (IDR) access unit: An access unit in which the primary coded picture is an IDR
picture.

3.43 instantaneous decoding refresh (IDR) picture: A coded picture for which the variable IdrPicFlag is equal to 1.
An IDR picture causes the decoding process to mark all reference pictures as "unused for reference" immediately
after the decoding of the IDR picture. All coded pictures that follow an IDR picture in decoding order can be
decoded without inter prediction from any picture that precedes the IDR picture in decoding order. The first
picture of each coded video sequence in decoding order is an IDR picture.

3.44 inter coding: Coding of a block, macroblock, slice, or picture that uses inter prediction.

3.45 inter prediction: A prediction derived from decoded samples of reference pictures other than the current decoded
picture.

3.46 interpretation sample value: A possibly-altered value corresponding to a decoded sample value of an auxiliary
coded picture that may be generated for use in the display process. Interpretation sample values are not used in the
decoding process and have no normative effect on the decoding process.

3.47 intra coding: Coding of a block, macroblock, slice, or picture that uses intra prediction.

3.48 intra prediction: A prediction derived from the decoded samples of the same decoded slice.

3.49 intra slice: See I slice.

3.50 inverse transform: A part of the decoding process by which a set of transform coefficients are converted into
spatial-domain values, or by which a set of transform coefficients are converted into DC transform coefficients.

3.51 layer: One of a set of syntactical structures in a non-branching hierarchical relationship. Higher layers contain
lower layers. The coding layers are the coded video sequence, picture, slice, and macroblock layers.

3.52 level: A defined set of constraints on the values that may be taken by the syntax elements and variables of this
International Standard. The same set of levels is defined for all profiles, with most aspects of the definition of each
level being in common across different profiles. Individual implementations may, within specified constraints,
support a different level for each supported profile. In a different context, a level is the value of a transform
coefficient prior to scaling (see the definition of transform coefficient level).

3.53 list: A one-dimensional array of syntax elements or variables.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

4 © ISO/IEC 2015 – All rights reserved

3.54 luma: An adjective specifying that a sample array or single sample is representing the monochrome signal related
to the primary colours. The symbol or subscript used for luma is Y or L.

NOTE – The term luma is used rather than the term luminance in order to avoid the implication of the use of linear light
transfer characteristics that is often associated with the term luminance. The symbol L is sometimes used instead of the
symbol Y to avoid confusion with the symbol y as used for vertical location.

3.55 macroblock: A 16x16 block of luma samples and two corresponding blocks of chroma samples of a picture that
has three sample arrays, or a 16x16 block of samples of a monochrome picture or a picture that is coded using three
separate colour planes. The division of a slice into macroblocks is a partitioning.

3.56 macroblock address: a macroblock address is the index of a macroblock in a macroblock raster scan of the picture
starting with zero for the top-left macroblock in a picture.

3.57 macroblock location: The two-dimensional coordinates of a macroblock in a picture denoted by (x, y). For the
top left macroblock of the picture (x, y) is equal to (0, 0). x is incremented by 1 for each macroblock column
from left to right. y is incremented by 1 for each macroblock row from top to bottom.

3.58 macroblock partition: A block of luma samples and two corresponding blocks of chroma samples resulting from a
partitioning of a macroblock for inter prediction for a picture that has three sample arrays or a block of luma
samples resulting from a partitioning of a macroblock for inter prediction for a monochrome picture or a picture
that is coded using three separate colour planes.

3.59 matrix: A two-dimensional array of syntax elements or variables.

3.60 may: A term used to refer to behaviour that is allowed, but not necessarily required. In some places where the
optional nature of the described behaviour is intended to be emphasized, the phrase "may or may not" is used to
provide emphasis.

3.61 memory management control operation: Seven operations that control reference picture marking.

3.62 motion vector: A two-dimensional vector used for inter prediction that provides an offset from the coordinates in
the decoded picture to the coordinates in a reference picture.

3.63 must: A term used in expressing an observation about a requirement or an implication of a requirement that is
specified elsewhere in this International Standard. This term is used exclusively in an informative context.

3.64 NAL unit: A syntax structure containing an indication of the type of data to follow and bytes containing that data
in the form of an RBSP interspersed as necessary with emulation prevention bytes.

3.65 NAL unit stream: A sequence of NAL units.

3.66 non-reference frame: A frame coded with nal_ref_idc equal to 0.

3.67 non-reference picture: A picture coded with nal_ref_idc equal to 0. A non-reference picture is not used for inter
prediction of any other pictures.

3.68 note: A term used to prefix informative remarks. This term is used exclusively in an informative context.

3.69 output order: The order in which the decoded pictures are output from the decoded picture buffer.

3.70 P slice: A slice that may be decoded using intraprediction or inter prediction using at most one motion vector and
reference index to predict the sample values of each block.

3.71 parameter: A syntax element of a sequence parameter set or a picture parameter set. Parameter is also used as part
of the defined term quantisation parameter.

3.72 partitioning: The division of a set into subsets such that each element of the set is in exactly one of the subsets.

3.73 picture: A collective term for a frame.

3.74 picture parameter set: A syntax structure containing syntax elements that apply to zero or more entire coded
pictures as determined by the pic_parameter_set_id syntax element found in each slice header.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 5

3.75 picture order count: A variable that is associated with each coded picture and has a value that is non-decreasing
with increasing picture position in output order relative to the first output picture of the previous IDR picture in
decoding order or relative to the previous picture, in decoding order, that contains a memory management control
operation that marks all reference pictures as "unused for reference".

3.76 prediction: An embodiment of the prediction process.

3.77 prediction process: The use of a predictor to provide an estimate of the sample value or data element currently
being decoded.

3.78 predictive slice: See P slice.

3.79 predictor: A combination of specified values or previously decoded sample values or data elements used in the
decoding process of subsequent sample values or data elements.

3.80 primary coded picture: The coded representation of a picture to be used by the decoding process for a bitstream
conforming to this International Standard. The primary coded picture contains all macroblocks of the picture. The
only pictures that have a normative effect on the decoding process are primary coded pictures. e.

3.81 profile: A specified subset of the syntax of this International Standard.

3.82 quantisation parameter: A variable used by the decoding process for scaling of transform coefficient levels.

3.83 random access: The act of starting the decoding process for a bitstream at a point other than the beginning of the
stream.

3.84 raster scan: A mapping of a rectangular two-dimensional pattern to a one-dimensional pattern such that the first
entries in the one-dimensional pattern are from the first top row of the two-dimensional pattern scanned from left to
right, followed similarly by the second, third, etc., rows of the pattern (going down) each scanned from left to right.

3.85 raw byte sequence payload (RBSP): A syntax structure containing an integer number of bytes that is encapsulated
in a NAL unit. An RBSP is either empty or has the form of a string of data bits containing syntax elements followed
by an RBSP stop bit and followed by zero or more subsequent bits equal to 0.

3.86 raw byte sequence payload (RBSP) stop bit: A bit equal to 1 present within a raw byte sequence payload (RBSP)
after a string of data bits. The location of the end of the string of data bits within an RBSP can be identified by
searching from the end of the RBSP for the RBSP stop bit, which is the last non-zero bit in the RBSP.

3.87 recovery point: A point in the bitstream at which the recovery of an exact or an approximate representation of the
decoded pictures represented by the bitstream is achieved after a random access or broken link.

3.88 reference frame: A reference frame may be used for inter prediction when P slices of a coded frame are decoded.
See also reference picture.

3.89 reference index: An index into a reference picture list.

3.90 reference picture: A picture with nal_ref_idc not equal to 0. A reference picture contains samples that may be
used for inter prediction in the decoding process of subsequent pictures in decoding order.

3.91 reference picture list: A list of reference pictures that is used for inter prediction of a P slice. For the decoding
process of a P slice, there is one reference picture list.

3.92 reference picture list 0: A reference picture list used for inter prediction of a Pslice. All inter prediction used for
P slices uses reference picture list 0.

3.93 reference picture marking: Specifies, in the bitstream, how the decoded pictures are marked for inter prediction.

3.94 reserved: The term reserved, when used in the clauses specifying some values of a particular syntax element, are
for future use by ITU-T | ISO/IEC. These values shall not be used in bitstreams conforming to this
International Standard, but may be used in future extensions of this International Standard by ITU-T | ISO/IEC.

3.95 residual: The decoded difference between a prediction of a sample or data element and its decoded value.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

6 © ISO/IEC 2015 – All rights reserved

3.96 run: A number of consecutive data elements represented in the decoding process. In one context, the number of
zero-valued transform coefficient levels preceding a non-zero transform coefficient level in the list of transform
coefficient levels generated by a zig-zag scan. In other contexts, run refers to a number of macroblocks.

3.97 sample aspect ratio: Specifies, for assisting the display process, which is not specified in this International
Standard, the ratio between the intended horizontal distance between the columns and the intended vertical distance
between the rows of the luma sample array in a frame. Sample aspect ratio is expressed as h:v, where h is horizontal
width and v is vertical height (in arbitrary units of spatial distance).

3.98 scaling: The process of multiplying transform coefficient levels by a factor, resulting in transform coefficients.

3.99 sequence parameter set: A syntax structure containing syntax elements that apply to zero or more entire coded
video sequences as determined by the content of a seq_parameter_set_id syntax element found in the picture
parameter set referred to by the pic_parameter_set_id syntax element found in each slice header.

3.100 shall: A term used to express mandatory requirements for conformance to this International Standard. When used
to express a mandatory constraint on the values of syntax elements or on the results obtained by operation of the
specified decoding process, it is the responsibility of the encoder to ensure that the constraint is fulfilled. When
used in reference to operations performed by the decoding process, any decoding process that produces identical
results to the decoding process described herein conforms to the decoding process requirements of this
International Standard.

3.101 should: A term used to refer to behaviour of an implementation that is encouraged to be followed under anticipated
ordinary circumstances, but is not a mandatory requirement for conformance to this International Standard.

3.102 skipped macroblock: A macroblock for which no data is coded other than an indication that the macroblock is to
be decoded as "skipped". This indication may be common to several macroblocks.

3.103 slice: An integer number of macroblocks ordered consecutively in the raster scan within the primary coded picture.
The macroblock addresses are derived from the first macroblock address in a slice (as represented in the slice
header) and, when a picture is coded using three separate colour planes, a colour plane identifier.

3.104 [void]

3.105 [void]

3.106 slice header: A part of a coded slice containing the data elements pertaining to the first or all macroblocks
represented in the slice.

3.107 source: Term used to describe the video material or some of its attributes before encoding.

3.108 start code prefix: A unique sequence of three bytes equal to 0x000001 embedded in the byte stream as a prefix to
each NAL unit. The location of a start code prefix can be used by a decoder to identify the beginning of a new NAL
unit and the end of a previous NAL unit. Emulation of start code prefixes is prevented within NAL units by the
inclusion of emulation prevention bytes.

3.109 string of data bits (SODB): A sequence of some number of bits representing syntax elements present within a raw
byte sequence payload prior to the raw byte sequence payload stop bit. Within an SODB, the left-most bit is
considered to be the first and most significant bit, and the right-most bit is considered to be the last and least
significant bit.

3.110 sub-macroblock: One quarter of the samples of a macroblock, i.e., an 8x8 luma block and two corresponding
chroma blocks of which one corner is located at a corner of the macroblock for a picture that has three sample
arrays or an 8x8 luma block of which one corner is located at a corner of the macroblock for a monochrome picture
or a picture that is coded using three separate colour planes.

3.111 sub-macroblock partition: A block of luma samples and two corresponding blocks of chroma samples resulting
from a partitioning of a sub-macroblock for inter prediction for a picture that has three sample arrays or a block of
luma samples resulting from a partitioning of a sub-macroblock for inter prediction for a monochrome picture or a
picture that is coded using three separate colour planes.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 7

3.112 syntax element: An element of data represented in the bitstream.

3.113 syntax structure: Zero or more syntax elements present together in the bitstream in a specified order.

3.114 transform coefficient: A scalar quantity, considered to be in a frequency domain, that is associated with a
particular one-dimensional or two-dimensional frequency index in an inverse transform part of the decoding
process.

3.115 transform coefficient level: An integer quantity representing the value associated with a particular
two-dimensional frequency index in the decoding process prior to scaling for computation of a transform
coefficient value.

3.116 universal unique identifier (UUID): An identifier that is unique with respect to the space of all universal unique
identifiers.

3.117 unspecified: The term unspecified, when used in the clauses specifying some values of a particular syntax element,
indicates that the values have no specified meaning in this International Standard and will not have a specified
meaning in the future as an integral part of this International Standard.

3.118 variable length coding (VLC): A reversible procedure for entropy coding that assigns shorter bit strings to
symbols expected to be more frequent and longer bit strings to symbols expected to be less frequent.

3.119 VCL NAL unit: A collective term for coded slice NAL units.

3.120 zig-zag scan: A specific sequential ordering of transform coefficient levels from (approximately) the lowest spatial
frequency to the highest. Zig-zag scan is used for transform coefficient levels in frame macroblocks.

4 Abbreviations

For the purposes of this International Standard, the following abbreviations apply:

CAVLC Context-based Adaptive Variable Length Coding

CBR Constant Bit Rate

CPB Coded Picture Buffer

DPB Decoded Picture Buffer

DUT Decoder under test

FIFO First-In, First-Out

HRD Hypothetical Reference Decoder

HSS Hypothetical Stream Scheduler

IDR Instantaneous Decoding Refresh

LSB Least Significant Bit

MB Macroblock

MSB Most Significant Bit

NAL Network Abstraction Layer

RBSP Raw Byte Sequence Payload

SEI Supplemental Enhancement Information

SODB String Of Data Bits

UUID Universal Unique Identifier

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

8 © ISO/IEC 2015 – All rights reserved

VBR Variable Bit Rate

VCL Video Coding Layer

VLC Variable Length Coding

VUI Video Usability Information

5 Conventions
NOTE – The mathematical operators used in this Specification are similar to those used in the C programming language. However,
integer division and arithmetic shift operations are specifically defined. Numbering and counting conventions generally begin from 0.

5.1 Arithmetic operators

The following arithmetic operators are defined as follows:
+ Addition
− Subtraction (as a two-argument operator) or negation (as a unary prefix operator)
* Multiplication, including matrix multiplication
x y Exponentiation. Specifies x to the power of y. In other contexts, such notation is used for superscripting not

intended for interpretation as exponentiation.
/ Integer division with truncation of the result toward zero. For example, 7/4 and −7/−4 are truncated to 1 and

−7/4 and 7/−4 are truncated to −1.
÷ Used to denote division in mathematical equations where no truncation or rounding is intended.

y
x

Used to denote division in mathematical equations where no truncation or rounding is intended.

∑
=

y

xi
if)(The summation of f(i) with i taking all integer values from x up to and including y.

x % y Modulus. Remainder of x divided by y, defined only for integers x and y with x >= 0 and y > 0.

5.2 Logical operators

The following logical operators are defined as follows:
x&&y Boolean logical "and" of x and y.
x | | y Boolean logical "or" of x and y.
! Boolean logical "not".
x ? y : z If x is TRUE or not equal to 0, evaluates to the value of y; otherwise, evaluates to the value of z.

5.3 Relational operators

The following relational operators are defined as follows:
> Greater than.
>= Greater than or equal to.
< Less than.
<= Less than or equal to.
== Equal to.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 9

!= Not equal to.

When a relational operator is applied to a syntax element or variable that has been assigned the value "na" (not applicable),
the value "na" is treated as a distinct value for the syntax element or variable. The value "na" is considered not to be equal to
any other value.

5.4 Bit-wise operators

The following bit-wise operators are defined as follows:
& Bit-wise "and". When operating on integer arguments, operates on a two's complement representation of the

integer value. When operating on a binary argument that contains fewer bits than another argument, the
shorter argument is extended by adding more significant bits equal to 0.

| Bit-wise "or". When operating on integer arguments, operates on a two's complement representation of the
integer value. When operating on a binary argument that contains fewer bits than another argument, the
shorter argument is extended by adding more significant bits equal to 0.

^ Bit-wise "exclusive or". When operating on integer arguments, operates on a two's complement
representation of the integer value. When operating on a binary argument that contains fewer bits than
another argument, the shorter argument is extended by adding more significant bits equal to 0.

x >> y Arithmetic right shift of a two's complement integer representation of x by y binary digits. This function is
defined only for positive integer values of y. Bits shifted into the MSBs as a result of the right shift have a
value equal to the MSB of x prior to the shift operation.

x << y Arithmetic left shift of a two's complement integer representation of x by y binary digits. This function is
defined only for positive integer values of y. Bits shifted into the LSBs as a result of the left shift have a
value equal to 0.

5.5 Assignment operators

The following arithmetic operators are defined as follows:
= Assignment operator.
++ Increment, i.e., x++ is equivalent to x=x + 1; when used in an array index, evaluates to the value of the

variable prior to the increment operation.
−− Decrement, i.e., x−− is equivalent to x= x− 1; when used in an array index, evaluates to the value of the

variable prior to the decrement operation.
+= Increment by amount specified, i.e., x += 3 is equivalent to x = x + 3, and x += (−3) is equivalent

to x = x + (−3).
−= Decrement by amount specified, i.e., x −= 3 is equivalent to x = x − 3, and x −= (−3) is equivalent

to x = x − (−3).

5.6 Range notation

The following notation is used to specify a range of values:

x = y..z x takes on integer values starting from y to z, inclusive, with x, y, and z being integer numbers.

5.7 Mathematical functions

The following mathematical functions are defined as follows:

BitDepthY and BitDepthC are both specified to be equal to 8 in this standard

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

10 © ISO/IEC 2015 – All rights reserved

Abs(x) =




<−
>=

0x;x
0x;x (5-1)

Ceil(x) the smallest integer greater than or equal to x. (5-2)

Clip1Y(x) = Clip3(0, (1 << BitDepthY) − 1, x) (5-3)

Clip1C(x) = Clip3(0, (1 << BitDepthC) − 1, x) (5-4)

Clip3(x, y, z) =







>
<

otherwise;
;
;

z
yzy
xzx

(5-5)

Floor(x) the greatest integer less than or equal to x. (5-6)

InverseRasterScan(a, b, c, d, e) =




==
==

1;*))/(/(
0;*))/(%(

ecbda
ebbda (5-7)

Log2(x) returns the base-2 logarithm of x. (5-8)

Log10(x) returns the base-10 logarithm of x. (5-9)

Median(x, y, z) = x + y + z − Min(x, Min(y, z)) − Max(x, Max(y, z)) (5-10)

Min(x, y) =




>
<=

yx;y
yx;x (5-11)

Max(x, y) =




<
>=

yx;y
yx;x (5-12)

Round(x) = Sign(x) * Floor(Abs(x) + 0.5) (5-13)

Sign(x) =




<−
>=

0x;1
0x;1 (5-14)

Sqrt(x) = x (5-15)

5.8 Order of operation precedence

When order of precedence in an expression is not indicated explicitly by use of parentheses, the following rules apply:
– operations of a higher precedence are evaluated before any operation of a lower precedence,
– operations of the same precedence are evaluated sequentially from left to right.

Table 5-1 specifies the precedence of operations from highest to lowest; a higher position in the table indicates a higher
precedence.

NOTE – For those operators that are also used in the C programming language, the order of precedence used in this Specification is the
same as used in the C programming language.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 11

Table 5-1 – Operation precedence from highest (at top of table) to lowest (at bottom of table)

operations (with operands x, y, and z)

"x++", "x− −"

"!x", "−x" (as a unary prefix operator)

xy

"x * y", "x / y", "x ÷ y", "
y
x

", "x % y"

"x + y", "x − y" (as a two-argument operator), "∑
=

y

xi
if)("

"x << y", "x >> y"

"x < y", "x <= y", "x > y", "x >= y"

"x = = y", "x != y"

"x & y"

"x | y"

"x && y"

"x | | y"

"x ? y : z"

"x = y", "x += y", "x −= y"

5.9 Variables, syntax elements, and tables

Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower case
letters with underscore characters), its one or two syntax categories, and one or two descriptors for its method of coded
representation. The decoding process behaves according to the value of the syntax element and to the values of previously
decoded syntax elements. When a value of a syntax element is used in the syntax tables or the text, it appears in regular (i.e.,
not bold) type.

In some cases the syntax tables may use the values of other variables derived from syntax elements values. Such variables
appear in the syntax tables, or text, named by a mixture of lower case and upper case letter and without any underscore
characters. Variables starting with an upper case letter are derived for the decoding of the current syntax structure and all
depending syntax structures. Variables starting with an upper case letter may be used in the decoding process for later syntax
structures without mentioning the originating syntax structure of the variable. Variables starting with a lower case letter are
only used within the subclause in which they are derived.

In some cases, "mnemonic" names for syntax element values or variable values are used interchangeably with their numerical
values. Sometimes "mnemonic" names are used without any associated numerical values. The association of values and
names is specified in the text. The names are constructed from one or more groups of letters separated by an underscore
character. Each group starts with an upper case letter and may contain more upper case letters.

NOTE – The syntax is described in a manner that closely follows the C-language syntactic constructs.

Functions that specify properties of the current position in the bitstream are referred to as syntax functions. These functions
are specified in subclause 7.2 and assume the existence of a bitstream pointer with an indication of the position of the next bit
to be read by the decoding process from the bitstream. Syntax functions are described by their names, which are constructed

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

12 © ISO/IEC 2015 – All rights reserved

as syntax element names and end with left and right round parentheses including zero or more variable names (for definition)
or values (for usage), separated by commas (if more than one variable).

Functions that are not syntax functions (including mathematical functions specified in subclause 5.7) are described by their
names, which start with an upper case letter, contain a mixture of lower and upper case letters without any underscore
character, and end with left and right parentheses including zero or more variable names (for definition) or values (for usage)
separated by commas (if more than one variable).

Subscripts or square parentheses are used for the indexing of arrays. In reference to a visual depiction of a matrix, the first
subscript is used as a row (vertical) index and the second subscript is used as a column (horizontal) index. The indexing order
is reversed when using square parentheses rather than subscripts for indexing. Thus, an element of a matrix s at horizontal
position x and vertical position y may be denoted either as s[x, y] or as syx.

Binary notation is indicated by enclosing the string of bit values by single quote marks. For example, '01000001' represents
an eight-bit string having only its second and its last bits (counted from the most to the least significant bit) equal to 1.

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of binary notation when
the number of bits is an integer multiple of 4. For example, 0x41 represents an eight-bit string having only its second and its
last bits (counted from the most to the least significant bit) equal to 1.

Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values.

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by any value different
from zero.

5.10 Text description of logical operations

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition 0)
 statement 0
else if (condition 1)
 statement 1
…
else /* informative remark on remaining condition */
 statement n

may be described in the following manner:
… as follows / … the following applies:
– If condition 0, statement 0
– Otherwise, if condition 1, statement 1
– …
– Otherwise (informative remark on remaining condition), statement n

Each "If…Otherwise, if…Otherwise, …" statement in the text is introduced with "… as follows" or "… the following
applies" immediately followed by "If … ". The last condition of the "If…Otherwise, if…Otherwise, …" is always an
"Otherwise, …". Interleaved "If…Otherwise, if…Otherwise, …" statements can be identified by matching "… as follows" or
"… the following applies" with the ending "Otherwise, …".

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition 0a && condition 0b)
 statement 0
else if (condition 1a | | condition 1b)
 statement 1
…

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 13

else
 statement n

may be described in the following manner:

… as follows / … the following applies:
– If all of the following conditions are true, statement 0

– condition 0a
– condition 0b

– Otherwise, if any of the following conditions are true, statement 1
– condition 1a
– condition 1b

– …
– Otherwise, statement n

In the text, a statement of logical operations as would be described in pseudo-code as:

if(condition 0)
 statement 0
if (condition 1)
 statement 1

may be described in the following manner:
When condition 0, statement 0
When condition 1, statement 1

5.11 Processes

Processes are used to describe the decoding of syntax elements. A process has a separate specification and invoking. All
syntax elements and upper case variables that pertain to the current syntax structure and depending syntax structures are
available in the process specification and invoking. A process specification may also have a lower case variable explicitly
specified as the input. Each process specification has explicitly specified an output. The output is a variable that can either be
an upper case variable or a lower case variable.

When invoking a process, the assignment of variables is specified as follows:
– If the variables at the invoking and the process specification do not have the same name, the variables are

explicitly assigned to lower case input or output variables of the process specification.
– Otherwise (the variables at the invoking and the process specification have the same name), assignment is

implied.

In the specification of a process, a specific macroblock may be referred to by the variable name having a value equal to the
address of the specific macroblock.

6 Source, coded, decoded and output data formats, scanning processes, and
neighbouring relationships

6.1 Bitstream formats

This subclause specifies the relationship between the NAL unit stream and byte stream, either of which are referred to as the
bitstream.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

14 © ISO/IEC 2015 – All rights reserved

The bitstream can be in one of two formats: the NAL unit stream format or the byte stream format. The NAL unit stream
format is conceptually the more "basic" type. It consists of a sequence of syntax structures called NAL units. This sequence is
ordered in decoding order. There are constraints imposed on the decoding order (and contents) of the NAL units in the NAL
unit stream.

The byte stream format can be constructed from the NAL unit stream format by ordering the NAL units in decoding order
and prefixing each NAL unit with a start code prefix and zero or more zero-valued bytes to form a stream of bytes. The NAL
unit stream format can be extracted from the byte stream format by searching for the location of the unique start code prefix
pattern within this stream of bytes. Methods of framing the NAL units in a manner other than use of the byte stream format
are outside the scope of this International Standard. The byte stream format is specified in Annex B.

6.2 Source, decoded, and output picture formats

This subclause specifies the relationship between source and decoded frames that is given via the bitstream.

The video source that is represented by the bitstream is a sequence of frames (called pictures) in decoding order.

The source and decoded pictures are each comprised of one or more sample arrays:
– Luma (Y) only (monochrome), with or without an auxiliary array.
– Luma and two Chroma (YCbCr or YCgCo), with or without an auxiliary array.
– Green, Blue and Red (GBR, also known as RGB), with or without an auxiliary array.
– Arrays representing other unspecified monochrome or tri-stimulus colour samplings (for example, YZX, also

known as XYZ), with or without an auxiliary array.

For convenience of notation and terminology in this Specification, the variables and terms associated with these arrays are
referred to as luma (or L or Y) and chroma, where the two chroma arrays are referred to as Cb and Cr; regardless of the actual
colour representation method in use. The actual colour representation method in use can be indicated in syntax that is
specified in Annex E.

Table 6-1 –Chroma Format

chroma_format_idc Chroma Format

1 4:2:0

In monochrome sampling there is only one sample array, which is nominally considered the luma array.

In 4:2:0 sampling, each of the two chroma arrays has half the height and half the width of the luma array.

For the purposes of this version of this Specification, the value of chroma_format_idc shall be inferred to be equal to 1 and
the chroma format shall be inferred to be 4:2:0 as shown in Table 6-1.

The width and height of the luma sample arrays are each an integer multiple of 16. In coded video sequences using 4:2:0
chroma sampling, the width and height of chroma sample arrays are each an integer multiple of 8. The width or height of
pictures output from the decoding process need not be an integer multiple of 16 and can be specified using a cropping
rectangle.

The syntax for the luma and (when present) chroma arrays are ordered such when data for all three colour components is
present, the data for the luma array is first, followed by any data for the Cb array, followed by any data for the Cr array,
unless otherwise specified.

The number of bits necessary for the representation of each of the samples in the luma and chroma arrays in a coded video
sequence is equal to 8, regardless of whether the sample is a sample of the luma array or a sample of the chroma arrays.

The nominal vertical and horizontal relative locations of luma and chroma samples in frames are shown in Figure 6-1.
Alternative chroma sample relative locations may be indicated in video usability information (see Annex E).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 15

Frame

Guide:
X – Location of luma sample
O – Location of chroma sample

Figure 6-1 – Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a frame

The samples are processed in units of macroblocks. The luma array for each macroblock is 16 samples in both width and
height. The variables MbWidthC and MbHeightC, which specify the width and height, respectively, of the chroma arrays for
each macroblock, are derived as follows:

MbWidthC and MbHeightC are derived as

MbWidthC = 16 / 2 (6-1)
MbHeightC = 16 / 2 (6-2)

6.3 Spatial subdivision of pictures and slices

This subclause specifies how a picture is partitioned into slices and macroblocks. Pictures are divided into slices. A slice is a
sequence of macroblocks. Each macroblock is comprised of one 16x16 luma array and two corresponding chroma sample
arrays. Each macroblock represents a spatial rectangular region of the picture. For example, a picture may be divided into two
slices as shown in Figure 6-2.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

16 © ISO/IEC 2015 – All rights reserved

Figure 6-2 – A picture with 11 by 9 macroblocks that is partitioned into two slices

6.4 Inverse scanning processes and derivation processes for neighbours

This subclause specifies inverse scanning processes; i.e., the mapping of indices to locations, and derivation processes for
neighbours.

6.4.1 Inverse macroblock scanning process

Input to this process is a macroblock address mbAddr.

Output of this process is the location (x, y) of the upper-left luma sample for the macroblock with address mbAddr relative
to the upper-left sample of the picture.

The inverse macroblock scanning process is specified as follows:

x = InverseRasterScan(mbAddr, 16, 16, PicWidthInSamplesL, 0) (6-3)

y = InverseRasterScan(mbAddr, 16, 16, PicWidthInSamplesL, 1) (6-4)

6.4.2 Inverse macroblock partition and sub-macroblock partition scanning process

Macroblocks or sub-macroblocks may be partitioned, and the partitions are scanned for inter prediction as shown in
Figure 6-3. The outer rectangles refer to the samples in a macroblock or sub-macroblock, respectively. The rectangles refer to
the partitions. The number in each rectangle specifies the index of the inverse macroblock partition scan or inverse sub-
macroblock partition scan.

The functions MbPartWidth(), MbPartHeight(), SubMbPartWidth(), and SubMbPartHeight() describing the width and
height of macroblock partitions and sub-macroblock partitions are specified in Tables 7-9 and 7-12. MbPartWidth() and
MbPartHeight() are set to appropriate values for each macroblock, depending on the macroblock type. SubMbPartWidth()
and SubMbPartHeight() are set to appropriate values for each sub-macroblock of a macroblock with mb_type equal to P_8x8
or P_8x8ref0, depending on the sub-macroblock type.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 17

0

Sub-macroblock
partitions

0

1
0 1

0 1

2 3

0
0

1
0 1

0

2

1

3

1 macroblock partition of
16*16 luma samples and

associated chroma samples

Macroblock
partitions

2 macroblock partitions of
16*8 luma samples and

associated chroma samples
4 sub-macroblocks of
8*8 luma samples and

associated chroma samples
2 macroblock partitions of

8*16 luma samples and
associated chroma samples

1 sub-macroblock partition
of 8*8 luma samples and

associated chroma samples
2 sub-macroblock partitions

of 8*4 luma samples and
associated chroma samples

4 sub-macroblock partitions
of 4*4 luma samples and

associated chroma samples
2 sub-macroblock partitions
 of 4*8 luma samples and

associated chroma samples

Figure 6-3 – Macroblock partitions, sub-macroblock partitions, macroblock partition scans,
and sub-macroblock partition scans

6.4.2.1 Inverse macroblock partition scanning process

Input to this process is the index of a macroblock partition mbPartIdx.

Output of this process is the location (x, y) of the upper-left luma sample for the macroblock partition mbPartIdx relative to
the upper-left sample of the macroblock.

The inverse macroblock partition scanning process is specified by

x = InverseRasterScan(mbPartIdx, MbPartWidth(mb_type), MbPartHeight(mb_type), 16, 0) (6-5)

y = InverseRasterScan(mbPartIdx, MbPartWidth(mb_type), MbPartHeight(mb_type), 16, 1) (6-6)

6.4.2.2 Inverse sub-macroblock partition scanning process

Inputs to this process are the index of a macroblock partition mbPartIdx and the index of a sub-macroblock partition
subMbPartIdx.

Output of this process is the location (x, y) of the upper-left luma sample for the sub-macroblock partition subMbPartIdx
relative to the upper-left sample of the sub-macroblock.

The inverse sub-macroblock partition scanning process is specified as follows:
– If mb_type is equal to P_8x8 or P_8x8ref0

x = InverseRasterScan(subMbPartIdx, SubMbPartWidth(sub_mb_type[mbPartIdx]),
 SubMbPartHeight(sub_mb_type[mbPartIdx]), 8, 0) (6-7)

y = InverseRasterScan(subMbPartIdx, SubMbPartWidth(sub_mb_type[mbPartIdx]),
 SubMbPartHeight(sub_mb_type[mbPartIdx]), 8, 1) (6-8)

– Otherwise (mb_type is not equal to P_8x8 or P_8x8ref0),

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

18 © ISO/IEC 2015 – All rights reserved

x = InverseRasterScan(subMbPartIdx, 4, 4, 8, 0) (6-9)

y = InverseRasterScan(subMbPartIdx, 4, 4, 8, 1) (6-10)

6.4.3 Inverse 4x4 luma block scanning process

Input to this process is the index of a 4x4 luma block luma4x4BlkIdx.

Output of this process is the location (x, y) of the upper-left luma sample for the 4x4 luma block with index luma4x4BlkIdx
relative to the upper-left luma sample of the macroblock.

Figure 6-4 shows the scan for the 4x4 luma blocks.

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

Figure 6-4 – Scan for 4x4 luma blocks

The inverse 4x4 luma block scanning process is specified by

x = InverseRasterScan(luma4x4BlkIdx / 4, 8, 8, 16, 0) +
InverseRasterScan(luma4x4BlkIdx % 4, 4, 4, 8, 0) (6-11)

y = InverseRasterScan(luma4x4BlkIdx / 4, 8, 8, 16, 1) +
 InverseRasterScan(luma4x4BlkIdx % 4, 4, 4, 8, 1) (6-12)

6.4.4 (void)

6.4.5 Inverse 8x8 luma block scanning process

Input to this process is the index of an 8x8 luma block luma8x8BlkIdx.

Output of this process is the location (x, y) of the upper-left luma sample for the 8x8 luma block with index luma8x8BlkIdx
relative to the upper-left luma sample of the macroblock.

Figure 6-5 shows the scan for the 8x8 luma blocks.

0 1

2 3

Figure 6-5 – Scan for 8x8 luma blocks

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 19

The inverse 8x8 luma block scanning process is specified by:

x = InverseRasterScan(luma8x8BlkIdx, 8, 8, 16, 0) (6-13)

y = InverseRasterScan(luma8x8BlkIdx, 8, 8, 16, 1) (6-14)

6.4.6 (void)

6.4.7 Inverse 4x4 chroma block scanning process

Input to this process is the index of a 4x4 chroma block chroma4x4BlkIdx.

Output of this process is the location (x, y) of the upper-left chroma sample for a 4x4 chroma block with index
chroma4x4BlkIdx relative to the upper-left chroma sample of the macroblock.

The inverse 4x4chroma block scanning process is specified by

x = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 0) (6-15)

y = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 1) (6-16)

6.4.8 Derivation process of the availability for macroblock addresses

Input to this process is a macroblock address mbAddr.

Output of this process is the availability of the macroblock mbAddr.
NOTE – The meaning of availability is determined when this process is invoked.

The macroblock is marked as available, unless any of the following conditions are true, in which case the macroblock is
marked as not available:
– mbAddr < 0,
– mbAddr > CurrMbAddr,
– the macroblock with address mbAddr belongs to a different slice than the macroblock with address CurrMbAddr.

6.4.9 Derivation process for neighbouring macroblock addresses and their availability

The outputs of this process are:
– mbAddrA: the address and availability status of the macroblock to the left of the current macroblock,
– mbAddrB: the address and availability status of the macroblock above the current macroblock,
– mbAddrC: the address and availability status of the macroblock above-right of the current macroblock,
– mbAddrD: the address and availability status of the macroblock above-left of the current macroblock.

Figure 6-6 shows the relative spatial locations of the macroblocks with mbAddrA, mbAddrB, mbAddrC, and mbAddrD
relative to the current macroblock with CurrMbAddr.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

20 © ISO/IEC 2015 – All rights reserved

mbAddrD mbAddrB mbAddrC

mbAddrA CurrMbAddr

Figure 6-6 – Neighbouring macroblocks for a given macroblock

Input to the process in subclause 6.4.8 is mbAddrA = CurrMbAddr − 1 and the output is whether the macroblock mbAddrA is
available. In addition, mbAddrA is marked as not available when CurrMbAddr % PicWidthInMbs is equal to 0.

Input to the process in subclause 6.4.8 is mbAddrB = CurrMbAddr − PicWidthInMbs and the output is whether the
macroblock mbAddrB is available.

Input to the process in subclause 6.4.8 is mbAddrC = CurrMbAddr − PicWidthInMbs + 1 and the output is whether the
macroblock mbAddrC is available. In addition, mbAddrC is marked as not available when
(CurrMbAddr + 1) % PicWidthInMbs is equal to 0.

Input to the process in subclause 6.4.8 is mbAddrD = CurrMbAddr − PicWidthInMbs − 1 and the output is whether the
macroblock mbAddrD is available. In addition, mbAddrD is marked as not available when CurrMbAddr % PicWidthInMbs
is equal to 0.

6.4.10 (void)

6.4.11 Derivation processes for neighbouring macroblocks, blocks, and partitions

Subclause 6.4.11.1 specifies the derivation process for neighbouring macroblocks.

Subclause 6.4.11.4 specifies the derivation process for neighbouring 4x4 luma blocks.

Subclause 6.4.11.5 specifies the derivation process for neighbouring 4x4 chroma blocks.

Subclause 6.4.11.7 specifies the derivation process for neighbouring partitions.

Table 6-2 specifies the values for the difference of luma location (xD, yD) for the input and the replacement for N in
mbAddrN, mbPartIdxN, subMbPartIdxN, luma8x8BlkIdxN, luma4x4BlkIdxN, cb4x4BlkIdxN, cr4x4BlkIdxN, and
chroma4x4BlkIdxN for the output. These input and output assignments are used in subclauses 6.4.11.1 to 6.4.11.7. The
variable predPartWidth is specified when Table 6-2 is referred to.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 21

Table 6-2 – Specification of input and output assignments for subclauses 6.4.11.1 to 6.4.11.7

N xD yD

A −1 0

B 0 −1

C predPartWidth −1

D −1 −1

Figure 6-7 illustrates the relative location of the neighbouring macroblocks, blocks, or partitions A, B, C, and D to the current
macroblock, partition, or block, when the current macroblock, partition, or block is in frame coding mode.

Current
Macroblock
or Partition

or Block

A

B CD

Figure 6-7 – Determination of the neighbouring macroblock, blocks, and partitions (informative)

6.4.11.1 Derivation process for neighbouring macroblocks

Outputs of this process are:
– mbAddrA: the address of the macroblock to the left of the current macroblock and its availability status,
– mbAddrB: the address of the macroblock above the current macroblock and its availability status.

mbAddrN (with N being A or B) is derived as specified by the following ordered steps:

1. The difference of luma location (xD, yD) is set according to Table 6-2.

2. The derivation process for neighbouring locations as specified in subclause 6.4.12 is invoked for luma locations
with (xN, yN) equal to (xD, yD), and the output is assigned to mbAddrN.

6.4.11.2 (void)

6.4.11.3 (void)

6.4.11.4 Derivation process for neighbouring 4x4 luma blocks

Input to this process is a 4x4 luma block index luma4x4BlkIdx.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

22 © ISO/IEC 2015 – All rights reserved

Outputs of this process are:
– mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and its

availability status,
– luma4x4BlkIdxA: the index of the 4x4 luma block to the left of the 4x4 block with index luma4x4BlkIdx and its

availability status,
– mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its

availability status,
– luma4x4BlkIdxB: the index of the 4x4 luma block above the 4x4 block with index luma4x4BlkIdx and its availability

status.

mbAddrN and luma4x4BlkIdxN (with N being A or B) are derived as specified by the following ordered steps:

1. The difference of luma location (xD, yD) is set according to Table 6-2.

2. The inverse 4x4 luma block scanning process as specified in subclause 6.4.3 is invoked with luma4x4BlkIdx as the
input and (x, y) as the output.

3. The luma location (xN, yN) is specified by

xN = x + xD (6-17)

yN = y + yD (6-18)

4. The derivation process for neighbouring locations as specified in subclause 6.4.12 is invoked for luma locations
with (xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

5. The variable luma4x4BlkIdxN is derived as follows:

– If mbAddrN is not available, luma4x4BlkIdxN is marked as not available.

– Otherwise (mbAddrN is available), the derivation process for 4x4 luma block indices as specified in
subclause 6.4.13.1 is invoked with the luma location (xW, yW) as the input and the output is assigned
to luma4x4BlkIdxN.

6.4.11.5 Derivation process for neighbouring 4x4 chroma blocks

Input to this process is a 4x4 chroma block index chroma4x4BlkIdx.

Outputs of this process are:
– mbAddrA (either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock) and its

availability status,
– chroma4x4BlkIdxA (the index of the 4x4 chroma block to the left of the 4x4 chroma block with index

chroma4x4BlkIdx) and its availability status,
– mbAddrB (either equal to CurrMbAddr or the address of the macroblock above the current macroblock) and its

availability status,
– chroma4x4BlkIdxB (the index of the 4x4 chroma block above the 4x4 chroma block with index chroma4x4BlkIdx) and

its availability status.
mbAddrN and chroma4x4BlkIdxN (with N being A or B) are derived as specified by the following ordered steps:

1. The difference of chroma location (xD, yD) is set according to Table 6-2.

2. The inverse 4x4 chroma block scanning process as specified in subclause 6.4.7 is invoked with chroma4x4BlkIdx as
the input and(x, y) as the output.

3. The chroma location (xN, yN) is specified by

xN = x + xD (6-19)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 23

yN = y + yD (6-20)

4. The derivation process for neighbouring locations as specified in subclause 6.4.12 is invoked for chroma locations
with (xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

5. The variable chroma4x4BlkIdxN is derived as follows:

– If mbAddrN is not available, chroma4x4BlkIdxN is marked as not available.

– Otherwise (mbAddrN is available), the derivation process for 4x4 chroma block indices as specified in
subclause 6.4.13.2 is invoked with the chroma location (xW, yW) as the input and the output is assigned to
chroma4x4BlkIdxN.

6.4.11.6 (void)

6.4.11.7 Derivation process for neighbouring partitions

Inputs to this process are:

– a macroblock partition index mbPartIdx

– a current sub-macroblock type currSubMbType

– a sub-macroblock partition index subMbPartIdx

Outputs of this process are:

– mbAddrA\mbPartIdxA\subMbPartIdxA: specifying the macroblock or sub-macroblock partition to the left of the current
macroblock and its availability status, or the sub-macroblock partition CurrMbAddr\mbPartIdx\subMbPartIdx and its
availability status,

– mbAddrB\mbPartIdxB\subMbPartIdxB: specifying the macroblock or sub-macroblock partition above the current
macroblock and its availability status, or the sub-macroblock partition CurrMbAddr\mbPartIdx\subMbPartIdx and its
availability status,

– mbAddrC\mbPartIdxC\subMbPartIdxC: specifying the macroblock or sub-macroblock partition to the right-above of the
current macroblock and its availability status, or the sub-macroblock partition CurrMbAddr\mbPartIdx\subMbPartIdx
and its availability status,

– mbAddrD\mbPartIdxD\subMbPartIdxD: specifying the macroblock or sub-macroblock partition to the left-above of the
current macroblock and its availability status, or the sub-macroblock partition CurrMbAddr\mbPartIdx\subMbPartIdx
and its availability status.

mbAddrN, mbPartIdxN, and subMbPartIdxN (with N being A, B, C, or D) are derived as specified by the following ordered
steps:

1. The inverse macroblock partition scanning process as described in subclause 6.4.2.1 is invoked with mbPartIdx as
the input and (x, y) as the output.

2. The location of the upper-left luma sample inside a macroblock partition (xS, yS) is derived as follows:

– If mb_type is equal to P_8x8 or P_8x8ref0, the inverse sub-macroblock partition scanning process as
described in subclause 6.4.2.2 is invoked with subMbPartIdx as the input and (xS, yS) as the output.

– Otherwise, (xS, yS) are set to (0, 0).

3. The variable predPartWidth in Table 6-2 is specified as follows:

– If mb_type is equal to P_Skip, predPartWidth = 16.

– Otherwise, if mb_type is equal to P_8x8 or P_8x8ref0,
predPartWidth = SubMbPartWidth(sub_mb_type[mbPartIdx]).

– Otherwise, predPartWidth = MbPartWidth(mb_type).

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

24 © ISO/IEC 2015 – All rights reserved

4. The difference of luma location (xD, yD) is set according to Table 6-2.

5. The neighbouring luma location (xN, yN) is specified by

xN = x + xS + xD (6-21)

yN = y + yS + yD (6-22)

6. The derivation process for neighbouring locations as specified in subclause 6.4.12 is invoked for luma locations
with (xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

7. Depending on mbAddrN, the following applies:

– If mbAddrN is not available, the macroblock or sub-macroblock partition
mbAddrN\mbPartIdxN\subMbPartIdxN is marked as not available.

– Otherwise (mbAddrN is available), the following ordered steps are specified:

a. Let mbTypeN be the syntax element mb_type of the macroblock with macroblock address mbAddrN
and, when mbTypeN is equal to P_8x8 or P_8x8ref0, let subMbTypeN be the syntax element list
sub_mb_type of the macroblock with macroblock address mbAddrN.

b. The derivation process for macroblock and sub-macroblock partition indices as specified in
subclause 6.4.13.4 is invoked with the luma location (xW, yW), the macroblock type mbTypeN, and,
when mbTypeN is equal to P_8x8 or P_8x8ref0, the list of sub-macroblock types subMbTypeN as the
inputs and the outputs are the macroblock partition index mbPartIdxN and the sub-macroblock
partition index subMbPartIdxN.

c. When the partition given by mbPartIdxN and subMbPartIdxN is not yet decoded, the macroblock
partition mbPartIdxN and the sub-macroblock partition subMbPartIdxN are marked as not available.

NOTE – The latter condition is, for example, the case when mbPartIdx = 2, subMbPartIdx = 3, xD = 4, yD = −1, i.e.,
when neighbour C of the last 4x4 luma block of the third sub-macroblock is requested.

6.4.12 Derivation process for neighbouring locations

Input to this process is a luma or chroma location (xN, yN) expressed relative to the upper left corner of the current
macroblock.

Outputs of this process are:

– mbAddrN: either equal to CurrMbAddr or to the address of neighbouring macroblock that contains (xN, yN) and its
availability status,

– (xW, yW): the location (xN, yN) expressed relative to the upper-left corner of the macroblock mbAddrN (rather than
relative to the upper-left corner of the current macroblock).

Let maxW and maxH be variables specifying maximum values of the location components xN, xW, and yN, yW,
respectively. maxW and maxH are derived as follows:

– If this process is invoked for neighbouring luma locations,

maxW = maxH = 16 (6-23)

– Otherwise (this process is invoked for neighbouring chroma locations),

maxW = MbWidthC (6-24)

maxH = MbHeightC (6-25)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 25

6.4.12.1 Specification for neighbouring locations in frames

The derivation process for neighbouring macroblock addresses and their availability in subclause 6.4.9 is invoked with
mbAddrA, mbAddrB, mbAddrC, and mbAddrD as well as their availability status as the output.

Table 6-3 specifies mbAddrN depending on (xN, yN).

Table 6-3 – Specification of mbAddrN

xN yN mbAddrN

< 0 < 0 mbAddrD

< 0 0..maxH − 1 mbAddrA

0..maxW − 1 < 0 mbAddrB

0..maxW − 1 0..maxH − 1 CurrMbAddr

> maxW − 1 < 0 mbAddrC

> maxW − 1 0..maxH − 1 not available

> maxH − 1 not available

The neighbouring location (xW, yW) relative to the upper-left corner of the macroblock mbAddrN is derived as

xW = (xN + maxW) % maxW (6-26)

yW = (yN + maxH) % maxH (6-27)

6.4.13 Derivation processes for block and partition indices

Subclause 6.4.13.1 specifies the derivation process for 4x4 luma block indices.

Subclause 6.4.13.2 specifies the derivation process for 4x4 chroma block indices.

Subclause 6.4.13.3 specifies the derivation process for 8x8 luma block indices.

Subclause 6.4.13.4 specifies the derivation process for macroblock and sub-macroblock partition indices.

6.4.13.1 Derivation process for 4x4 luma block indices

Input to this process is a luma location (xP, yP) relative to the upper-left luma sample of a macroblock.

Output of this process is a 4x4 luma block index luma4x4BlkIdx.

The 4x4 luma block index luma4x4BlkIdx is derived by

luma4x4BlkIdx = 8 * (yP / 8) + 4 * (xP / 8) + 2 * ((yP % 8) / 4) + ((xP % 8) / 4) (6-28)

6.4.13.2 Derivation process for 4x4 chroma block indices

Input to this process is a chroma location (xP, yP) relative to the upper-left chroma sample of a macroblock.

Output of this process is a 4x4 chroma block index chroma4x4BlkIdx.

The 4x4 chroma block index chroma4x4BlkIdx is derived by

chroma4x4BlkIdx = 2 * (yP / 4) + (xP / 4) (6-29)

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

26 © ISO/IEC 2015 – All rights reserved

6.4.13.3 Derivation process for 8x8 luma block indices

Input to this process is a luma location (xP, yP) relative to the upper-left luma sample of a macroblock.

Outputs of this process is an 8x8 luma block index luma8x8BlkIdx.

The 8x8 luma block index luma8x8BlkIdx is derived by

luma8x8BlkIdx = 2 * (yP / 8) + (xP / 8) (6-30)

6.4.13.4 Derivation process for macroblock and sub-macroblock partition indices

Inputs to this process are:

– a luma location (xP, yP) relative to the upper-left luma sample of a macroblock,

– a macroblock type mbType,

– when mbType is equal to P_8x8 or P_8x8ref0, a list of sub-macroblock types subMbType with 4 elements.

Outputs of this process are:

– a macroblock partition index mbPartIdx,

– a sub-macroblock partition index subMbPartIdx.

The macroblock partition index mbPartIdx is derived as follows:

– If mbType specifies an I macroblock type, mbPartIdx is set equal to 0.

– Otherwise (mbType does not specify an I macroblock type), mbPartIdx is derived by

mbPartIdx = (16 / MbPartWidth(mbType)) * (yP / MbPartHeight(mbType)) +
 (xP / MbPartWidth(mbType)) (6-31)

The sub-macroblock partition index subMbPartIdx is derived as follows:

– If mbType is not equal to P_8x8 or P_8x8ref0, subMbPartIdx is set equal to 0.

– Otherwise (mbType is equal to P_8x8 or P_8x8ref0), subMbPartIdx is derived by

subMbPartIdx = (8 / SubMbPartWidth(subMbType[mbPartIdx])) *
((yP % 8) / SubMbPartHeight(subMbType[mbPartIdx])) +

 ((xP % 8) / SubMbPartWidth(subMbType[mbPartIdx])) (6-32)

7 Syntax and semantics

7.1 Normative Syntax and Semantics

7.1.1 Normative and Informative Technologies

The normative requirements of this specification extend only to the technologies required to implement the profile specified
in A.2.1. All other aspects of this specification are informative only, and not normative. Specifically, a conforming decoder is
not required to handle a number of technologies, including but not limited to the following:

a) field coding (i.e. frame_mbs_only_flag equal to 0);

b) color sampling formats other than 4:2:0;

c) picture size scaling;

d) BitDepthY and BitDepthC values other than 8;

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 27

e) bipredictive and switching slice types (i.e. slice types other than I and P slices);

f) weighted prediction modes other than the default (i.e. weighted_pred_flag or weighted_bipred_idc not equal to 0);

g) entropy coding modes other than CAVLC (i.e. entropy_coding_mode_flag not equal to 0);

h) 8x8 inverse transform block size;

i) arbitrary slice order;

j) more than one slice group per picture;

7.1.2 Method of specifying syntax in tabular form

The syntax tables specify a superset of the syntax of all allowed bitstreams. Additional constraints on the syntax may be
specified, either directly or indirectly, in other clauses.

NOTE – An actual decoder should implement means for identifying entry points into the bitstream and means to identify and handle
non-conforming bitstreams. The methods for identifying and handling errors and other such situations are not specified here.

The following table lists examples of pseudo code used to describe the syntax. When syntax_element appears, it specifies
that a syntax element is parsed from the bitstream and the bitstream pointer is advanced to the next position beyond the
syntax element in the bitstream parsing process.

Descriptor
/* A statement can be a syntax element with an associated descriptor or can be an
expression used to specify conditions for the existence, type, and quantity of
syntax elements, as in the following two examples */
syntax_element ue(v)
conditioning statement

/* A group of statements enclosed in curly brackets is a compound statement and
is treated functionally as a single statement. */
{

statement
statement
…

}

/* A "while" structure specifies a test of whether a condition is true, and if true,
specifies evaluation of a statement (or compound statement) repeatedly until the
condition is no longer true */
while(condition)

statement

/* A "do … while" structure specifies evaluation of a statement once, followed by
a test of whether a condition is true, and if true, specifies repeated evaluation of
the statement until the condition is no longer true */
do

statement
while(condition)

/* An "if … else" structure specifies a test of whether a condition is true, and if
the condition is true, specifies evaluation of a primary statement, otherwise,
specifies evaluation of an alternative statement. The "else" part of the structure
and the associated alternative statement is omitted if no alternative statement
evaluation is needed */

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

28 © ISO/IEC 2015 – All rights reserved

if(condition)
primary statement

else
alternative statement

/* A "for" structure specifies evaluation of an initial statement, followed by a test
of a condition, and if the condition is true, specifies repeated evaluation of a
primary statement followed by a subsequent statement until the condition is no
longer true. */
for(initial statement; condition; subsequent statement)

primary statement

7.2 Specification of syntax functions, categories, and descriptors

The functions presented here are used in the syntactical description. These functions assume the existence of a bitstream
pointer with an indication of the position of the next bit to be read by the decoding process from the bitstream.

byte_aligned() is specified as follows:

– If the current position in the bitstream is on a byte boundary, i.e., the next bit in the bitstream is the first bit in a byte,
the return value of byte_aligned() is equal to TRUE.

– Otherwise, the return value of byte_aligned() is equal to FALSE.

more_data_in_byte_stream(), which is used only in the byte stream NAL unit syntax structure specified in Annex B, is
specified as follows:

– If more data follow in the byte stream, the return value of more_data_in_byte_stream() is equal to TRUE.

– Otherwise, the return value of more_data_in_byte_stream() is equal to FALSE.

more_rbsp_data() is specified as follows:

– If there is no more data in the RBSP, the return value of more_rbsp_data() is equal to FALSE.

– Otherwise, the RBSP data is searched for the last (least significant, right-most) bit equal to 1 that is present in the
RBSP. Given the position of this bit, which is the first bit (rbsp_stop_one_bit) of the rbsp_trailing_bits() syntax
structure, the following applies:

– If there is more data in an RBSP before the rbsp_trailing_bits() syntax structure, the return value of
more_rbsp_data() is equal to TRUE.

– Otherwise, the return value of more_rbsp_data() is equal to FALSE.

The method for enabling determination of whether there is more data in the RBSP is specified by the application (or in
Annex B for applications that use the byte stream format).

more_rbsp_trailing_data() is specified as follows:

– If there is more data in an RBSP, the return value of more_rbsp_trailing_data() is equal to TRUE.

– Otherwise, the return value of more_rbsp_trailing_data() is equal to FALSE.STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 29

next_bits(n) provides the next bits in the bitstream for comparison purposes, without advancing the bitstream pointer.
Provides a look at the next n bits in the bitstream with n being its argument. When used within the byte stream as specified in
Annex B, next_bits(n) returns a value of 0 if fewer than n bits remain within the byte stream.

read_bits(n) reads the next n bits from the bitstream and advances the bitstream pointer by n bit positions. When n is equal
to 0, read_bits(n) is specified to return a value equal to 0 and to not advance the bitstream pointer.

The following descriptors specify the parsing process of each syntax element

– b(8): byte having any pattern of bit string (8 bits). The parsing process for this descriptor is specified by the return
value of the function read_bits(8).

– ce(v): context-adaptive variable-length entropy-coded syntax element with the left bit first. The parsing process for
this descriptor is specified in subclause 9.2.

– f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit first. The parsing process for this
descriptor is specified by the return value of the function read_bits(n).

– i(n): signed integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner dependent
on the value of other syntax elements. The parsing process for this descriptor is specified by the return value of the
function read_bits(n) interpreted as a two's complement integer representation with most significant bit written first.

– me(v): mapped Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor is
specified in subclause 9.1.

– se(v): signed integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor
is specified in subclause 9.1.

– te(v): truncated Exp-Golomb-coded syntax element with left bit first. The parsing process for this descriptor is
specified in subclause 9.1.

– u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner
dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the return
value of the function read_bits(n) interpreted as a binary representation of an unsigned integer with most significant
bit written first.

– ue(v): unsigned integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this
descriptor is specified in subclause 9.1.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

30 © ISO/IEC 2015 – All rights reserved

7.3 Syntax in tabular form

7.3.1 NAL unit syntax

nal_unit(NumBytesInNALunit) { Descriptor
forbidden_zero_bit f(1)
nal_ref_idc u(2)
nal_unit_type u(5)
NumBytesInRBSP = 0
nalUnitHeaderBytes = 1
for(i = nalUnitHeaderBytes; i < NumBytesInNALunit; i++)

if(i + 2 < NumBytesInNALunit && next_bits(24) = = 0x000003) {
rbsp_byte[NumBytesInRBSP++] b(8)
rbsp_byte[NumBytesInRBSP++] b(8)
i += 2
emulation_prevention_three_byte /* equal to 0x03 */ f(8)

} else
rbsp_byte[NumBytesInRBSP++] b(8)

}

7.3.2 Raw byte sequence payloads and RBSP trailing bits syntax

7.3.2.1 Sequence parameter set RBSP syntax

seq_parameter_set_rbsp() { Descriptor
seq_parameter_set_data()
rbsp_trailing_bits()

}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 31

7.3.2.1.1 Sequence parameter set data syntax

seq_parameter_set_data() { Descriptor
profile_idc u(8)
constraint_set0_flag /* normally equal to 1 */ u(1)
constraint_set1_flag /* normally equal to 1 */ u(1)
constraint_set2_flag /* normally equal to 1 */ u(1)
constraint_set3_flag u(1)
constraint_set4_flag /* equal to 0; ignored by decoders */ u(1)
constraint_set5_flag /* equal to 0; ignored by decoders */ u(1)
reserved_zero_2bits /* equal to 0 */ u(2)
level_idc u(8)
seq_parameter_set_id ue(v)
log2_max_frame_num_minus4 ue(v)
pic_order_cnt_type ue(v)
if(pic_order_cnt_type = = 0)

log2_max_pic_order_cnt_lsb_minus4 ue(v)
else if(pic_order_cnt_type = = 1) {

delta_pic_order_always_zero_flag u(1)
offset_for_non_ref_pic se(v)
offset_for_top_to_bottom_field se(v)
num_ref_frames_in_pic_order_cnt_cycle ue(v)
for(i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++)

offset_for_ref_frame[i] se(v)
}
max_num_ref_frames ue(v)
gaps_in_frame_num_value_allowed_flag u(1)
pic_width_in_mbs_minus1 ue(v)
pic_height_in_map_units_minus1 ue(v)
frame_mbs_only_flag /*equal to 1*/ u(1)

direct_8x8_inference_flag u(1)
frame_cropping_flag u(1)
if(frame_cropping_flag) {

frame_crop_left_offset ue(v)
frame_crop_right_offset ue(v)
frame_crop_top_offset ue(v)
frame_crop_bottom_offset ue(v)

}
vui_parameters_present_flag u(1)
if(vui_parameters_present_flag)

vui_parameters()
}

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

32 © ISO/IEC 2015 – All rights reserved

7.3.2.2 Picture parameter set RBSP syntax

pic_parameter_set_rbsp() { Descriptor
pic_parameter_set_id ue(v)
seq_parameter_set_id ue(v)
entropy_coding_mode_flag /*equal to zero*/ u(1)
bottom_field_pic_order_in_frame_present_flag u(1)
num_slice_groups_minus1 /*equal to zero*/ ue(v)
num_ref_idx_l0_default_active_minus1 ue(v)
num_ref_idx_l1_default_active_minus1 ue(v)
weighted_pred_flag /* = 0 */ u(1)
weighted_bipred_idc /* = 0 */ u(2)
pic_init_qp_minus26 /* relative to 26 */ se(v)
pic_init_qs_minus26 /* relative to 26 */ se(v)
chroma_qp_index_offset se(v)
deblocking_filter_control_present_flag u(1)
constrained_intra_pred_flag u(1)
redundant_pic_cnt_present_flag /* equal to zero*/ u(1)
rbsp_trailing_bits()

}

7.3.2.3 Supplemental enhancement information RBSP syntax

sei_rbsp() { Descriptor
do

sei_message()
while(more_rbsp_data())
rbsp_trailing_bits()

}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 33

7.3.2.3.1 Supplemental enhancement information message syntax

sei_message() { Descriptor
payloadType = 0
while(next_bits(8) = = 0xFF) {

ff_byte /* equal to 0xFF */ f(8)
payloadType += 255

}
last_payload_type_byte u(8)
payloadType += last_payload_type_byte
payloadSize = 0
while(next_bits(8) = = 0xFF) {

ff_byte /* equal to 0xFF */ f(8)
payloadSize += 255

}
last_payload_size_byte u(8)
payloadSize += last_payload_size_byte
sei_payload(payloadType, payloadSize)

}

7.3.2.4 Access unit delimiter RBSP syntax

access_unit_delimiter_rbsp() { Descriptor
primary_pic_type u(3)
rbsp_trailing_bits()

}

7.3.2.5 End of sequence RBSP syntax

end_of_seq_rbsp() { Descriptor
}

7.3.2.6 End of stream RBSP syntax

end_of_stream_rbsp() { Descriptor
}

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

34 © ISO/IEC 2015 – All rights reserved

7.3.2.7 Filler data RBSP syntax

filler_data_rbsp() { Descriptor
while(next_bits(8) = = 0xFF)

ff_byte /* equal to 0xFF */ f(8)
rbsp_trailing_bits()

}

7.3.2.8 Slice layer RBSP syntax

slice_layer_rbsp() { Descriptor
slice_header()
slice_data() /* all categories of slice_data() syntax */
rbsp_slice_trailing_bits()

}

7.3.2.9 (void)

7.3.2.10 RBSP slice trailing bits syntax

rbsp_slice_trailing_bits() { Descriptor
rbsp_trailing_bits()

}

7.3.2.11 RBSP trailing bits syntax

rbsp_trailing_bits() { Descriptor
rbsp_stop_one_bit /* equal to 1 */ f(1)
while(!byte_aligned())

rbsp_alignment_zero_bit /* equal to 0 */ f(1)
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 35

7.3.3 Slice header syntax

slice_header() { Descriptor
first_mb_in_slice ue(v)
slice_type ue(v)
pic_parameter_set_id ue(v)
frame_num u(v)
if(IdrPicFlag)

idr_pic_id ue(v)
if(pic_order_cnt_type = = 0) {

pic_order_cnt_lsb u(v)
if(bottom_field_pic_order_in_frame_present_flag)

delta_pic_order_cnt_bottom se(v)
}
if(pic_order_cnt_type = = 1 && !delta_pic_order_always_zero_flag) {

delta_pic_order_cnt[0] se(v)
if(bottom_field_pic_order_in_frame_present_flag)

delta_pic_order_cnt[1] se(v)
}
if(slice_type = = P) {

num_ref_idx_active_override_flag u(1)
if(num_ref_idx_active_override_flag)

num_ref_idx_l0_active_minus1 ue(v)
}
ref_pic_list_modification()
if(nal_ref_idc != 0)

dec_ref_pic_marking()
slice_qp_delta se(v)
if(deblocking_filter_control_present_flag) {

disable_deblocking_filter_idc ue(v)
if(disable_deblocking_filter_idc != 1) {

slice_alpha_c0_offset_div2 se(v)
slice_beta_offset_div2 se(v)

}
}

}

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

36 © ISO/IEC 2015 – All rights reserved

7.3.3.1 Reference picture list modification syntax

ref_pic_list_modification() { Descriptor
if(slice_type % 5 != 2 && slice_type % 5 != 4) {

ref_pic_list_modification_flag_l0 u(1)
if(ref_pic_list_modification_flag_l0)

do {
modification_of_pic_nums_idc ue(v)
if(modification_of_pic_nums_idc = = 0 | |
 modification_of_pic_nums_idc = = 1)

abs_diff_pic_num_minus1 ue(v)
else if(modification_of_pic_nums_idc = = 2)

long_term_pic_num ue(v)
} while(modification_of_pic_nums_idc != 3)

}
}

7.3.3.2 (void)

7.3.3.3 Decoded reference picture marking syntax

dec_ref_pic_marking() { Descriptor
if(IdrPicFlag) {

no_output_of_prior_pics_flag u(1)
long_term_reference_flag u(1)

} else {
adaptive_ref_pic_marking_mode_flag u(1)
if(adaptive_ref_pic_marking_mode_flag)

do {
memory_management_control_operation ue(v)
if(memory_management_control_operation = = 1 | |

memory_management_control_operation = = 3)
difference_of_pic_nums_minus1 ue(v)

if(memory_management_control_operation = = 2)
long_term_pic_num ue(v)

if(memory_management_control_operation = = 3 | |
memory_management_control_operation = = 6)
long_term_frame_idx ue(v)

if(memory_management_control_operation = = 4)
max_long_term_frame_idx_plus1 ue(v)

} while(memory_management_control_operation != 0)
}

}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 37

7.3.4 Slice data syntax

slice_data() { Descriptor
CurrMbAddr = first_mb_in_slice
moreDataFlag = 1
prevMbSkipped = 0
do {

if(slice_type != I) {
mb_skip_run ue(v)
prevMbSkipped = (mb_skip_run > 0)
for(i=0; i<mb_skip_run; i++)

CurrMbAddr = NextMbAddress(CurrMbAddr)
if(mb_skip_run > 0)

moreDataFlag = more_rbsp_data()
}
if(moreDataFlag)

macroblock_layer()
moreDataFlag = more_rbsp_data()
CurrMbAddr = NextMbAddress(CurrMbAddr)

} while(moreDataFlag)
}

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

38 © ISO/IEC 2015 – All rights reserved

7.3.5 Macroblock layer syntax

macroblock_layer() { Descriptor
mb_type ue(v)
if(mb_type = = I_PCM) {

while(!byte_aligned())
pcm_alignment_zero_bit f(1)

for(i = 0; i < 256; i++)
pcm_sample_luma[i] u(v)

for(i = 0; i < 128)
pcm_sample_chroma[i] u(v)

} else {
if(mb_type != I_4x4 &&

MbPartPredMode(mb_type, 0) != Intra_16x16 &&
NumMbPart(mb_type) = = 4)
sub_mb_pred(mb_type)

else
 mb_pred(mb_type)
if(MbPartPredMode(mb_type, 0) != Intra_16x16)

coded_block_pattern
if(CodedBlockPatternLuma > 0 | | CodedBlockPatternChroma > 0 | |

MbPartPredMode(mb_type, 0) = = Intra_16x16) {
mb_qp_delta se(v)
residual()

}
}

}

7.3.5.1 Macroblock prediction syntax

mb_pred(mb_type) { Descriptor
if(MbPartPredMode(mb_type, 0) = = Intra_4x4 | |
MbPartPredMode(mb_type, 0) = = Intra_16x16) {

if(MbPartPredMode(mb_type, 0) = = Intra_4x4)
for(luma4x4BlkIdx=0; luma4x4BlkIdx<16; luma4x4BlkIdx++) {

prev_intra4x4_pred_mode_flag[luma4x4BlkIdx] u(1)
if(!prev_intra4x4_pred_mode_flag[luma4x4BlkIdx])

rem_intra4x4_pred_mode[luma4x4BlkIdx] u(3)
}

intra_chroma_pred_mode ue(v)
} else {

for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)
if(num_ref_idx_l0_active_minus1 > 0)

ref_idx_l0[mbPartIdx] te(v)
for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)

for(compIdx = 0; compIdx < 2; compIdx++)
mvd_l0[mbPartIdx][0][compIdx] se(v)

}
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 39

7.3.5.2 Sub-macroblock prediction syntax

sub_mb_pred(mb_type) { Descriptor
for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)

sub_mb_type[mbPartIdx] ue(v)
for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)

if(num_ref_idx_l0_active_minus1 > 0 && mb_type != P_8x8ref0
ref_idx_l0[mbPartIdx] te(v)

for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
for(subMbPartIdx = 0;

subMbPartIdx < NumSubMbPart(sub_mb_type[mbPartIdx]);
subMbPartIdx++)

for(compIdx = 0; compIdx < 2; compIdx++)
mvd_l0[mbPartIdx][subMbPartIdx][compIdx] se(v)

}

7.3.5.3 Residual data syntax

residual() { Descriptor
residual_luma(i16x16DClevel, i16x16AClevel, level4x4)
Intra16x16DCLevel = i16x16DClevel
Intra16x16ACLevel = i16x16AClevel
LumaLevel4x4 = level4x4
for(iCbCr = 0; iCbCr < 2; iCbCr++)

if(CodedBlockPatternChroma & 3)
/* chroma DC residual present */

residual_block(ChromaDCLevel[iCbCr], 0, 3, 4)
else

for(i = 0; i <4; i++)
ChromaDCLevel[iCbCr][i] = 0

for(iCbCr = 0; iCbCr < 2; iCbCr++)
for(i4x4 = 0; i4x4 < 4; i4x4++)

if(CodedBlockPatternChroma & 2)
/* chroma AC residual present */

residual_block(ChromaACLevel[iCbCr][i4x4], 0,14,15)
else

for(i = 0; i < 15; i++)
ChromaACLevel[iCbCr][i4x4][i] = 0

}

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

40 © ISO/IEC 2015 – All rights reserved

7.3.5.3.1 Residual luma syntax

residual_luma(i16x16DClevel, i16x16AClevel, level4x4) { Descriptor
if(MbPartPredMode(mb_type, 0) = = Intra_16x16)

residual_block(i16x16DClevel, 0, 15, 16)
for(i8x8 = 0; i8x8 < 4; i8x8++)

for(i4x4 = 0; i4x4 < 4; i4x4++)
if(CodedBlockPatternLuma & (1 << i8x8))

if(MbPartPredMode(mb_type, 0) = = Intra_16x16)
residual_block(i16x16AClevel[i8x8*4+ i4x4], 0, 14, 15)

else
residual_block(level4x4[i8x8* 4 + i4x4], 0, 15, 16)

else if(MbPartPredMode(mb_type, 0) = = Intra_16x16)
for(i = 0; i < 15; i++)

i16x16AClevel[i8x8 * 4 + i4x4][i] = 0
else

for(i = 0; i < 16; i++)
level4x4[i8x8 * 4 + i4x4][i] = 0

}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 41

7.3.5.3.2 Residual block CAVLC syntax

residual_block(coeffLevel, startIdx, endIdx, maxNumCoeff) { Descriptor
for(i = 0; i < maxNumCoeff; i++)

coeffLevel[i] = 0
coeff_token ce(v)
if(TotalCoeff(coeff_token) > 0) {

if(TotalCoeff(coeff_token) > 10 && TrailingOnes(coeff_token) < 3)
suffixLength = 1

else
suffixLength = 0

for(i = 0; i < TotalCoeff(coeff_token); i++)
if(i < TrailingOnes(coeff_token)) {

trailing_ones_sign_flag u(1)
levelVal[i] = 1 − 2 * trailing_ones_sign_flag

} else {
level_prefix ce(v)
levelCode = (level_prefix << suffixLength)
if(suffixLength > 0 | | level_prefix >= 14) {

level_suffix u(v)
levelCode += level_suffix

}
if(i = = TrailingOnes(coeff_token) &&

 TrailingOnes(coeff_token) < 3)
levelCode += 2

if(levelCode % 2 = = 0)
levelVal[i] = (levelCode + 2) >> 1

else
levelVal[i] = (−levelCode − 1) >> 1

if(suffixLength = = 0)
suffixLength = 1

if(Abs(levelVal[i]) > (3 << (suffixLength − 1)) &&
 suffixLength < 6)
suffixLength++

}
if(TotalCoeff(coeff_token) <endIdx − startIdx + 1) {

total_zeros ce(v)
zerosLeft = total_zeros

} else
zerosLeft = 0

for(i = 0; i < TotalCoeff(coeff_token) − 1; i++) {
if(zerosLeft > 0) {

run_before ce(v)
runVal[i] = run_before

} else
runVal[i] = 0

zerosLeft = zerosLeft − runVal[i]
}
runVal[TotalCoeff(coeff_token) − 1] = zerosLeft
coeffNum = −1
for(i = TotalCoeff(coeff_token) − 1; i >= 0; i− −) {

coeffNum += runVal[i] + 1

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

42 © ISO/IEC 2015 – All rights reserved

coeffLevel[startIdx + coeffNum] = levelVal[i]
}

}
}

7.4 Semantics

Semantics associated with the syntax structures and with the syntax elements within these structures are specified in this
subclause. When the semantics of a syntax element are specified using a table or a set of tables, any values that are not
specified in the table(s) shall not be present in the bitstream unless otherwise specified in this International Standard.

7.4.1 NAL unit semantics
NOTE – The VCL is specified to efficiently represent the content of the video data. The NAL is specified to format that data and
provide header information in a manner appropriate for conveyance on a variety of communication channels or storage media. All data
are contained in NAL units, each of which contains an integer number of bytes. A NAL unit specifies a generic format for use in both
packet-oriented and bitstream systems. The format of NAL units for both packet-oriented transport and byte stream is identical except
that each NAL unit can be preceded by a start code prefix and extra padding bytes in the byte stream format.

NumBytesInNALunit specifies the size of the NAL unit in bytes. This value is required for decoding of the NAL unit. Some
form of demarcation of NAL unit boundaries is necessary to enable inference of NumBytesInNALunit. One such
demarcation method is specified in Annex B for the byte stream format. Other methods of demarcation may be specified
outside of this International Standard.

forbidden_zero_bit shall be equal to 0.

nal_ref_idc not equal to 0 specifies that the content of the NAL unit contains a sequence parameter set, a picture parameter
set, or a slice of a reference picture.

For coded video sequences conforming to one or more of the profiles specified in Annex A that are decoded using the
decoding process specified in clauses 2-9, nal_ref_idc equal to 0 for a NAL unit containing a slice indicates that the slice is
part of a non-reference picture.

nal_ref_idc shall not be equal to 0 for sequence parameter set or picture parameter set NAL units. When nal_ref_idc is equal
to 0 for one NAL unit with nal_unit_type in the range of 1 to 4, inclusive, of a particularpicture, it shall be equal to 0 for all
NAL units with nal_unit_type in the range of 1 to 4, inclusive, of the picture.

nal_ref_idc shall not be equal to 0 for NAL units with nal_unit_type equal to 5.

nal_ref_idc shall be equal to 0 for all NAL units having nal_unit_type equal to 6, 9, 10, 11, or 12.

nal_unit_type specifies the type of RBSP data structure contained in the NAL unit as specified in Table 7-1.

For coded video sequences conforming to one or more of the profiles specified in Annex A that are decoded using the
decoding process specified in clauses 2-9, VCL and non-VCL NAL units are specified in Table 7-1 in the column labelled
"Annex A NAL unit type class".

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 43

Table 7-1 – NAL unit type codes, syntax element categories, and NAL unit type classes

nal_unit_type Content of NAL unit and RBSP syntax structure Annex A
NAL unit
type class

0 Unspecified non-VCL

1 Coded slice of a non-IDR picture
slice_layer_ rbsp()

VCL

2 Reserved VCL

3 Reserved VCL

4 Reserved VCL

5 Coded slice of an IDR picture
slice_layer_rbsp()

VCL

6 Supplemental enhancement information (SEI)
sei_rbsp()

non-VCL

7 Sequence parameter set
seq_parameter_set_rbsp()

non-VCL

8 Picture parameter set
pic_parameter_set_rbsp()

non-VCL

9 Access unit delimiter
access_unit_delimiter_rbsp()

non-VCL

10 End of sequence
end_of_seq_rbsp()

non-VCL

11 End of stream
end_of_stream_rbsp()

non-VCL

12 Filler data
filler_data_rbsp()

non-VCL

13 Reserved non-VCL

14 Reserved non-VCL

15 Reserved non-VCL

16..18 Reserved non-VCL

19 Reserved non-VCL

20 Reserved non-VCL

21..23 Reserved non-VCL

24..31 Unspecified non-VCL

NAL units that use nal_unit_type equal to 0 or in the range of 24..31, inclusive, shall not affect the decoding process
specified in this International Standard.

NOTE – NAL unit types 0 and 24..31 may be used as determined by the application. No decoding process for these values of
nal_unit_type is specified in this International Standard. Since different applications might use NAL unit types 0 and 24..31 for
different purposes, particular care must be exercised in the design of encoders that generate NAL units with nal_unit_type equal to 0 or
in the range of 24 to 31, inclusive, and in the design of decoders that interpret the content of NAL units with nal_unit_type equal to 0 or
in the range of 24 to 31, inclusive.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

44 © ISO/IEC 2015 – All rights reserved

Decoders shall ignore (remove from the bitstream and discard) the contents of all NAL units that use reserved values of
nal_unit_type.

NOTE – This requirement allows future definition of compatible extensions to this International Standard.

In the text, coded slice NAL unit collectively refers to a coded slice of a non-IDR picture NAL unit or to a coded slice of an
IDR picture NAL unit. The variable IdrPicFlag is specified as

IdrPicFlag = ((nal_unit_type = = 5) ? 1 : 0) (7-1)

When the value of nal_unit_type is equal to 5 for a NAL unit containing a slice of a particular picture, the picture shall not
contain NAL units with nal_unit_type in the range of 1 to 4, inclusive. For coded video sequences conforming to one or more
of the profiles specified in Annex A that are decoded using the decoding process specified in clauses 2-9,such a picture is
referred to as an IDR picture.

rbsp_byte[i] is the i-th byte of an RBSP. An RBSP is specified as an ordered sequence of bytes as follows.

The RBSP contains an SODB as follows:
– If the SODB is empty (i.e., zero bits in length), the RBSP is also empty.
– Otherwise, the RBSP contains the SODB as follows:

1) The first byte of the RBSP contains the (most significant, left-most) eight bits of the SODB; the next byte of the
RBSP contains the next eight bits of the SODB, etc., until fewer than eight bits of the SODB remain.

2) rbsp_trailing_bits() are present after the SODB as follows:
i) The first (most significant, left-most) bits of the final RBSP byte contains the remaining bits of the SODB (if

any).
ii) The next bit consists of a single rbsp_stop_one_bit equal to 1.
iii) When the rbsp_stop_one_bit is not the last bit of a byte-aligned byte, one or more rbsp_alignment_zero_bit is

present to result in byte alignment.

Syntax structures having these RBSP properties are denoted in the syntax tables using an "_rbsp" suffix. These structures
shall be carried within NAL units as the content of the rbsp_byte[i] data bytes. The association of the RBSP syntax
structures to the NAL units shall be as specified in Table 7-1.

NOTE – When the boundaries of the RBSP are known, the decoder can extract the SODB from the RBSP by concatenating the bits of
the bytes of the RBSP and discarding the rbsp_stop_one_bit, which is the last (least significant, right-most) bit equal to 1, and
discarding any following (less significant, farther to the right) bits that follow it, which are equal to 0. The data necessary for the
decoding process is contained in the SODB part of the RBSP.

emulation_prevention_three_byte is a byte equal to 0x03. When an emulation_prevention_three_byte is present in the NAL
unit, it shall be discarded by the decoding process.

The last byte of the NAL unit shall not be equal to 0x00.

Within the NAL unit, the following three-byte sequences shall not occur at any byte-aligned position:
– 0x000000
– 0x000001
– 0x000002

Within the NAL unit, any four-byte sequence that starts with 0x000003 other than the following sequences shall not occur at
any byte-aligned position:
– 0x00000300
– 0x00000301
– 0x00000302
– 0x00000303

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 45

NOTE – When nal_unit_type is equal to 0, particular care must be exercised in the design of encoders to avoid the presence of the
above-listed three-byte and four-byte patterns at the beginning of the NAL unit syntax structure, as the syntax element
emulation_prevention_three_byte cannot be the third byte of a NAL unit.

7.4.1.1 Encapsulation of an SODB within an RBSP (informative)

This subclause does not form an integral part of this International Standard.

The form of encapsulation of an SODB within an RBSP and the use of the emulation_prevention_three_byte for
encapsulation of an RBSP within a NAL unit is specified for the following purposes:
– to prevent the emulation of start codes within NAL units while allowing any arbitrary SODB to be represented within a

NAL unit,
– to enable identification of the end of the SODB within the NAL unit by searching the RBSP for the rbsp_stop_one_bit

starting at the end of the RBSP,

The encoder can produce a NAL unit from an RBSP by the following procedure:
1. The RBSP data is searched for byte-aligned bits of the following binary patterns:

 '00000000 00000000 000000xx' (where xx represents any 2 bit pattern: 00, 01, 10, or 11),

and a byte equal to 0x03 is inserted to replace these bit patterns with the patterns:

'00000000 00000000 00000011 000000xx',
2. The resulting sequence of bytes is prefixed with the first byte of the NAL unit containing the syntax elements

forbidden_zero_bit, nal_ref_idc, and nal_unit_type, where nal_unit_type indicates the type of RBSP data structure
the NAL unit contains.

The process specified above results in the construction of the entire NAL unit.

This process can allow any SODB to be represented in a NAL unit while ensuring that
– no byte-aligned start code prefix is emulated within the NAL unit,
– no sequence of 8 zero-valued bits followed by a start code prefix, regardless of byte-alignment, is emulated within the

NAL unit.

7.4.1.2 Order of NAL units and association to coded pictures, access units, and video sequences

This subclause specifies constraints on the order of NAL units in the bitstream.

Any order of NAL units in the bitstream obeying these constraints is referred to in the text as the decoding order of NAL
units. Within a NAL unit, the syntax in subclauses 7.3 and E.1 specifies the decoding order of syntax elements. Decoders
shall be capable of receiving NAL units and their syntax elements in decoding order.

7.4.1.2.1 Order of sequence and picture parameter set RBSPs and their activation

This subclause specifies the activation process of picture and sequence parameter sets for coded video sequences that
conform to one or more of the profiles specified in Annex A and are decoded using the decoding process specified in
clauses 2-9.

NOTE – The sequence and picture parameter set mechanism decouples the transmission of infrequently changing information from the
transmission of coded macroblock data. Sequence and picture parameter sets may, in some applications, be conveyed "out-of-band"
using a reliable transport mechanism.

A picture parameter set RBSP includes parameters that can be referred to by the coded slice NAL units of one or more coded
pictures. Each picture parameter set RBSP is initially considered not active at the start of the operation of the decoding
process. At most one picture parameter set RBSP is considered active at any given moment during the operation of the
decoding process, and the activation of any particular picture parameter set RBSP results in the deactivation of the
previously-active picture parameter set RBSP (if any).

When a picture parameter set RBSP (with a particular value of pic_parameter_set_id) is not active and it is referred to by a
coded slice NAL unit (using that value of pic_parameter_set_id), it is activated. This picture parameter set RBSP is called the

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

46 © ISO/IEC 2015 – All rights reserved

active picture parameter set RBSP until it is deactivated by the activation of another picture parameter set RBSP. A picture
parameter set RBSP, with that particular value of pic_parameter_set_id, shall be available to the decoding process prior to its
activation.

Any picture parameter set NAL unit containing the value of pic_parameter_set_id for the active picture parameter set RBSP
for a coded picture shall have the same content as that of the active picture parameter set RBSP for the coded picture unless it
follows the last VCL NAL unit of the coded picture and precedes the first VCL NAL unit of another coded picture.

When a picture parameter set NAL unit with a particular value of pic_parameter_set_id is received, its content replaces the
content of the previous picture parameter set NAL unit, in decoding order, with the same value of pic_parameter_set_id
(when a previous picture parameter set NAL unit with the same value of pic_parameter_set_id was present in the bitstream).

NOTE – A decoder must be capable of simultaneously storing the contents of the picture parameter sets for all values of
pic_parameter_set_id. The content of the picture parameter set with a particular value of pic_parameter_set_id is overwritten when a
new picture parameter set NAL unit with the same value of pic_parameter_set_id is received.

A sequence parameter set RBSP includes parameters that can be referred to by one or more picture parameter set RBSPs or
one or more SEI NAL units containing a buffering period SEI message (see Annex D). Each sequence parameter set RBSP is
initially considered not active at the start of the operation of the decoding process. At most one sequence parameter set RBSP
is considered active at any given moment during the operation of the decoding process, and the activation of any particular
sequence parameter set RBSP results in the deactivation of the previously-active sequence parameter set RBSP (if any).

When a sequence parameter set RBSP (with a particular value of seq_parameter_set_id) is not already active and it is referred
to by activation of a picture parameter set RBSP (using that value of seq_parameter_set_id) or is referred to by an SEI NAL
unit containing a buffering period SEI message (using that value of seq_parameter_set_id), it is activated. This sequence
parameter set RBSP is called the active sequence parameter set RBSP until it is deactivated by the activation of another
sequence parameter set RBSP. A sequence parameter set RBSP, with that particular value of seq_parameter_set_id, shall be
available to the decoding process prior to its activation. An activated sequence parameter set RBSP shall remain active for the
entire coded video sequence.

NOTE – Because an IDR access unit begins a new coded video sequence and an activated sequence parameter set RBSP must remain
active for the entire coded video sequence, a sequence parameter set RBSP can only be activated by a buffering period SEI message
when the buffering period SEI message is part of an IDR access unit.

Any sequence parameter set NAL unit containing the value of seq_parameter_set_id for the active sequence parameter set
RBSP for a coded video sequence shall have the same content as that of the active sequence parameter set RBSP for the
coded video sequence unless it follows the last access unit of the coded video sequence and precedes the first VCL NAL unit
and the first SEI NAL unit containing a buffering period SEI message (when present) of another coded video sequence.

NOTE – If picture parameter set RBSP or sequence parameter set RBSP are conveyed within the bitstream, these constraints impose an
order constraint on the NAL units that contain the picture parameter set RBSP or sequence parameter set RBSP, respectively.
Otherwise (picture parameter set RBSP or sequence parameter set RBSP are conveyed by other means not specified in this
International Standard), they must be available to the decoding process in a timely fashion such that these constraints are obeyed.

When a sequence parameter set NAL unit with a particular value of seq_parameter_set_id is received, its content replaces the
content of the previous sequence parameter set NAL unit, in decoding order, with the same value of seq_parameter_set_id
(when a previous sequence parameter set NAL unit with the same value of seq_parameter_set_id was present in the
bitstream).

NOTE – A decoder must be capable of simultaneously storing the contents of the sequence parameter sets for all values of
seq_parameter_set_id. The content of the sequence parameter set with a particular value of seq_parameter_set_id is overwritten when a
new sequence parameter set NAL unit with the same value of seq_parameter_set_id is received.

All constraints that are expressed on the relationship between the values of the syntax elements (and the values of variables
derived from those syntax elements) in sequence parameter sets and picture parameter sets and other syntax elements are
expressions of constraints that apply only to the active sequence parameter set and the active picture parameter set. If any
sequence parameter set RBSP is present that is not activated in the bitstream, its syntax elements shall have values that would
conform to the specified constraints if it were activated by reference in an otherwise-conforming bitstream. If any picture
parameter set RBSP is present that is not ever activated in the bitstream, its syntax elements shall have values that would
conform to the specified constraints if it were activated by reference in an otherwise-conforming bitstream.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 47

During operation of the decoding process (see clause 8), the values of parameters of the active picture parameter set and the
active sequence parameter set shall be considered in effect.

7.4.1.2.2 Order of access units and association to coded video sequences

A bitstream conforming to this International Standard consists of one or more coded video sequences.

A coded video sequence consists of one or more access units. For coded video sequences that conform to one or more of the
profiles specified in Annex A and are decoded using the decoding process specified in clauses 2-9, the order of NAL units
and coded pictures and their association to access units is described in subclause 7.4.1.2.3.

The first access unit of each coded video sequence is an IDR access unit. All subsequent access units in the coded video
sequence are non-IDR access units.

It is a requirement of bitstream conformance that, when two consecutive access units in decoding order within a coded video
sequence both contain non-reference pictures, the value of picture order count for each coded frame in the first such access
unit shall be less than or equal to the value of picture order count for each coded frame in the second such access unit.

It is a requirement of bitstream conformance that, when present, an access unit following an access unit that contains an end
of sequence NAL unit shall be an IDR access unit.

It is a requirement of bitstream conformance that, when an SEI NAL unit contains data that pertain to more than one access
unit (for example, when the SEI NAL unit has a coded video sequence as its scope), it shall be contained in the first access
unit to which it applies.

It is a requirement of bitstream conformance that, when an end of stream NAL unit is present in an access unit, this access
unit shall be the last access unit in the bitstream and the end of stream NAL unit shall be the last NAL unit in that access unit.

7.4.1.2.3 Order of NAL units and coded pictures and association to access units

This subclause specifies the order of NAL units and coded pictures and association to access unit for coded video sequences
that conform to one or more of the profiles specified in Annex A and are decoded using the decoding process specified in
clauses 2-9.

An access unit consists of one primary coded picture, , and zero or more non-VCL NAL units. The association of VCL NAL
units to primary is described in subclause 7.4.1.2.5.

The first access unit in the bitstream starts with the first NAL unit of the bitstream.

The first of any of the following NAL units after the last VCL NAL unit of a primary coded picture specifies the start of a
new access unit:

– access unit delimiter NAL unit (when present),

– sequence parameter set NAL unit (when present),

– picture parameter set NAL unit (when present),

– SEI NAL unit (when present),

– NAL units with nal_unit_type in the range of 14 to 18, inclusive (when present),

– first VCL NAL unit of a primary coded picture (always present).

The constraints for the detection of the first VCL NAL unit of a primary coded picture are specified in subclause 7.4.1.2.4.

The following constraints shall be obeyed by the order of the coded pictures and non-VCL NAL units within an access unit:

– When an access unit delimiter NAL unit is present, it shall be the first NAL unit. There shall be at most one access unit
delimiter NAL unit in any access unit.

– When any SEI NAL units are present, they shall precede the primary coded picture.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

48 © ISO/IEC 2015 – All rights reserved

– When an SEI NAL unit containing a buffering period SEI message (see Annex D) is present, the buffering period SEI
message shall be the first SEI message payload of the first SEI NAL unit in the access unit.

– When an end of sequence NAL unit is present, it shall follow the primary coded picture

– When an end of stream NAL unit is present, it shall be the last NAL unit.

– NAL units having nal_unit_type equal to 0, 12, or in the range of 20 to 31, inclusive, shall not precede the first VCL
NAL unit of the primary coded picture.

NOTE – Sequence parameter set NAL units or picture parameter set NAL units may be present in an access unit, but cannot follow the
last VCL NAL unit of the primary coded picture within the access unit, as this condition would specify the start of a new access unit.
NOTE – When a NAL unit having nal_unit_type equal to 7 or 8 is present in an access unit, it may or may not be referred to in the
coded pictures of the access unit in which it is present, and may be referred to in coded pictures of subsequent access units.

The structure of access units not containing any NAL units with nal_unit_type equal to 0, 7, 8, or in the range of 12 to 18,
inclusive, or in the range of 20 to 31, inclusive, is shown in Figure 7-1.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 49

access unit delimiter

SEI

primary coded picture

redundant coded picture

end of sequence

end of stream

start

end

auxiliary coded picture

Figure 7-1 – Structure of an access unit not containing any NAL units with nal_unit_type equal to 0, 7, 8,
or in the range of 12 to 18, inclusive, or in the range of 20 to 31, inclusive

7.4.1.2.4 Detection of the first VCL NAL unit of a primary coded picture

This subclause specifies constraints on VCL NAL unit syntax that are sufficient to enable the detection of the first VCL NAL
unit of each primary coded picture for coded video sequences that conform to one or more of the profiles specified in
Annex A and are decoded using the decoding process specified in clauses 2-9.

Any coded slice NAL unit of the primary coded picture of the current access unit shall be different from any coded slice NAL
unit of the primary coded picture of the previous access unit in one or more of the following ways:

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

50 © ISO/IEC 2015 – All rights reserved

– frame_num differs in value. The value of frame_num used to test this condition is the value of frame_num that appears in
the syntax of the slice header, regardless of whether that value is inferred to have been equal to 0 for subsequent use in
the decoding process due to the presence of memory_management_control_operation equal to 5.

NOTE – A consequence of the above statement is that a primary coded picture having frame_num equal to 1 cannot contain
a memory_management_control_operation equal to 5 unless some other condition listed below is fulfilled for the next
primary coded picture that follows after it (if any).

– pic_parameter_set_id differs in value.

– nal_ref_idc differs in value with one of the nal_ref_idc values being equal to 0.

– pic_order_cnt_type is equal to 0 for both and pic_order_cnt_lsb differs in value.– pic_order_cnt_type is equal to 1 for
both and either delta_pic_order_cnt[0] differs in value, or delta_pic_order_cnt[1] differs in value.

– IdrPicFlag differs in value.

– IdrPicFlag is equal to 1 for both and idr_pic_id differs in value.
NOTE – Some of the VCL NAL units in non-VCL NAL units (e.g., an access unit delimiter NAL unit) may also be used for the
detection of the boundary between access units, and may therefore aid in the detection of the start of a new primary coded picture.

7.4.1.2.5 Order of VCL NAL units and association to coded pictures

This subclause specifies the order of VCL NAL units and association to coded pictures for coded video sequences that
conform to one or more of the profiles specified in Annex A and are decoded using the decoding process specified in
clauses 2-9.

Each VCL NAL unit is part of a coded picture.

The order of the VCL NAL units within a coded IDR picture is constrained as follows:

– the order of coded slice of an IDR picture NAL units shall be in the order of increasing macroblock address.

The order of the VCL NAL units within a coded non-IDR picture is constrained as follows:

– the order of coded slice of a non-IDR picture NAL units shall be in the order of increasing macroblock address.

NAL units having nal_unit_type equal to 12 may be present in the access unit but shall not precede the first VCL NAL unit of
the primary coded picture within the access unit.

NAL units having nal_unit_type equal to 0 or in the range of 24 to 31, inclusive, which are unspecified, may be present in the
access unit but shall not precede the first VCL NAL unit of the primary coded picture within the access unit.

NAL units having nal_unit_type in the range of 20 to 23, inclusive, shall not precede the first VCL NAL unit of the primary
coded picture within the access unit.

7.4.2 Raw byte sequence payloads and RBSP trailing bits semantics

7.4.2.1 Sequence parameter set RBSP semantics

7.4.2.1.1 Sequence parameter set data semantics

profile_idc and level_idc indicate the profile and level to which the coded video sequence conforms.

constraint_set0_flag equal to 1, when profile_idc is equal to 66, has no meaning and should be equal to 1 and its value shall
be ignored by decoders. When profile_idc is equal to 77, constraint_set0_flag equal to 1 indicates that the coded video
sequence obeys all constraints specified in subclause A.2.1 and constraint_set0_flag equal to 0 indicates that the coded video
sequence may or may not obey all constraints specified in subclause A.2.1. When profile_idc is not equal to 66 or 77,
constraint_set0_flag is interpreted together with constraint_set1_flag as specified below.

constraint_set1_flag equal to 1, when profile_idc is equal to 66 or constraint_set0_flag is equal to 1, indicates that the coded
video sequence obeys all constraints specified in subclause A.2.1. When profile_idc is not equal to 66 and

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 51

constraint_set0_flag is not equal to 1, constraint_set1_flag equal to 0 indicates that the coded video sequence may or may not
obey all constraints specified in subclause A.2.1.

constraint_set2_flag is not used in this specification; the value shall be ignored by decoders, and should be set to 1 by
encoders.

constraint_set3_flag is specified as follows:
– If profile_idc is equal to 66, 77, or 88 and level_idc is equal to 11, constraint_set3_flag equal to 1 indicates that the

coded video sequence obeys all constraints specified in Annex A for level 1b and constraint_set3_flag equal to 0
indicates that the coded video sequence obeys all constraints specified in Annex A for level 1.1.

– Otherwise the value of 1 for constraint_set3_flag is reserved for future use by ITU-T | ISO/IEC. In this case, decoders
shall ignore the value of constraint_set3_flag.

constraint_set4_flag is reserved for future use by ITU-T | ISO/IEC; the value shall be ignored by decoders, and shall be set
to 0 by encoders.

constraint_set5_flag is reserved for future use by ITU-T | ISO/IEC; the value shall be ignored by decoders, and shall be set
to 0 by encoders.

reserved_zero_2bits shall be equal to 0. Other values of reserved_zero_2bits may be specified in the future by ITU-T |
ISO/IEC. Decoders shall ignore the value of reserved_zero_2bits.

seq_parameter_set_id identifies the sequence parameter set that is referred to by the picture parameter set. The value of
seq_parameter_set_id shall be in the range of 0 to 31, inclusive.

NOTE – When feasible, encoders should use distinct values of seq_parameter_set_id when the values of other sequence parameter set
syntax elements differ rather than changing the values of the syntax elements associated with a specific value of seq_parameter_set_id.

log2_max_frame_num_minus4 specifies the value of the variable MaxFrameNum that is used in frame_num related
derivations as follows:

MaxFrameNum = 2(log2_max_frame_num_minus4 + 4) (7-2)

The value of log2_max_frame_num_minus4 shall be in the range of 0 to 12, inclusive.

pic_order_cnt_type specifies the method to decode picture order count (as specified in subclause 8.2.1). The value of
pic_order_cnt_type shall be in the range of 0 to 2, inclusive.

pic_order_cnt_type shall not be equal to 2 in a coded video sequence that contains an access unit containing a non-reference
frame followed immediately by an access unit containing a non-reference picture,

log2_max_pic_order_cnt_lsb_minus4 specifies the value of the variable MaxPicOrderCntLsb that is used in the decoding
process for picture order count as specified in subclause 8.2.1 as follows:

MaxPicOrderCntLsb = 2(log2_max_pic_order_cnt_lsb_minus4 + 4) (7-3)

The value of log2_max_pic_order_cnt_lsb_minus4 shall be in the range of 0 to 12, inclusive.

delta_pic_order_always_zero_flag equal to 1 specifies that delta_pic_order_cnt[0] and delta_pic_order_cnt[1] are not
present in the slice headers of the sequence and shall be inferred to be equal to 0. delta_pic_order_always_zero_flag equal to
0 specifies that delta_pic_order_cnt[0] is present in the slice headers of the sequence and delta_pic_order_cnt[1] may be
present in the slice headers of the sequence.

offset_for_non_ref_pic is used to calculate the picture order count of a non-reference picture as specified in subclause 8.2.1.
The value of offset_for_non_ref_pic shall be in the range of −231 + 1 to 231 − 1, inclusive.

num_ref_frames_in_pic_order_cnt_cycle is used in the decoding process for picture order count as specified in
subclause 8.2.1. The value of num_ref_frames_in_pic_order_cnt_cycle shall be in the range of 0 to 255, inclusive.

offset_for_ref_frame[i] is an element of a list of num_ref_frames_in_pic_order_cnt_cycle values used in the decoding
process for picture order count as specified in subclause 8.2.1. The value of offset_for_ref_frame[i] shall be in the range of
−231 + 1 to 231 − 1, inclusive.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

52 © ISO/IEC 2015 – All rights reserved

When pic_order_cnt_type is equal to 1, the variable ExpectedDeltaPerPicOrderCntCycle is derived by

ExpectedDeltaPerPicOrderCntCycle = 0
for(i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++)

ExpectedDeltaPerPicOrderCntCycle += offset_for_ref_frame[i] (7-4)

max_num_ref_frames specifies the maximum number of short-term and long-term reference frames that may be used by the
decoding process for inter prediction of any picture in the coded video sequence. max_num_ref_frames also determines the
size of the sliding window operation as specified in subclause 8.2.5.3. The value of max_num_ref_frames shall be in the
range of 0 toMaxDpbFrames (as specified in subclause A.3.1), inclusive.

gaps_in_frame_num_value_allowed_flag specifies the allowed values of frame_num as specified in subclause 7.4.3 and the
decoding process in case of an inferred gap between values of frame_num as specified in subclause 8.2.5.2.

pic_width_in_mbs_minus1 plus 1 specifies the width of each decoded picture in units of macroblocks.

The variable for the picture width in units of macroblocks is derived as

PicWidthInMbs = pic_width_in_mbs_minus1 + 1 (7-5)

The variable for picture width for the luma component is derived as

PicWidthInSamplesL = PicWidthInMbs * 16 (7-6)
The variable for picture width for the chroma components is derived as

PicWidthInSamplesC = PicWidthInMbs * MbWidthC (7-7)

frame_mbs_only_flag shall be equal to 1 and specifies that every coded picture of the coded video sequence is a coded
frame containing only frame macroblocks.

The allowed range of values for pic_width_in_mbs_minus1, pic_height_in_map_units_minus1, is specified by constraints in
Annex A.

pic_height_in_map_units_minus1 plus 1 is the height of a frame in units of macroblocks.

The variable FrameHeightInMbs is derived as

FrameHeightInMbs = (2 − frame_mbs_only_flag) * PicHeightInMapUnits (7-8)

direct_8x8_inference_flag is not used and may have any value.

frame_cropping_flag equal to 1 specifies that the frame cropping offset parameters follow next in the sequence parameter
set. frame_cropping_flag equal to 0 specifies that the frame cropping offset parameters are not present.

frame_crop_left_offset, frame_crop_right_offset, frame_crop_top_offset, frame_crop_bottom_offset specify the
samples of the pictures in the coded video sequence that are output from the decoding process, in terms of a rectangular
region specified in frame coordinates for output.

The variables CropUnitX and CropUnitY are derived as follows:

CropUnitX = 2 (7-9)
CropUnitY = 2* (2 − frame_mbs_only_flag) (7-10)

The frame cropping rectangle contains luma samples with horizontal frame coordinates from
CropUnitX * frame_crop_left_offset to PicWidthInSamplesL − (CropUnitX * frame_crop_right_offset + 1) and vertical
frame coordinates from CropUnitY * frame_crop_top_offset to (16 * FrameHeightInMbs) −
(CropUnitY * frame_crop_bottom_offset + 1), inclusive. The value of frame_crop_left_offset shall be in the range of 0 to
(PicWidthInSamplesL / CropUnitX) − (frame_crop_right_offset + 1), inclusive; and the value of frame_crop_top_offset
shall be in the range of 0 to (16 * FrameHeightInMbs / CropUnitY) − (frame_crop_bottom_offset + 1), inclusive.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 53

When frame_cropping_flag is equal to 0, the values of frame_crop_left_offset, frame_crop_right_offset,
frame_crop_top_offset, and frame_crop_bottom_offset shall be inferred to be equal to 0.

The corresponding specified samples of the two chroma arrays are the samples having frame coordinates (x / 2, y / 2), where
(x, y) are the frame coordinates of the specified luma samples.

vui_parameters_present_flag equal to 1 specifies that the vui_parameters() syntax structure as specified in Annex E is
present. vui_parameters_present_flag equal to 0 specifies that the vui_parameters() syntax structure as specified in Annex E
is not present.

7.4.2.2 Picture parameter set RBSP semantics

pic_parameter_set_id identifies the picture parameter set that is referred to in the slice header. The value of
pic_parameter_set_id shall be in the range of 0 to 255, inclusive.

seq_parameter_set_id refers to the active sequence parameter set. The value of seq_parameter_set_id shall be in the range
of 0 to 31, inclusive.

entropy_coding_mode_flag selects the entropy decoding method to be applied for the syntax elements. It shall be equal
to 0, and the method specified by the left descriptor in the syntax table is applied (Exp-Golomb coded, see subclause 9.1 or
CAVLC, see subclause 9.2).

bottom_field_pic_order_in_frame_present_flag equal to 1 specifies that the syntax elements delta_pic_order_cnt_bottom
(when pic_order_cnt_type is equal to 0) or delta_pic_order_cnt[1] (when pic_order_cnt_type is equal to 1), which are
related to picture order counts for the bottom field of a coded frame, are present in the slice headers for coded frames as
specified in subclause 7.3.3. bottom_field_pic_order_in_frame_present_flag equal to 0 specifies that the syntax elements
delta_pic_order_cnt_bottom and delta_pic_order_cnt[1] are not present in the slice headers.

num_slice_groups_minus1 shall be equal to 0.

num_ref_idx_l0_default_active_minus1 specifies how num_ref_idx_l0_active_minus1 is inferred for P slices with
num_ref_idx_active_override_flag equal to 0. The value of num_ref_idx_l0_default_active_minus1 shall be in the range of 0
to 31, inclusive.

num_ref_idx_l1_default_active_minus1 is not used and shall be in the range of 0 to 31, inclusive.

weighted_pred_flag shall be equal to 0.

weighted_bipred_idc shall be equal to 0.

pic_init_qp_minus26 specifies the initial value minus 26 of SliceQPY for each slice. The initial value is modified at the slice
layer when a non-zero value of slice_qp_delta is decoded, and is modified further when a non-zero value of mb_qp_delta is
decoded at the macroblock layer. The value of pic_init_qp_minus26 shall be in the range of −(26 + 0) to +25, inclusive.

pic_init_qs_minus26 is not used and shall be in the range of −26 to +25, inclusive.

chroma_qp_index_offset specifies the offset that shall be added to QPY and QSY for addressing the table of QPC values for
the Cb chroma component. The value of chroma_qp_index_offset shall be in the range of −12 to +12, inclusive.

deblocking_filter_control_present_flag equal to 1 specifies that a set of syntax elements controlling the characteristics of
the deblocking filter is present in the slice header. deblocking_filter_control_present_flag equal to 0 specifies that the set of
syntax elements controlling the characteristics of the deblocking filter is not present in the slice headers and their inferred
values are in effect.

constrained_intra_pred_flag equal to 0 specifies that intra prediction allows usage of residual data and decoded samples of
neighbouring macroblocks coded using Inter macroblock prediction modes for the prediction of macroblocks coded using
Intra macroblock prediction modes. constrained_intra_pred_flag equal to 1 specifies constrained intra prediction, in which
case prediction of macroblocks coded using Intra macroblock prediction modes only uses residual data and decoded samples
from I macroblock types.

redundant_pic_cnt_present_flag shall be equal to 0 and specifies that the redundant_pic_cnt syntax element is not present
in slice headers that refer to the picture parameter set.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

54 © ISO/IEC 2015 – All rights reserved

7.4.2.3 Supplemental enhancement information RBSP semantics

Supplemental Enhancement Information (SEI) contains information that is not necessary to decode the samples of coded
pictures from VCL NAL units.

7.4.2.3.1 Supplemental enhancement information message semantics

An SEI RBSP contains one or more SEI messages. Each SEI message consists of the variables specifying the type
payloadType and size payloadSize of the SEI payload. SEI payloads, identified herein as the sei_payload() syntax structure,
are specified by Annex D. The derived SEI payload size payloadSize is specified in bytes and shall be equal to the number of
RBSP bytes in the SEI payload.

NOTE – The NAL unit byte sequence containing the SEI message might include one or more emulation prevention bytes (represented
by emulation_prevention_three_byte syntax elements). Since the payload size of an SEI message is specified in RBSP bytes, the
quantity of emulation prevention bytes is not included in the size payloadSize of an SEI payload.

ff_byte is a byte equal to 0xFF identifying a need for a longer representation of the syntax structure that it is used within.

last_payload_type_byte is the last byte of the payload type of an SEI message.

last_payload_size_byte is the last byte of the payload size of an SEI message.

7.4.2.4 Access unit delimiter RBSP semantics

The access unit delimiter may be used to indicate the type of slices present in a primary coded picture and to simplify the
detection of the boundary between access units. There is no normative decoding process associated with the access unit
delimiter.

primary_pic_type indicates that the slice_type values for all slices of the primary coded picture are members of the set listed
in Table 7-2 for the given value of primary_pic_type.

NOTE – The value of primary_pic_type applies to the slice_type values in all slice headers of the primary coded picture, including the
slice_type syntax elements in all NAL units with nal_unit_type equal to 1 or 5.

Table 7-2 – Meaning of primary_pic_type

primary_pic_type slice_type values that may be present in the primary coded picture

0 2, 7
1 0, 2, 5, 7
2 0, 2, 5, 7
3 4, 9
4 3, 4, 8, 9
5 2, 4, 7, 9
6 0, 2, 3, 4, 5, 7, 8, 9
7 0, 2, 3, 4, 5, 7, 8, 9

7.4.2.5 End of sequence RBSP semantics

The end of sequence RBSP specifies that the next subsequent access unit in the bitstream in decoding order (if any) shall be
an IDR access unit. The syntax content of the SODB and RBSP for the end of sequence RBSP are empty. No normative
decoding process is specified for an end of sequence RBSP.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 55

7.4.2.6 End of stream RBSP semantics

The end of stream RBSP indicates that no additional NAL units shall be present in the bitstream that are subsequent to the
end of stream RBSP in decoding order. The syntax content of the SODB and RBSP for the end of stream RBSP are empty.
No normative decoding process is specified for an end of stream RBSP.

NOTE – When an end of stream NAL unit is present, the bitstream is considered to end (for purposes of the scope of this International
Standard). In some system environments, another bitstream may follow after the bitstream that has ended, either immediately or at
some time thereafter, possibly within the same communication channel. Under such circumstances, the scope of this International
Standard applies only to the processing of each of these individual bitstreams. No requirements are specified herein regarding the
transition between such bitstreams (e.g., in regard to timing, buffering operation, etc.).

7.4.2.7 Filler data RBSP semantics

The filler data RBSP contains zero or more bytes. No normative decoding process is specified for a filler data RBSP.

ff_byte is a byte. It is a requirement of bitstream conformance that the value of ff_byte shall be equal to 0xFF.

7.4.2.8 Slice layer without partitioning RBSP semantics

The slice layer without partitioning RBSP consists of a slice header and slice data.

7.4.2.9 (void)

7.4.2.10 RBSP slice trailing bits semantics

In this Specification, the RBSP trailing bits syntax and semantics are the same as the RBSP trailing bits syntax and semantics.

7.4.2.11 RBSP trailing bits semantics

rbsp_stop_one_bit shall be equal to 1.

rbsp_alignment_zero_bit shall be equal to 0.

7.4.3 Slice header semantics

When present, the value of the slice header syntax elements pic_parameter_set_id, frame_num, , idr_pic_id,
pic_order_cnt_lsb, delta_pic_order_cnt[0], and delta_pic_order_cnt[1] shall be the same in all slice headers of a coded
picture.

first_mb_in_slice specifies the address of the first macroblock in the slice. the value of first_mb_in_slice is constrained as
follows:

– the value of first_mb_in_slice shall not be less than the value of first_mb_in_slice for any other slice of the current
picture that precedes the current slice in decoding order.

The first macroblock address of the slice is derived as follows:

– first_mb_in_slice is the macroblock address of the first macroblock in the slice, and first_mb_in_slice shall be in the
range of 0 to PicSizeInMbs − 1, inclusive.

slice_type specifies the coding type of the slice according to Table 7-3. Reserved slice_type values shall not be present in the
slice header.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

56 © ISO/IEC 2015 – All rights reserved

Table 7-3 – Name association to slice_type

slice_type Name of slice_type

0 P (P slice)
1 Reserved
2 I (I slice)
3 Reserved
4 Reserved
5 P (P slice)
6 Reserved
7 I (I slice)
8 Reserved
9 Reserved

When slice_type has a value in the range 5..9, it is a requirement of bitstream conformance that all other slices of the current
coded picture shall have a value of slice_type equal to the current value of slice_type or equal to the current value of
slice_type minus 5.

NOTE – Values of slice_type in the range 5..9 can be used by an encoder to indicate that all slices of a picture have the same value of
(slice_type % 5). Values of slice_type in the range 5..9 are otherwise equivalent to corresponding values in the range 0..4.

When nal_unit_type is equal to 5 (IDR picture), slice_type shall be equal to 2 or 7.

When max_num_ref_frames is equal to 0, slice_type shall be equal to 2 or 7.

pic_parameter_set_id specifies the picture parameter set in use. The value of pic_parameter_set_id shall be in the range of 0
to 255, inclusive.

frame_num is used as an identifier for pictures and shall be represented by log2_max_frame_num_minus4 + 4 bits in the
bitstream. frame_num is constrained as follows:

The variable PrevRefFrameNum is derived as follows:

– If the current picture is an IDR picture, PrevRefFrameNum is set equal to 0.

– Otherwise (the current picture is not an IDR picture), PrevRefFrameNum is set as follows:

– If the decoding process for gaps in frame_num specified in subclause 8.2.5.2 was invoked by the decoding process
for an access unit that contained a non-reference picture that followed the previous access unit in decoding order
that contained a reference picture, PrevRefFrameNum is set equal to the value of frame_num for the last of the
"non-existing" reference frames inferred by the decoding process for gaps in frame_num specified in
subclause 8.2.5.2.

– Otherwise, PrevRefFrameNum is set equal to the value of frame_num for the previous access unit in decoding
order that contained a reference picture.

The value of frame_num is constrained as follows:

– If the current picture is an IDR picture, frame_num shall be equal to 0.

– Otherwise (the current picture is not an IDR picture), referring to the primary coded picture in the previous access unit in
decoding order that contains a reference picture as the preceding reference picture, the value of frame_num for the
current picture shall not be equal to PrevRefFrameNum unless all of the following three conditions are true:

a) The current picture and the preceding reference picture belong to consecutive access units in decoding order.

b) (void).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 57

c) One or more of the following conditions is true:
– The preceding reference picture is an IDR picture,
– The preceding reference picture includes a memory_management_control_operation syntax element equal

to 5,
NOTE – When the preceding reference picture includes a memory_management_control_operation syntax element
equal to 5, PrevRefFrameNum is equal to 0.

– There is a primary coded picture that precedes the preceding reference picture and the primary coded picture
that precedes the preceding reference picture does not have frame_num equal to PrevRefFrameNum,

– There is a primary coded picture that precedes the preceding reference picture and the primary coded picture
that precedes the preceding reference picture is not a reference picture.

When the value of frame_num is not equal to PrevRefFrameNum, it is a requirement of bitstream conformance that the
following constraints shall be obeyed:

a) There shall not be any previous frame in decoding order that is currently marked as "used for short-term reference"
that has a value of frame_num equal to any value taken on by the variable UnusedShortTermFrameNum in the
following:

UnusedShortTermFrameNum = (PrevRefFrameNum + 1) % MaxFrameNum
while(UnusedShortTermFrameNum != frame_num) (7-11)

UnusedShortTermFrameNum = (UnusedShortTermFrameNum + 1) % MaxFrameNum

b) The value of frame_num is constrained as follows:
– If gaps_in_frame_num_value_allowed_flag is equal to 0, the value of frame_num for the current picture shall

be equal to (PrevRefFrameNum + 1) % MaxFrameNum.
– Otherwise (gaps_in_frame_num_value_allowed_flag is equal to 1), the following applies:

– If frame_num is greater than PrevRefFrameNum, there shall not be any non-reference pictures in the
bitstream that follow the previous reference picture and precede the current picture in decoding order in
which either of the following conditions is true:
– The value of frame_num for the non-reference picture is less than PrevRefFrameNum,
– The value of frame_num for the non-reference picture is greater than the value of frame_num for the

current picture.
– Otherwise (frame_num is less than PrevRefFrameNum), there shall not be any non-reference pictures in

the bitstream that follow the previous reference picture and precede the current picture in decoding order
in which both of the following conditions are true:
– The value of frame_num for the non-reference picture is less than PrevRefFrameNum,
– The value of frame_num for the non-reference picture is greater than the value of frame_num for the

current picture.

A picture including a memory_management_control_operation equal to 5 shall have frame_num constraints as described
above and, after the decoding of the current picture and the processing of the memory management control operations, the
picture shall be inferred to have had frame_num equal to 0 for all subsequent use in the decoding process, except as specified
in subclause 7.4.1.2.4.

idr_pic_id identifies an IDR picture. The values of idr_pic_id in all the slices of an IDR picture shall remain unchanged.
When two consecutive access units in decoding order are both IDR access units, the value of idr_pic_id in the slices of the
first such IDR access unit shall differ from the idr_pic_id in the second such IDR access unit. The value of idr_pic_id shall be
in the range of 0 to 65535, inclusive.

NOTE – It is not prohibited for multiple IDR pictures in a bitstream to have the same value of idr_pic_id unless such pictures occur in
two consecutive access units in decoding order.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

58 © ISO/IEC 2015 – All rights reserved

pic_order_cnt_lsb specifies the picture order count modulo MaxPicOrderCntLsb for a coded frame. The length of the
pic_order_cnt_lsb syntax element is log2_max_pic_order_cnt_lsb_minus4 + 4 bits. The value of the pic_order_cnt_lsb shall
be in the range of 0 to MaxPicOrderCntLsb − 1, inclusive.

delta_pic_order_cnt[0] specifies the picture order count difference from the expected picture order count for the top field
of a coded frame or for a coded field as specified in subclause 8.2.1. The value of delta_pic_order_cnt[0] shall be in the
range of −231 + 1 to 231 − 1, inclusive. When this syntax element is not present in the bitstream for the current slice, it shall be
inferred to be equal to 0.

redundant_pic_cnt shall be equal to 0 and specifies that slices belong to the primary coded picture.

When the value of nal_ref_idc in one VCL NAL unit of an access unit is equal to 0, the value of nal_ref_idc in all other VCL
NAL units of the same access unit shall be equal to 0.

The marking status of reference pictures and the value of frame_num after the decoded reference picture marking process as
specified in subclause 8.2.5 is invoked for the primary coded picture of the same access unit shall be identical regardless
whether the primary coded picture of the access unit would be decoded.

num_ref_idx_active_override_flag equal to 1 specifies that the syntax element num_ref_idx_l0_active_minus1 is present
for P slices. num_ref_idx_active_override_flag equal to 0 specifies that the syntax element num_ref_idx_l0_active_minus1 is
not present.

When the current slice is a P slice and the value of num_ref_idx_l0_default_active_minus1 in the picture parameter set
exceeds 15, num_ref_idx_active_override_flag shall be equal to 1.

num_ref_idx_l0_active_minus1specifies the maximum reference index for reference picture list 0 that shall be used to
decode the slice.

When the current slice is a P slice and num_ref_idx_l0_active_minus1 is not present, num_ref_idx_l0_active_minus1 shall
be inferred to be equal to num_ref_idx_l0_default_active_minus1.

The range of num_ref_idx_l0_active_minus1 is specified as follows:

num_ref_idx_l0_active_minus1 shall be in the range of 0 to 15, inclusive.

slice_qp_delta specifies the initial value of QPY to be used for all the macroblocks in the slice until modified by the value of
mb_qp_delta in the macroblock layer. The initial QPY quantisation parameter for the slice is computed as

SliceQPY = 26 + pic_init_qp_minus26 + slice_qp_delta (7-12)

The value of slice_qp_delta shall be limited such that SliceQPY is in the range of −0 to +51, inclusive.

disable_deblocking_filter_idc specifies whether the operation of the deblocking filter shall be disabled across some block
edges of the slice and specifies for which edges the filtering is disabled. When disable_deblocking_filter_idc is not present in
the slice header, the value of disable_deblocking_filter_idc shall be inferred to be equal to 0.

The value of disable_deblocking_filter_idc shall be in the range of 0 to 2, inclusive.

slice_alpha_c0_offset_div2 specifies the offset used in accessing the α and tC0 deblocking filter tables for filtering operations
controlled by the macroblocks within the slice. From this value, the offset that shall be applied when addressing these tables
shall be computed as

FilterOffsetA = slice_alpha_c0_offset_div2 << 1 (7-13)

The value of slice_alpha_c0_offset_div2 shall be in the range of −6 to +6, inclusive. When slice_alpha_c0_offset_div2 is not
present in the slice header, the value of slice_alpha_c0_offset_div2 shall be inferred to be equal to 0.

slice_beta_offset_div2 specifies the offset used in accessing the β deblocking filter table for filtering operations controlled
by the macroblocks within the slice. From this value, the offset that is applied when addressing the β table of the deblocking
filter shall be computed as

FilterOffsetB = slice_beta_offset_div2 << 1 (7-14)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 59

The value of slice_beta_offset_div2 shall be in the range of −6 to +6, inclusive. When slice_beta_offset_div2 is not present in
the slice header the value of slice_beta_offset_div2 shall be inferred to be equal to 0.

7.4.3.1 Reference picture list modification semantics

The syntax elements modification_of_pic_nums_idc, abs_diff_pic_num_minus1, and long_term_pic_num specify the change
from the initial reference picture lists to the reference picture lists to be used for decoding the slice.

ref_pic_list_modification_flag_l0 equal to 1 specifies that the syntax element modification_of_pic_nums_idc is present for
specifying reference picture list 0. ref_pic_list_modification_flag_l0 equal to 0 specifies that this syntax element is not
present.

When ref_pic_list_modification_flag_l0 is equal to 1, the number of times that modification_of_pic_nums_idc is not equal
to 3 following ref_pic_list_modification_flag_l0 shall not exceed num_ref_idx_l0_active_minus1 + 1.

When RefPicList0[num_ref_idx_l0_active_minus1] in the initial reference picture list produced as specified in
subclause 8.2.4.2 is equal to "no reference picture", ref_pic_list_modification_flag_l0 shall be equal to 1 and
modification_of_pic_nums_idc shall not be equal to 3 until RefPicList0[num_ref_idx_l0_active_minus1] in the modified
list produced as specified in subclause 8.2.4.3 is not equal to "no reference picture".

modification_of_pic_nums_idc together with abs_diff_pic_num_minus1 or long_term_pic_num specifies which of the
reference pictures are re-mapped. The values of modification_of_pic_nums_idc are specified in Table 7-4. The value of the
first modification_of_pic_nums_idc that follows immediately after ref_pic_list_modification_flag_l0 shall not be equal to 3.

Table 7-4 – modification_of_pic_nums_idc operations for modification of reference picture lists

modification_of_pic_nums_idc modification specified

0 abs_diff_pic_num_minus1 is present and corresponds to a difference to
subtract from a picture number prediction value

1 abs_diff_pic_num_minus1 is present and corresponds to a difference to
add to a picture number prediction value

2 long_term_pic_num is present and specifies the long-term picture number
for a reference picture

3 End loop for modification of the initial reference picture list

abs_diff_pic_num_minus1 plus 1 specifies the absolute difference between the picture number of the picture being moved
to the current index in the list and the picture number prediction value. abs_diff_pic_num_minus1 shall be in the range of 0 to
MaxPicNum − 1. The allowed values of abs_diff_pic_num_minus1 are further restricted as specified in subclause 8.2.4.3.1.

long_term_pic_num specifies the long-term picture number of the picture being moved to the current index in the list. When
decoding a coded frame, long_term_pic_num shall be equal to a LongTermPicNum assigned to one of the reference frames
marked as "used for long-term reference".

7.4.3.2 (void)

7.4.3.3 Decoded reference picture marking semantics

The syntax elements no_output_of_prior_pics_flag, long_term_reference_flag, adaptive_ref_pic_marking_mode_flag,
memory_management_control_operation, difference_of_pic_nums_minus1, long_term_frame_idx, long_term_pic_num, and
max_long_term_frame_idx_plus1 specify marking of the reference pictures.

The marking of a reference picture can be "unused for reference", "used for short-term reference", or "used for long-term
reference", but only one among these three. When a reference picture is referred to as being marked as "used for reference",
this collectively refers to the picture being marked as "used for short-term reference" or "used for long-term reference" (but

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

60 © ISO/IEC 2015 – All rights reserved

not both). A reference picture that is marked as "used for short-term reference" is referred to as a short-term reference picture.
A reference picture that is marked as "used for long-term reference" is referred to as a long-term reference picture.

The content of the decoded reference picture marking syntax structure shall be the same in all slice headers of the primary
coded picture.

no_output_of_prior_pics_flag specifies how the previously-decoded pictures in the decoded picture buffer are treated after
decoding of an IDR picture. See Annex C. When the IDR picture is the first IDR picture in the bitstream, the value of
no_output_of_prior_pics_flag has no effect on the decoding process. When the IDR picture is not the first IDR picture in the
bitstream and the value of PicWidthInMbs, FrameHeightInMbs, or max_dec_frame_buffering derived from the active
sequence parameter set is different from the value of PicWidthInMbs, FrameHeightInMbs, or max_dec_frame_buffering
derived from the sequence parameter set active for the preceding picture, no_output_of_prior_pics_flag equal to 1 may (but
should not) be inferred by the decoder, regardless of the actual value of no_output_of_prior_pics_flag.

long_term_reference_flag equal to 0 specifies that the MaxLongTermFrameIdx variable is set equal to "no long-term frame
indices" and that the IDR picture is marked as "used for short-term reference". long_term_reference_flag equal to 1 specifies
that the MaxLongTermFrameIdx variable is set equal to 0 and that the current IDR picture is marked "used for long-term
reference" and is assigned LongTermFrameIdx equal to 0. When max_num_ref_frames is equal to 0,
long_term_reference_flag shall be equal to 0.

adaptive_ref_pic_marking_mode_flag selects the reference picture marking mode of the currently decoded picture as
specified in Table 7-5. adaptive_ref_pic_marking_mode_flag shall be equal to 1 when the number of frames, that are
currently marked as "used for long-term reference" is equal to Max(max_num_ref_frames, 1).

Table 7-5 – Interpretation of adaptive_ref_pic_marking_mode_flag

adaptive_ref_pic_marking_mode_flag Reference picture marking mode specified

0 Sliding window reference picture marking mode: A marking mode
providing a first-in first-out mechanism for short-term reference
pictures.

1 Adaptive reference picture marking mode: A reference picture
marking mode providing syntax elements to specify marking of
reference pictures as "unused for reference" and to assign long-term
frame indices.

memory_management_control_operation specifies a control operation to be applied to affect the reference picture
marking. The memory_management_control_operation syntax element is followed by data necessary for the operation
specified by the value of memory_management_control_operation. The values and control operations associated with
memory_management_control_operation are specified in Table 7-6. The memory_management_control_operation syntax
elements are processed by the decoding process in the order in which they appear in the slice header, and the semantics
constraints expressed for each memory_management_control_operation apply at the specific position in that order at which
that individual memory_management_control_operation is processed.

For interpretation of memory_management_control_operation, the term "reference picture" refers to a reference frame.

memory_management_control_operation shall not be equal to 1 in a slice header unless the specified reference picture is
marked as "used for short-term reference" when the memory_management_control_operation is processed by the decoding
process.

memory_management_control_operation shall not be equal to 2 in a slice header unless the specified long-term picture
number refers to a reference picture that is marked as "used for long-term reference" when the
memory_management_control_operation is processed by the decoding process.

memory_management_control_operation shall not be equal to 3 in a slice header unless the specified reference picture is
marked as "used for short-term reference" when the memory_management_control_operation is processed by the decoding
process.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 61

memory_management_control_operation shall not be equal to 3 or 6 if the value of the variable MaxLongTermFrameIdx is
equal to "no long-term frame indices" when the memory_management_control_operation is processed by the decoding
process.

Not more than one memory_management_control_operation equal to 4 shall be present in a slice header.

Not more than one memory_management_control_operation equal to 5 shall be present in a slice header.

Not more than one memory_management_control_operation equal to 6 shall be present in a slice header.

memory_management_control_operation shall not be equal to 5 in a slice header unless no
memory_management_control_operation in the range of 1 to 3 is present in the same decoded reference picture marking
syntax structure.

A memory_management_control_operation equal to 5 shall not follow a memory_management_control_operation equal to 6
in the same slice header.

When a memory_management_control_operation equal to 6 is present, any memory_management_control_operation equal to
2, 3, or 4 that follows the memory_management_control_operation equal to 6 within the same slice header shall not specify
the current picture to be marked as "unused for reference".

NOTE – These constraints prohibit any combination of multiple memory_management_control_operation syntax elements that would
specify the current picture to be marked as "unused for reference". However, some other combinations of
memory_management_control_operation syntax elements are permitted that may affect the marking status of other reference pictures
more than once in the same slice header. In particular, it is permitted for a memory_management_control_operation equal to 3 that
specifies a long-term frame index to be assigned to a particular short-term reference picture to be followed in the same slice header by a
memory_management_control_operation equal to 2, 3, 4 or 6 that specifies the same reference picture to subsequently be marked as
"unused for reference".

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

62 © ISO/IEC 2015 – All rights reserved

Table 7-6 – Memory management control operation (memory_management_control_operation) values

memory_management_control_operation Memory Management Control Operation

0 End memory_management_control_operation
syntax element loop

1 Mark a short-term reference picture as
"unused for reference"

2 Mark a long-term reference picture as
"unused for reference"

3 Mark a short-term reference picture as
"used for long-term reference" and assign a
long-term frame index to it

4 Specify the maximum long-term frame index
and mark all long-term reference pictures
having long-term frame indices greater than
the maximum value as "unused for reference"

5 Mark all reference pictures as
"unused for reference" and set the
MaxLongTermFrameIdx variable to
"no long-term frame indices"

6 Mark the current picture as
"used for long-term reference" and assign a
long-term frame index to it

difference_of_pic_nums_minus1 is used (with memory_management_control_operation equal to 3 or 1) to assign a long-
term frame index to a short-term reference picture or to mark a short-term reference picture as "unused for reference". When
the associated memory_management_control_operation is processed by the decoding process, the resulting picture number
derived from difference_of_pic_nums_minus1 shall be a picture number assigned to one of the reference pictures marked as
"used for reference" and not previously assigned to a long-term frame index.

The resulting picture number is constrained such that the resulting picture number shall be one of the set of picture numbers
assigned to reference frames.

long_term_pic_num is used (with memory_management_control_operation equal to 2) to mark a long-term reference
picture as "unused for reference". When the associated memory_management_control_operation is processed by the decoding
process, long_term_pic_num shall be equal to a long-term picture number assigned to one of the reference pictures that is
currently marked as "used for long-term reference".

The resulting long-term picture number is constrained such that the resulting long-term picture number shall be one of the set
of long-term picture numbers assigned to reference frames.

long_term_frame_idx is used (with memory_management_control_operation equal to 3 or 6) to assign a long-term frame
index to a picture. When the associated memory_management_control_operation is processed by the decoding process, the
value of long_term_frame_idx shall be in the range of 0 to MaxLongTermFrameIdx, inclusive.

max_long_term_frame_idx_plus1 minus 1 specifies the maximum value of long-term frame index allowed for long-term
reference pictures (until receipt of another value of max_long_term_frame_idx_plus1). The value of
max_long_term_frame_idx_plus1 shall be in the range of 0 to max_num_ref_frames, inclusive.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 63

7.4.4 Slice data semantics

mb_skip_run specifies the number of consecutive skipped macroblocks for which, when decoding a P slice, mb_type shall
be inferred to be P_Skip and the macroblock type is collectively referred to as a P macroblock type. The value of
mb_skip_run shall be in the range of 0 to PicSizeInMbs −CurrMbAddr, inclusive.

end_of_slice_flag equal to 0 specifies that another macroblock is following in the slice. end_of_slice_flag equal to 1
specifies the end of the slice and that no further macroblock follows.

The function NextMbAddress(n) used in the slice data syntax table is specified as:

NextMbAddress(n) = n + 1

7.4.5 Macroblock layer semantics

mb_type specifies the macroblock type. The semantics of mb_type depend on the slice type.

Tables and semantics are specified for the various macroblock types for I, P slices. Each table presents the value of mb_type,
the name of mb_type, the number of macroblock partitions used (given by the NumMbPart(mb_type) function), the
prediction mode of the macroblock (when it is not partitioned) or the first partition (given by the
MbPartPredMode(mb_type, 0) function) and the prediction mode of the second partition (given by the
MbPartPredMode(mb_type, 1) function). When a value is not applicable it is designated by "na". In the text, the value of
mb_type may be referred to as the macroblock type, the value of MbPartPredMode() may be referred to in the text by
"macroblock (partition) prediction mode", and a value X of MbPartPredMode() may be referred to in the text by "X
macroblock (partition) prediction mode" or as "X prediction macroblocks".

Table 7-7 shows the allowed collective macroblock types for each slice_type.

Table 7-7 – Allowed collective macroblock types for slice_type

slice_type allowed collective macroblock types

I (slice) I (see Table 7-8) (macroblock types)

P (slice) P (see Table 7-9) and I (see Table 7-8) (macroblock types)

Macroblock types that may be collectively referred to as I macroblock types are specified in Table 7-8.

The macroblock types for I slices are all I macroblock types.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

64 © ISO/IEC 2015 – All rights reserved

Table 7-8 – Macroblock types for I slices

m
b_

ty
pe

N
am

e
of

 m
b_

ty
pe

M
bP

ar
tP

re
dM

od
e

(m
b_

ty
pe

, 0
)

In
tr

a1
6x

16
Pr

ed
M

od
e

C
od

ed
Bl

oc
kP

at
te

rn
C

hr
om

a

C
od

ed
Bl

oc
kP

at
te

rn
Lu

m
a

0 I_4x4 Intra_4x4 na Equation 7-15 Equation 7-15

1 I_16x16_0_0_0 Intra_16x16 0 0 0

2 I_16x16_1_0_0 Intra_16x16 1 0 0

3 I_16x16_2_0_0 Intra_16x16 2 0 0

4 I_16x16_3_0_0 Intra_16x16 3 0 0

5 I_16x16_0_1_0 Intra_16x16 0 1 0

6 I_16x16_1_1_0 Intra_16x16 1 1 0

7 I_16x16_2_1_0 Intra_16x16 2 1 0

8 I_16x16_3_1_0 Intra_16x16 3 1 0

9 I_16x16_0_2_0 Intra_16x16 0 2 0

10 I_16x16_1_2_0 Intra_16x16 1 2 0

11 I_16x16_2_2_0 Intra_16x16 2 2 0

12 I_16x16_3_2_0 Intra_16x16 3 2 0

13 I_16x16_0_0_1 Intra_16x16 0 0 15

14 I_16x16_1_0_1 Intra_16x16 1 0 15

15 I_16x16_2_0_1 Intra_16x16 2 0 15

16 I_16x16_3_0_1 Intra_16x16 3 0 15

17 I_16x16_0_1_1 Intra_16x16 0 1 15

18 I_16x16_1_1_1 Intra_16x16 1 1 15

19 I_16x16_2_1_1 Intra_16x16 2 1 15

20 I_16x16_3_1_1 Intra_16x16 3 1 15

21 I_16x16_0_2_1 Intra_16x16 0 2 15

22 I_16x16_1_2_1 Intra_16x16 1 2 15

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 65

23 I_16x16_2_2_1 Intra_16x16 2 2 15

24 I_16x16_3_2_1 Intra_16x16 3 2 15

25 I_PCM na na na na

The following semantics are assigned to the macroblock types in Table 7-8:

– I_NxN: A mnemonic name for mb_type equal to 0 with MbPartPredMode(mb_type, 0) equal to Intra_4x4.

– I_16x16_0_0_0, I_16x16_1_0_0, I_16x16_2_0_0, I_16x16_3_0_0, I_16x16_0_1_0, I_16x16_1_1_0, I_16x16_2_1_0,
I_16x16_3_1_0, I_16x16_0_2_0, I_16x16_1_2_0, I_16x16_2_2_0, I_16x16_3_2_0, I_16x16_0_0_1, I_16x16_1_0_1,
I_16x16_2_0_1, I_16x16_3_0_1, I_16x16_0_1_1, I_16x16_1_1_1, I_16x16_2_1_1, I_16x16_3_1_1, I_16x16_0_2_1,
I_16x16_1_2_1, I_16x16_2_2_1, I_16x16_3_2_1: the macroblock is coded as an Intra_16x16 prediction macroblock.

To each Intra_16x16 prediction macroblock, an Intra16x16PredMode is assigned, which specifies the Intra_16x16 prediction
mode, and values of CodedBlockPatternLuma and CodedBlockPatternChroma are assigned as specified in Table 7-8.

Intra_4x4 specifies the macroblock prediction mode and specifies that the Intra_4x4 prediction process is invoked as
specified in subclause 8.3.1. Intra_4x4 is an Intra macroblock prediction mode.

Intra_16x16 specifies the macroblock prediction mode and specifies that the Intra_16x16 prediction process is invoked as
specified in subclause 8.3.3. Intra_16x16 is an Intra macroblock prediction mode.

For a macroblock coded with mb_type equal to I_PCM, the Intra macroblock prediction mode shall be inferred.

Macroblock types that may be collectively referred to as P macroblock types are specified in Table 7-9.

The macroblock types for P and SP slices are specified in Tables 7-9 and 7-8. mb_type values 0 to 4 are specified in
Table 7-9 and mb_type values 5 to 30 are specified in Table 7-8, indexed by subtracting 5 from the value of mb_type.

Table 7-9 – Macroblock type values 0 to 4 for P and SP slices

m
b_

ty
pe

N
am

e
of

 m
b_

ty
pe

N
um

M
bP

ar
t

(m
b_

ty
pe

)

M
bP

ar
tP

re
dM

od
e

(m
b_

ty
pe

, 0
)

M
bP

ar
tP

re
dM

od
e

(m
b_

ty
pe

, 1
)

M
bP

ar
tW

id
th

(m

b_
ty

pe
)

M
bP

ar
tH

ei
gh

t
(m

b_
ty

pe
)

0 P_L0_16x16 1 Pred_L0 na 16 16

1 P_L0_L0_16x8 2 Pred_L0 Pred_L0 16 8

2 P_L0_L0_8x16 2 Pred_L0 Pred_L0 8 16

3 P_8x8 4 na na 8 8

4 P_8x8ref0 4 na na 8 8

inferred P_Skip 1 Pred_L0 na 16 16

The following semantics are assigned to the macroblock types in Table 7-9:

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

66 © ISO/IEC 2015 – All rights reserved

– P_L0_16x16: the samples of the macroblock are predicted with one luma macroblock partition of size 16x16 luma
samples and associated chroma samples.

– P_L0_L0_MxN, with MxN being replaced by 16x8 or 8x16: the samples of the macroblock are predicted using two
luma partitions of size MxN equal to 16x8, or two luma partitions of size MxN equal to 8x16, and associated chroma
samples, respectively.

– P_8x8: for each sub-macroblock an additional syntax element (sub_mb_type[mbPartIdx] with mbPartIdx being the
macroblock partition index for the corresponding sub-macroblock) is present in the bitstream that specifies the type of
the corresponding sub-macroblock (see subclause 7.4.5.2).

– P_8x8ref0: has the same semantics as P_8x8 but no syntax element for the reference index (ref_idx_l0[mbPartIdx] with
mbPartIdx = 0..3) is present in the bitstream and ref_idx_l0[mbPartIdx] shall be inferred to be equal to 0 for all sub-
macroblocks of the macroblock (with indices mbPartIdx = 0..3).

– P_Skip: no further data is present for the macroblock in the bitstream.

The following semantics are assigned to the macroblock prediction modes (for macroblocks that are not partitioned) and
macroblock partition prediction modes (for macroblocks that are partitioned) specified by MbPartPredMode() in Table 7-9:

– Pred_L0: specifies that the Inter prediction process is invoked using list 0 prediction. Pred_L0 is an Inter macroblock
prediction mode (for macroblocks that are not partitioned) and an Inter macroblock partition prediction mode (for
macroblocks that are partitioned).

When mb_type is equal to any of the values specified in Table 7-9, the macroblock is coded in an Inter macroblock prediction
mode.

pcm_alignment_zero_bit is a bit equal to 0.

pcm_sample_luma[i] is a sample value. The pcm_sample_luma[i] values represent luma sample values in the raster scan
within the macroblock. The number of bits used to represent each of these samples is BitDepthY. (BitDepthY is equal to 8 in
this standard.) pcm_sample_luma[i] shall not be equal to zero.

pcm_sample_chroma[i] is a sample value. The first MbWidthC * MbHeightC pcm_sample_chroma[i] values represent
Cb sample values in the raster scan within the macroblock and the remaining MbWidthC * MbHeightC
pcm_sample_chroma[i] values represent Cr sample values in the raster scan within the macroblock. The number of bits used
to represent each of these samples is BitDepthC. (BitDepthC is equal to 8 in this standard.) pcm_sample_chroma[i] shall not
be equal to zero.

coded_block_pattern specifies which of the four 8x8 luma blocks and associated chroma blocks of a macroblock may
contain non-zero transform coefficient levels. When coded_block_pattern is present in the bitstream, the variables
CodedBlockPatternLuma and CodedBlockPatternChroma are derived as

CodedBlockPatternLuma = coded_block_pattern % 16
CodedBlockPatternChroma = coded_block_pattern / 16 (7-15)

When the macroblock type is not equal to P_Skip or I_PCM, the following applies:

– If the macroblock prediction mode is equal Intra_16x16, the following applies:
– the value of CodedBlockPatternLuma specifies the following.

– If CodedBlockPatternLuma is equal to 0, all AC transform coefficient levels of the luma component of the
macroblock are equal to 0 for all 16 of the 4x4 blocks in the 16x16 luma block.

– Otherwise (CodedBlockPatternLuma is not equal to 0), CodedBlockPatternLuma is equal to 15, at least one of
the AC transform coefficient levels of the luma component of the macroblock shall be non-zero, and the AC
transform coefficient levels are scanned for all 16 of the 4x4 blocks in the 16x16 block.

– Otherwise (the macroblock prediction mode is not equal to Intra_16x16),coded_block_pattern is present in the bitstream,
and the following applies:

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 67

– each of the four LSBs of CodedBlockPatternLuma specifies, for one of the four 8x8 luma blocks of the
macroblock, the following.
– If the corresponding bit of CodedBlockPatternLuma is equal to 0, all transform coefficient levels of the luma

transform blocks in the 8x8 luma block are equal to zero.
– Otherwise (the corresponding bit of CodedBlockPatternLuma is equal to 1), one or more transform coefficient

levels of one or more of the luma transform blocks in the 8x8 luma block shall be non-zero valued and the
transform coefficient levels of the corresponding transform blocks are scanned.

When the macroblock type is not equal to P_Skip or I_PCM, CodedBlockPatternChroma is interpreted as specified in
Table 7-10.

Table 7-10 – Specification of CodedBlockPatternChroma values

CodedBlockPatternChroma Description

0 All chroma transform coefficient levels are equal to 0.

1 One or more chroma DC transform coefficient levels shall be non-zero valued.
All chroma AC transform coefficient levels are equal to 0.

2 Zero or more chroma DC transform coefficient levels are non-zero valued.
One or more chroma AC transform coefficient levels shall be non-zero valued.

mb_qp_delta can change the value of QPY in the macroblock layer. The decoded value of mb_qp_delta shall be in the range
of −(26 + 0 / 2) to +(25 + 0 / 2), inclusive. mb_qp_delta shall be inferred to be equal to 0 when it is not present for any
macroblock (including P_Skip macroblock types).

The value of QPY is derived as

QPY = ((QPY,PREV + mb_qp_delta + 52 + 2 * 0) % (52 + 0)) − 0 (7-16)

where QPY,PREV is the luma quantisation parameter, QPY, of the previous macroblock in decoding order in the current slice.
For the first macroblock in the slice QPY,PREV is initially set equal to SliceQPY derived in Equation 7-12 at the start of each
slice.

The value of QP′Y is derived as

QP′Y = QPY + 0 (7-17)

7.4.5.1 Macroblock prediction semantics

All samples of the macroblock are predicted. The prediction modes are derived using the following syntax elements.

prev_intra4x4_pred_mode_flag[luma4x4BlkIdx]and rem_intra4x4_pred_mode[luma4x4BlkIdx] specify the Intra_4x4
prediction of the 4x4 luma block with index luma4x4BlkIdx = 0..15.

intra_chroma_pred_mode specifies the type of spatial prediction used for chroma in macroblocks using Intra_4x4 or
Intra_16x16 prediction, as shown in Table 7-11. The value of intra_chroma_pred_mode shall be in the range of 0 to 3,
inclusive.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

68 © ISO/IEC 2015 – All rights reserved

Table 7-11 – Relationship between intra_chroma_pred_mode and spatial prediction modes

intra_chroma_pred_mode Intra Chroma Prediction Mode

0 DC

1 Horizontal

2 Vertical

3 Plane

ref_idx_l0[mbPartIdx] when present, specifies the index in reference picture list 0 of the reference picture to be used for
prediction.

The range of ref_idx_l0[mbPartIdx], the index in list 0 of the reference picture, is specified such that value of
ref_idx_l0[mbPartIdx] shall be in the range of 0 to num_ref_idx_l0_active_minus1, inclusive.

When only one reference picture is used for inter prediction, the values of ref_idx_l0[mbPartIdx] shall be inferred to be
equal to 0.

mvd_l0[mbPartIdx][0][compIdx] specifies the difference between a list 0 motion vector component to be used and its
prediction. The index mbPartIdx specifies to which macroblock partition mvd_l0 is assigned. The partitioning of the
macroblock is specified by mb_type. The horizontal motion vector component difference is decoded first in decoding order
and is assigned compIdx = 0. The vertical motion vector component is decoded second in decoding order and is assigned
compIdx = 1. The range of the components of mvd_l0[mbPartIdx][0][compIdx] is specified by constraints on the motion
vector variable values derived from it as specified in Annex A.

7.4.5.2 Sub-macroblock prediction semantics

sub_mb_type[mbPartIdx] specifies the sub-macroblock types.

Tables and semantics are specified for the various sub-macroblock types for P macroblock types. Each table presents the
value of sub_mb_type[mbPartIdx], the name of sub_mb_type[mbPartIdx], the number of sub-macroblock partitions used
(given by the NumSubMbPart(sub_mb_type[mbPartIdx]) function), and the prediction mode of the sub-macroblock (given
by the SubMbPredMode(sub_mb_type[mbPartIdx]) function). In the text, the value of sub_mb_type[mbPartIdx] may be
referred to by "sub-macroblock type". In the text, the value of SubMbPredMode() may be referred to by "sub-macroblock
prediction mode" or "macroblock partition prediction mode".

The interpretation of sub_mb_type[mbPartIdx] for P macroblock types is specified in Table 7-12, where the row for
"inferred" specifies values inferred when sub_mb_type[mbPartIdx] is not present.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 69

Table 7-12 – Sub-macroblock types in P macroblocks

su
b_

m
b_

ty
pe

[m
bP

ar
tI

dx
]

N
am

e
of

su

b_
m

b_
ty

pe
[m

bP
ar

tI
dx

]

N
um

Su
bM

bP
ar

t
(s

ub
_m

b_
ty

pe
[m

bP
ar

tI
dx

]
)

Su
bM

bP
re

dM
od

e
(s

ub
_m

b_
ty

pe
[m

bP
ar

tI
dx

]
)

Su
bM

bP
ar

tW
id

th

(s
ub

_m
b_

ty
pe

[m
bP

ar
tI

dx
]

)

Su
bM

bP
ar

tH
ei

gh
t

(s
ub

_m
b_

ty
pe

[m
bP

ar
tI

dx
]

)

inferred na na na na na

0 P_L0_8x8 1 Pred_L0 8 8

1 P_L0_8x4 2 Pred_L0 8 4

2 P_L0_4x8 2 Pred_L0 4 8

3 P_L0_4x4 4 Pred_L0 4 4

The following semantics are assigned to the sub-macroblock types in Table 7-12:

P_L0_MxN, with MxN being replaced by 8x8, 8x4, 4x8, or 4x4: the samples of the sub-macroblock are predicted using one
luma partition of size MxN equal to 8x8, two luma partitions of size MxN equal to 8x4, or two luma partitions of size MxN
equal to 4x8, or four luma partitions of size MxN equal to 4x4, and associated chroma samples, respectively.

The following semantics are assigned to the sub-macroblock prediction modes (or macroblock partition prediction
modes)specified by SubMbPredMode() in Table 7-12:

Pred_L0: see semantics for Table 7-9.

ref_idx_l0[mbPartIdx]has the same semantics as ref_idx_l0 in subclause 7.4.5.1.

mvd_l0[mbPartIdx][subMbPartIdx][compIdx]has the same semantics as mvd_l0 in subclause 7.4.5.1, except that it is
applied to the sub-macroblock partition index with subMbPartIdx. The indices mbPartIdx and subMbPartIdx specify to which
macroblock partition and sub-macroblock partition mvd_l0 is assigned.

7.4.5.3 Residual data semantics

The syntax structure residual_block(), which is used for parsing the transform coefficient levels is set equal to
residual_block_cavlc, which is used for parsing the syntax elements for transform coefficient levels.

The syntax structure residual_luma(i16x16DClevel, i16x16AClevel, level4x4, level8x8, startIdx, endIdx) is used with the
first four variables in brackets being its output and being assigned as follows.

Intra16x16DCLevel is set equal to i16x16DClevel, Intra16x16ACLevel is set equal to i16x16AClevel, LumaLevel4x4 is set
equal to level4x4, and LumaLevel8x8 is set equal to level8x8.

The following applies:

– For each chroma component, indexed by iCbCr = 0..1, the DC transform coefficient levels of the 4 * NumC8x8 4x4
chroma blocks are parsed into the iCbCr-th list ChromaDCLevel[iCbCr].

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

70 © ISO/IEC 2015 – All rights reserved

– For each of the 4x4 chroma blocks, indexed by i4x4 = 0..3 and i8x8 = 0..NumC8x8 − 1, of each chroma component,
indexed by iCbCr = 0..1, the 15 AC transform coefficient levels are parsed into the (i8x8*4 + i4x4)-th list of the iCbCr-
th chroma component ChromaACLevel[iCbCr][i8x8*4 + i4x4].

7.4.5.3.1 Residual luma data semantics

Output of this syntax structure are the variables i16x16DClevel, i16x16AClevel, level4x4, and level8x8.

Depending on mb_type, the syntax structure residual_block(coeffLevel, startIdx, endIdx, maxNumCoeff) is used with the
arguments coeffLevel, which is a list containing the maxNumCoeff transform coefficient levels that are parsed in
residual_block(), startIdx, endIdx, and maxNumCoeff as follows.

Depending on MbPartPredMode(mb_type, 0), the following applies:

– If MbPartPredMode(mb_type, 0) is equal to Intra_16x16, the transform coefficient levels are parsed into the list
i16x16DClevel and into the 16 lists i16x16AClevel[i]. i16x16DClevel contains the 16 transform coefficient levels of
the DC transform coefficient levels for each 4x4 luma block. For each of the 16 4x4 luma blocks indexed by i = 0..15,
the 15 AC transform coefficients levels of the i-th block are parsed into the i-th list i16x16AClevel[i].

– Otherwise (MbPartPredMode(mb_type, 0) is not equal to Intra_16x16), the following applies:
for each of the 16 4x4 luma blocks indexed by i = 0..15, the 16 transform coefficient levels of the i-th block are parsed
into the i-th list level4x4[i].

7.4.5.3.2 Residual block CAVLC semantics

The function TotalCoeff(coeff_token) that is used in subclause 7.3.5.3.2 returns the number of non-zero transform
coefficient levels derived from coeff_token.

The function TrailingOnes(coeff_token) that is used in subclause 7.3.5.3.2 returns the trailing ones derived from
coeff_token.

coeff_token specifies the total number of non-zero transform coefficient levels and the number of trailing one transform
coefficient levels in a transform coefficient level scan. A trailing one transform coefficient level is one of up to three
consecutive non-zero transform coefficient levels having an absolute value equal to 1 at the end of a scan of non-zero
transform coefficient levels. The range of coeff_token is specified in subclause 9.2.1.

trailing_ones_sign_flag specifies the sign of a trailing one transform coefficient level as follows:

– If trailing_ones_sign_flag is equal to 0, the corresponding transform coefficient level is decoded as +1.

– Otherwise (trailing_ones_sign_flag equal to 1), the corresponding transform coefficient level is decoded as −1.

level_prefix and level_suffix specify the value of a non-zero transform coefficient level. The range of level_prefix and
level_suffix is specified in subclause 9.2.2.

total_zeros specifies the total number of zero-valued transform coefficient levels that are located before the position of the
last non-zero transform coefficient level in a scan of transform coefficient levels. The range of total_zeros is specified in
subclause 9.2.3.

run_before specifies the number of consecutive transform coefficient levels in the scan with zero value before a non-zero
valued transform coefficient level. The range of run_before is specified in subclause 9.2.3.

coeffLevel contains maxNumCoeff transform coefficient levels for the current list of transform coefficient levels.

8 Decoding process

Outputs of this process are decoded samples of the current picture (sometimes referred to by the variable CurrPic).

the number of sample arrays of the current picture is as follows:

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 71

– the current picture consists of 3 sample arrays SL, SCb, SCr.

This clause describes the decoding process, given syntax elements and upper-case variables from clause 7.

The decoding process is specified such that all decoders shall produce numerically identical results. Any decoding process
that produces identical results to the process described here conforms to the decoding process requirements of this
International Standard.

Each picture referred to in this clause is a complete primary coded picture. Each slice referred to in this clause is a slice of a
primary coded picture.

The decoding process is structured as follows:

the decoding process is invoked a single time with the current picture being the output.

An overview of the decoding process is given as follows:

– The decoding of NAL units is specified in subclause 8.1.

– The processes in subclause 8.2 specify decoding processes using syntax elements in the slice layer and above:

– Variables and functions relating to picture order count are derived in subclause 8.2.1. (only needed to be
invoked for one slice of a picture)

– When the frame_num of the current picture is not equal to PrevRefFrameNum and is not equal to
(PrevRefFrameNum + 1) % MaxFrameNum, the decoding process for gaps in frame_num is performed
according to subclause 8.2.5.2 prior to the decoding of any slices of the current picture.

– At the beginning of the decoding process for each P slice, the decoding process for reference picture lists
construction specified in subclause 8.2.4 is invoked for derivation of reference picture list 0 (RefPicList0).

– When the current picture is a reference picture and after all slices of the current picture have been decoded, the
decoded reference picture marking process in subclause 8.2.5 specifies how the current picture is used in the
decoding process of inter prediction in later decoded pictures.

– The processes in subclauses 8.3, 8.4, 8.5, 8.6 and 8.7 specify decoding processes using syntax elements in the
macroblock layer and above.

– The intra prediction process for I macroblocks, except for I_PCM macroblocks as specified in subclause 8.3,
has intra prediction samples as its output. For I_PCM macroblocks subclause 8.3 directly specifies a picture
construction process. The output are constructed samples prior to the deblocking filter process.

– The inter prediction process for P macroblocks is specified in subclause 8.4 with inter prediction samples
being the output.

– The transform coefficient decoding process and picture construction process prior to deblocking filter process
are specified in subclause 8.5. That process derives samples for I macroblocks and for P macroblocks in P
slices. The output are constructed samples prior to the deblocking filter process.

– The constructed samples prior to the deblocking filter process that are next to the edges of blocks and
macroblocks are processed by a deblocking filter as specified in subclause 8.6 with the output being the
decoded samples.

8.1 NAL unit decoding process

Inputs to this process are NAL units.

Outputs of this process are the RBSP syntax structures encapsulated within the NAL units.

The decoding process for each NAL unit extracts the RBSP syntax structure from the NAL unit and then operates the
decoding processes specified for the RBSP syntax structure in the NAL unit as follows.

Subclause 8.2 describes the decoding process for NAL units with nal_unit_type equal to 1 through 5.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

72 © ISO/IEC 2015 – All rights reserved

Subclause 8.3 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal_unit_type equal to 1, and 5.

Subclause 8.4 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal_unit_type equal to 1.

Subclause 8.5 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal_unit_type equal to 1 and 5.

NAL units with nal_unit_type equal to 7 and 8 contain sequence parameter sets and picture parameter sets, respectively.
Picture parameter sets are used in the decoding processes of other NAL units as determined by reference to a picture
parameter set within the slice headers of each picture. Sequence parameter sets are used in the decoding processes of other
NAL units as determined by reference to a sequence parameter set within the picture parameter sets of each sequence.

No normative decoding process is specified for NAL units with nal_unit_type equal to 6, 9, 10, 11, and 12.

8.2 Slice decoding process

8.2.1 Decoding process for picture order count

Outputs of this process are the functions PicOrderCnt(picX) and DiffPicOrderCnt(picA, picB) and the variable
PicOrderCnt.

Each coded frame is associated with a picture order count, called PicOrderCnt.

PicOrderCnt indicates the picture order of the corresponding frame relative to the previous IDR picture or the previous
reference picture including a memory_management_control_operation equal to 5 in decoding order.

PicOrderCnt is derived by invoking one of the decoding processes for picture order count type 0, 1, and 2 in
subclauses 8.2.1.1, 8.2.1.2, and 8.2.1.3, respectively. When the current picture includes a
memory_management_control_operation equal to 5, after the decoding of the current picture, tempPicOrderCnt is set equal to
PicOrderCnt(CurrPic), and PicOrderCnt is set equal to 0.

NOTE –When the decoding process for a picture currPic that includes a memory_management_control_operation equal to 5 refers to
the values of PicOrderCnt for the picture currPic (including references to the function PicOrderCnt() with the picture currPic as the
argument and references to the function DiffPicOrderCnt() with one of the arguments being currPic), the values of PicOrderCnt that is
derived as specified in subclauses 8.2.1.1, 8.2.1.2, and 8.2.1.3 for the picture currPic are used. When the decoding process for a picture
refers to the values PicOrderCnt of the previous picture prevMmco5Pic in decoding order that includes a
memory_management_control_operation equal to 5 (including references via the functions PicOrderCnt() or DiffPicOrderCnt()), the
values of PicOrderCnt that is used for the picture prevMmco5Pic are the values after the modification specified in the paragraph above
(resulting in PicOrderCnt equal to 0).

The bitstream shall not contain data that result in PicOrderCnt not equal to 0 for a coded IDR frame.

When the current picture is not an IDR picture, the following applies:

1) Consider the list variable listD containing as elements the PicOrderCnt values associated with the list of pictures
including all of the following:

a. The first picture in the list is the previous picture of any of the following types:
– an IDR picture,
– a picture containing a memory_management_control_operation equal to 5.

b. The following additional pictures:
– If pic_order_cnt_type is equal to 0, all other pictures that follow in decoding order after the first picture in

the list are not "non-existing" frames inferred by the decoding process for gaps in frame_num specified in
subclause 8.2.5.2 and either precede the current picture in decoding order or are the current picture. When
pic_order_cnt_type is equal to 0 and the current picture is not a "non-existing" frame inferred by the
decoding process for gaps in frame_num specified in subclause 8.2.5.2, the current picture is included in
listD prior to the invoking of the decoded reference picture marking process.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 73

– Otherwise (pic_order_cnt_type is not equal to 0), all other pictures that follow in decoding order after the
first picture in the list and either precede the current picture in decoding order or are the current picture.
When pic_order_cnt_type is not equal to 0, the current picture is included in listD prior to the invoking of
the decoded reference picture marking process.

2) Consider the list variable listO which contains the elements of listD sorted in ascending order. listO shall not contain
a PicOrderCnt that has a value equal to another PicOrderCnt.

The bitstream shall not contain data that result in values of PicOrderCnt, PicOrderCntMsb, or FrameNumOffset used in the
decoding process as specified in subclauses 8.2.1.1 to 8.2.1.3 that exceed the range of values from −231 to 231 − 1, inclusive.

The function PicOrderCnt(picX) is specified as follows:

PicOrderCnt(picX) = PicOrderCnt of the frame picX (8-1)

Then DiffPicOrderCnt(picA, picB) is specified as follows:

DiffPicOrderCnt(picA, picB) = PicOrderCnt(picA) − PicOrderCnt(picB) (8-2)

The bitstream shall not contain data that result in values of DiffPicOrderCnt(picA, picB) used in the decoding process that
exceed the range of −215 to 215 − 1, inclusive.

NOTE – Let X be the current picture and Y and Z be two other pictures in the same sequence, Y and Z are considered to be in the same
output order direction from X when both DiffPicOrderCnt(X, Y) and DiffPicOrderCnt(X, Z) are positive or both are negative.

When the current picture includes a memory_management_control_operation equal to 5, PicOrderCnt(CurrPic) shall be
greater than PicOrderCnt(any other picture in listD).

8.2.1.1 Decoding process for picture order count type 0

This process is invoked when pic_order_cnt_type is equal to 0.

Input to this process is PicOrderCntMsb of the previous reference picture in decoding order as specified in this subclause.

Outputs of this process is PicOrderCnt.

The variables prevPicOrderCntMsb and prevPicOrderCntLsb are derived as follows:

– If the current picture is an IDR picture, prevPicOrderCntMsb is set equal to 0 and prevPicOrderCntLsb is set equal to 0.

– Otherwise (the current picture is not an IDR picture), the following applies:

– If the previous reference picture in decoding order included a memory_management_control_operation equal to 5,
the following applies:

– prevPicOrderCntMsb is set equal to 0 and prevPicOrderCntLsb is set equal to the value of PicOrderCnt for the
previous reference picture in decoding order.

– Otherwise (the previous reference picture in decoding order did not include a
memory_management_control_operation equal to 5), prevPicOrderCntMsb is set equal to PicOrderCntMsb of the
previous reference picture in decoding order and prevPicOrderCntLsb is set equal to the value of pic_order_cnt_lsb
of the previous reference picture in decoding order.

PicOrderCntMsb of the current picture is derived as specified by the following pseudo-code:

if((pic_order_cnt_lsb < prevPicOrderCntLsb) &&
 ((prevPicOrderCntLsb − pic_order_cnt_lsb) >= (MaxPicOrderCntLsb / 2)))

 PicOrderCntMsb = prevPicOrderCntMsb + MaxPicOrderCntLsb (8-3)
else if((pic_order_cnt_lsb > prevPicOrderCntLsb) &&

 ((pic_order_cnt_lsb − prevPicOrderCntLsb) > (MaxPicOrderCntLsb / 2)))
 PicOrderCntMsb = prevPicOrderCntMsb − MaxPicOrderCntLsb
else

PicOrderCntMsb = prevPicOrderCntMsb

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

74 © ISO/IEC 2015 – All rights reserved

PicOrderCnt is derived as

PicOrderCnt = PicOrderCntMsb + pic_order_cnt_lsb (8-4)

8.2.1.2 Decoding process for picture order count type 1

This process is invoked when pic_order_cnt_type is equal to 1.

Input to this process is FrameNumOffset of the previous picture in decoding order as specified in this subclause.

Outputs of this process is PicOrderCnt

The value of PicOrderCnt is derived as specified in this subclause. Let prevFrameNum be equal to the frame_num of the
previous picture in decoding order.

When the current picture is not an IDR picture, the variable prevFrameNumOffset is derived as follows:

– If the previous picture in decoding order included a memory_management_control_operation equal to 5,
prevFrameNumOffset is set equal to 0.

– Otherwise (the previous picture in decoding order did not include a memory_management_control_operation equal to
5), prevFrameNumOffset is set equal to the value of FrameNumOffset of the previous picture in decoding order.

NOTE – When gaps_in_frame_num_value_allowed_flag is equal to 1, the previous picture in decoding order may be a "non-existing"
frame inferred by the decoding process for gaps in frame_num specified in subclause 8.2.5.2.

The variable FrameNumOffset is derived as specified by the following pseudo-code:

if(IdrPicFlag = = 1)
 FrameNumOffset = 0
else if(prevFrameNum > frame_num) (8-5)
 FrameNumOffset = prevFrameNumOffset + MaxFrameNum
else

FrameNumOffset = prevFrameNumOffset

The variable absFrameNum is derived as specified by the following pseudo-code:

if(num_ref_frames_in_pic_order_cnt_cycle != 0)
 absFrameNum = FrameNumOffset + frame_num
else (8-6)
 absFrameNum = 0
if(nal_ref_idc = = 0 && absFrameNum > 0)

absFrameNum = absFrameNum − 1

When absFrameNum > 0, picOrderCntCycleCnt and frameNumInPicOrderCntCycle are derived as

picOrderCntCycleCnt = (absFrameNum − 1) / num_ref_frames_in_pic_order_cnt_cycle
frameNumInPicOrderCntCycle = (absFrameNum − 1) % num_ref_frames_in_pic_order_cnt_cycle (8-7)

The variable expectedPicOrderCnt is derived as specified by the following pseudo-code:

if(absFrameNum > 0){
expectedPicOrderCnt = picOrderCntCycleCnt * ExpectedDeltaPerPicOrderCntCycle
for(i = 0; i <= frameNumInPicOrderCntCycle; i++)

expectedPicOrderCnt = expectedPicOrderCnt + offset_for_ref_frame[i]
} else
 expectedPicOrderCnt = 0
if(nal_ref_idc = = 0) (8-8)

expectedPicOrderCnt = expectedPicOrderCnt + offset_for_non_ref_pic

The variables PicOrderCnt are derived as specified by the following pseudo-code:

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 75

PicOrderCnt = expectedPicOrderCnt + delta_pic_order_cnt[0] (8-9)

8.2.1.3 Decoding process for picture order count type 2

This process is invoked when pic_order_cnt_type is equal to 2.

Outputs of this process is PicOrderCnt .

Let prevFrameNum be equal to the frame_num of the previous picture in decoding order.

When the current picture is not an IDR picture, the variable prevFrameNumOffset is derived as follows:

– If the previous picture in decoding order included a memory_management_control_operation equal to 5,
prevFrameNumOffset is set equal to 0.

– Otherwise (the previous picture in decoding order did not include a memory_management_control_operation equal to
5), prevFrameNumOffset is set equal to the value of FrameNumOffset of the previous picture in decoding order.

NOTE – When gaps_in_frame_num_value_allowed_flag is equal to 1, the previous picture in decoding order may be a "non-existing"
frame inferred by the decoding process for gaps in frame_num specified in subclause 8.2.5.2.

The variable FrameNumOffset is derived as specified by the following pseudo-code:

if(IdrPicFlag = = 1)
 FrameNumOffset = 0
else if(prevFrameNum > frame_num) (8-10)
 FrameNumOffset = prevFrameNumOffset + MaxFrameNum
else

FrameNumOffset = prevFrameNumOffset

The variable tempPicOrderCnt is derived as specified by the following pseudo-code:

if(IdrPicFlag = = 1)
 tempPicOrderCnt = 0
else if(nal_ref_idc = = 0) (8-11)
 tempPicOrderCnt = 2 * (FrameNumOffset + frame_num) − 1
else

tempPicOrderCnt = 2 * (FrameNumOffset + frame_num)

The variables PicOrderCnt is derived as specified by the following pseudo-code:

PicOrderCnt = tempPicOrderCnt (8-12)
NOTE – Picture order count type 2 cannot be used in a coded video sequence that contains consecutive non-reference pictures that
would result in more than one of these pictures having the same value of PicOrderCnt
NOTE –Picture order count type 2 results in an output order that is the same as the decoding order.

8.2.2 (void)

8.2.3 (void)

8.2.4 Decoding process for reference picture lists construction

This process is invoked at the beginning of the decoding process for each P slice.

Decoded reference pictures are marked as "used for short-term reference" or "used for long-term reference" as specified by
the bitstream and specified in subclause 8.2.5. Short-term reference pictures are identified by the value of frame_num. Long-
term reference pictures are assigned a long-term frame index as specified by the bitstream and specified in subclause 8.2.5.

Subclause 8.2.4.1 is invoked to specify the assignment of variables FrameNum, FrameNumWrap, and PicNum to each of the
short-term reference pictures, and the assignment of variable LongTermPicNum to each of the long-term reference pictures.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

76 © ISO/IEC 2015 – All rights reserved

Reference pictures are addressed through reference indices as specified in subclause 8.4.2.1. A reference index is an index
into a reference picture list. When decoding a P slice, there is a single reference picture list RefPicList0. At the beginning of
the decoding process for each slice, reference picture list RefPicList0, are derived as specified by the following ordered steps:

1. An initial reference picture list RefPicList0 are derived as specified in subclause 8.2.4.2.

2. When ref_pic_list_modification_flag_l0 is equal to 1 or, the initial reference picture list RefPicList0 are modified as
specified in subclause 8.2.4.3.

NOTE – The modification process for reference picture lists specified in subclause 8.2.4.3allows the contents of
RefPicList0 to be modified in a flexible fashion. In particular, it is possible for a picture that is currently marked "used for
reference" to be inserted into RefPicList0 even when the picture is not in the initial reference picture list derived as
specified in subclause 8.2.4.2.

The number of entries in the modified reference picture list RefPicList0 is num_ref_idx_l0_active_minus1 + 1,. A reference
picture may appear at more than one index in the modified reference picture lists RefPicList0.

8.2.4.1 Decoding process for picture numbers

This process is invoked when the decoding process for reference picture lists construction specified in subclause 8.2.4, the
decoded reference picture marking process specified in subclause 8.2.5, or the decoding process for gaps in frame_num
specified in subclause 8.2.5.2 is invoked.

The variables FrameNum, FrameNumWrap, PicNum, LongTermFrameIdx, and LongTermPicNum are used for the
initialisation process for reference picture lists in subclause 8.2.4.2, the modification process for reference picture lists in
subclause 8.2.4.3, the decoded reference picture marking process in subclause 8.2.5, and the decoding process for gaps in
frame_num in subclause 8.2.5.2.

To each short-term reference picture the variables FrameNum and FrameNumWrap are assigned as follows. First, FrameNum
is set equal to the syntax element frame_num that has been decoded in the slice header(s) of the corresponding short-term
reference picture. Then the variable FrameNumWrap is derived as

if(FrameNum > frame_num)
 FrameNumWrap = FrameNum − MaxFrameNum (8-13)
else

FrameNumWrap = FrameNum

where the value of frame_num used in Equation 8-13 is the frame_num in the slice header(s) for the current picture.

Each long-term reference picture has an associated value of LongTermFrameIdx (that was assigned to it as specified in
subclause 8.2.5).

To each short-term reference picture a variable PicNum is assigned, and to each long-term reference picture a variable
LongTermPicNum is assigned. T

8.2.4.2 Initialisation process for reference picture lists

This initialisation process is invoked when decoding a P, slice header.

RefPicList0 have initial entries as specified in subclause 8.2.4.2.1.

When the number of entries in the initial RefPicList0 produced as specified in subclause 8.2.4.2.1 is greater than
num_ref_idx_l0_active_minus1 + 1 the extra entries past position num_ref_idx_l0_active_minus1 are discarded from the
initial reference picture list.

When the number of entries in the initial RefPicList0 produced as specified in subclause 8.2.4.2.1 is less than
num_ref_idx_l0_active_minus1 + 1, the remaining entries in the initial reference picture list are set equal to "no reference
picture".

8.2.4.2.1 Initialisation process for the reference picture list for P slices in frames

This initialisation process is invoked when decoding a P slice in a coded frame.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 77

When this process is invoked, there shall be at least one reference frame that is currently marked as "used for reference" (i.e.,
as "used for short-term reference" or "used for long-term reference") and is not marked as "non-existing".

The reference picture list RefPicList0 is ordered so that short-term reference frames s have lower indices than long-term
reference frames The short-term reference frames are ordered starting with the frame with the highest PicNum value and
proceeding through in descending order to the frame with the lowest PicNum value.

The long-term reference frames are ordered starting with the frame with the lowest LongTermPicNum value and proceeding
through in ascending order to the frame with the highest LongTermPicNum value.

For example, when three reference frames are marked as "used for short-term reference" with PicNum equal to 300, 302, and
303 and two reference frames are marked as "used for long-term reference" with LongTermPicNum equal to 0 and 3, the
initial index order is:

– RefPicList0[0] is set equal to the short-term reference picture with PicNum = 303,

– RefPicList0[1] is set equal to the short-term reference picture with PicNum = 302,

– RefPicList0[2] is set equal to the short-term reference picture with PicNum = 300,

– RefPicList0[3] is set equal to the long-term reference picture with LongTermPicNum = 0,

– RefPicList0[4] is set equal to the long-term reference picture with LongTermPicNum = 3.

8.2.4.3 Modification process for reference picture lists

When ref_pic_list_modification_flag_l0 is equal to 1, the following applies:

1. Let refIdxL0 be an index into the reference picture list RefPicList0. It is initially set equal to 0.

2. The corresponding syntax elements modification_of_pic_nums_idc are processed in the order they occur in the
bitstream. For each of these syntax elements, the following applies:

– If modification_of_pic_nums_idc is equal to 0 or equal to 1, the process specified in subclause 8.2.4.3.1 is
invoked with refIdxL0 as input, and the output is assigned to refIdxL0.

– Otherwise, if modification_of_pic_nums_idc is equal to 2, the process specified in subclause 8.2.4.3.2 is
invoked with refIdxL0 as input, and the output is assigned to refIdxL0.

– Otherwise (modification_of_pic_nums_idc is equal to 3), the modification process for reference picture list
RefPicList0 is finished.

8.2.4.3.1 Modification process of reference picture lists for short-term reference pictures

Input to this process is an index refIdxL0

Output of this process is an incremented index refIdxL0.

The variable picNumL0NoWrap is derived as follows:

– If modification_of_pic_nums_idc is equal to 0,

if(picNumL0Pred − (abs_diff_pic_num_minus1 + 1) < 0)
picNumL0NoWrap = picNumL0Pred − (abs_diff_pic_num_minus1 + 1) + MaxPicNum (8-14)

else
picNumL0NoWrap = picNumL0Pred − (abs_diff_pic_num_minus1 + 1)

– Otherwise (modification_of_pic_nums_idc is equal to 1),

if(picNumL0Pred + (abs_diff_pic_num_minus1 + 1) >= MaxPicNum)
picNumL0NoWrap = picNumL0Pred + (abs_diff_pic_num_minus1 + 1) − MaxPicNum (8-15)

else
picNumL0NoWrap = picNumL0Pred + (abs_diff_pic_num_minus1 + 1)

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

78 © ISO/IEC 2015 – All rights reserved

picNumL0Pred is the prediction value for the variable picNumL0NoWrap. When the process specified in this subclause is
invoked the first time for a slice (that is, for the first occurrence of modification_of_pic_nums_idc equal to 0 or 1 in the
ref_pic_list_modification() syntax), picNumL0Pred is initially set equal to CurrPicNum. After each assignment of
picNumL0NoWrap, the value of picNumL0NoWrap is assigned to picNumL0Pred.

The variable picNumL0 is derived as specified by the following pseudo-code:

if(picNumL0NoWrap > CurrPicNum)
picNumL0 = picNumL0NoWrap − MaxPicNum (8-16)

else
picNumL0 = picNumL0NoWrap

picNumL0 shall be equal to the PicNum of a reference picture that is marked as "used for short-term reference" and shall not
be equal to the PicNum of a short-term reference picture that is marked as "non-existing".

The following procedure is conducted to place the picture with short-term picture number picNumL0 into the index position
refIdxL0, shift the position of any other remaining pictures to later in the list, and increment the value of refIdxL0.

for(cIdx = num_ref_idx_l0_active_minus1 + 1; cIdx > refIdxL0; cIdx− −)
 RefPicList0[cIdx] = RefPicList0[cIdx − 1]
RefPicList0[refIdxL0++] = short-term reference picture with PicNum equal to picNumL0
nIdx = refIdxL0
for(cIdx = refIdxL0; cIdx <= num_ref_idx_l0_active_minus1 + 1; cIdx++) (8-17)

if(PicNumF(RefPicList0[cIdx]) != picNumL0)
 RefPicList0[nIdx++] = RefPicList0[cIdx]

where the function PicNumF(RefPicList0[cIdx]) is derived as follows:
– If the picture RefPicList0[cIdx] is marked as "used for short-term reference", PicNumF(RefPicList0[cIdx]) is the

PicNum of the picture RefPicList0[cIdx].
– Otherwise (the picture RefPicList0[cIdx] is not marked as "used for short-term reference"),

PicNumF(RefPicList0[cIdx]) is equal to MaxPicNum.
NOTE – A value of MaxPicNum can never be equal to picNumL0.

NOTE – Within this pseudo-code procedure, the length of the list RefPicList0 is temporarily made one element longer than the length
needed for the final list. After the execution of this procedure, only elements 0 through num_ref_idx_l0_active_minus1 of the list need
to be retained.

8.2.4.3.2 Modification process of reference picture lists for long-term reference pictures

Input to this process is an index refIdxL0.

Output of this process is an incremented index refIdxL0.

The following procedure is conducted to place the picture with long-term picture number long_term_pic_num into the index
position refIdxL0, shift the position of any other remaining pictures to later in the list, and increment the value of refIdxL0.

for(cIdx = num_ref_idx_l0_active_minus1 + 1; cIdx > refIdxL0; cIdx− −)
 RefPicList0[cIdx] = RefPicList0[cIdx − 1]
RefPicList0[refIdxL0++] = long-term reference picture with LongTermPicNum equal to long_term_pic_num
nIdx = refIdxL0
for(cIdx = refIdxL0; cIdx <= num_ref_idx_l0_active_minus1 + 1; cIdx++) (8-18)

if(LongTermPicNumF(RefPicList0[cIdx]) != long_term_pic_num)
RefPicList0[nIdx++] = RefPicList0[cIdx]

where the function LongTermPicNumF(RefPicList0[cIdx]) is derived as follows:
– If the picture RefPicList0[cIdx] is marked as "used for long-term reference", LongTermPicNumF(RefPicList0[cIdx])

is the LongTermPicNum of the picture RefPicList0[cIdx].

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 79

– Otherwise (the picture RefPicList0[cIdx] is not marked as "used for long-term reference"),
LongTermPicNumF(RefPicList0[cIdx]) is equal to 2 * (MaxLongTermFrameIdx + 1).

NOTE – A value of 2 * (MaxLongTermFrameIdx + 1) can never be equal to long_term_pic_num.
NOTE – Within this pseudo-code procedure, the length of the list RefPicList0 is temporarily made one element longer than the length
needed for the final list. After the execution of this procedure, only elements 0 through num_ref_idx_l0_active_minus1 of the list need
to be retained.

8.2.5 Decoded reference picture marking process

This process is invoked for decoded pictures when nal_ref_idc is not equal to 0.
NOTE – The decoding process for gaps in frame_num that is specified in subclause 8.2.5.2 may also be invoked when nal_ref_idc is
equal to 0, as specified in clause 8.

A decoded picture with nal_ref_idc not equal to 0, referred to as a reference picture, is marked as "used for short-term
reference" or "used for long-term reference". A picture that is marked as "used for short-term reference" is identified by its
FrameNum. A picture that is marked as "used for long-term reference" is identified by its LongTermFrameIdx.

Frames marked as "used for short-term reference" or as "used for long-term reference" can be used as a reference for inter
prediction when decoding a frame until the frame, is marked as "unused for reference".

A picture can be marked as "unused for reference" by the sliding window reference picture marking process, a first-in, first-
out mechanism specified in subclause 8.2.5.3 or by the adaptive memory control reference picture marking process, a
customised adaptive marking operation specified in subclause 8.2.5.4.

A short-term reference picture is identified for use in the decoding process by its variables FrameNum and FrameNumWrap
and its picture number PicNum, and a long-term reference picture is identified for use in the decoding process by its long-
term picture number LongTermPicNum. When the current picture is not an IDR picture, subclause 8.2.4.1 is invoked to
specify the assignment of the variables FrameNum, FrameNumWrap, PicNum and LongTermPicNum.

8.2.5.1 Sequence of operations for decoded reference picture marking process

Decoded reference picture marking proceeds in the following ordered steps:

1. All slices of the current picture are decoded.

2. Depending on whether the current picture is an IDR picture, the following applies:

– If the current picture is an IDR picture, the following ordered steps are specified:

a. All reference pictures are marked as "unused for reference"

b. Depending on long_term_reference_flag, the following applies:

– If long_term_reference_flag is equal to 0, the IDR picture is marked as "used for short-term reference"
and MaxLongTermFrameIdx is set equal to "no long-term frame indices".

– Otherwise (long_term_reference_flag is equal to 1), the IDR picture is marked as "used for long-term
reference", the LongTermFrameIdx for the IDR picture is set equal to 0, and MaxLongTermFrameIdx
is set equal to 0.

– Otherwise (the current picture is not an IDR picture), the following applies:

– If adaptive_ref_pic_marking_mode_flag is equal to 0, the process specified in subclause 8.2.5.3 is invoked.

– Otherwise (adaptive_ref_pic_marking_mode_flag is equal to 1), the process specified in subclause 8.2.5.4 is
invoked.

3. When the current picture is not an IDR picture and it was not marked as "used for long-term reference" by
memory_management_control_operation equal to 6, it is marked as "used for short-term reference".

It is a requirement of bitstream conformance that, after marking the current decoded reference picture, the total number of
frames shall not be greater than Max(max_num_ref_frames, 1).

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

80 © ISO/IEC 2015 – All rights reserved

8.2.5.2 Decoding process for gaps in frame_num

This process is invoked when frame_num is not equal to PrevRefFrameNum and is not equal to (PrevRefFrameNum + 1) %
MaxFrameNum.

NOTE – Although this process is specified as a subclause within subclause 8.2.5 (which defines a process that is invoked only when
nal_ref_idc is not equal to 0), this process may also be invoked when nal_ref_idc is equal to 0 (as specified in clause 8). The reasons for
the location of this subclause within the structure of this International Standard are historical.
NOTE – This process can only be invoked for a conforming bitstream when gaps_in_frame_num_value_allowed_flag is equal to 1.
When gaps_in_frame_num_value_allowed_flag is equal to 0 and frame_num is not equal to PrevRefFrameNum and is not equal to
(PrevRefFrameNum + 1) % MaxFrameNum, the decoding process should infer an unintentional loss of pictures.

When this process is invoked, a set of values of frame_num pertaining to "non-existing" pictures is derived as all values taken
on by UnusedShortTermFrameNum in Equation 7-11 except the value of frame_num for the current picture.

For each of the values of frame_num pertaining to "non-existing" pictures, in the order in which the values of
UnusedShortTermFrameNum are generated by Equation 7-11, the following ordered steps are specified:

1. The decoding process for picture numbers as specified in subclause 8.2.4.1 is invoked.

2. The sliding window decoded reference picture marking process as specified in subclause 8.2.5.3 is invoked.

3. The decoding process generates a frame and the generated frame is marked as "non-existing" and "used for short-
term reference". The sample values of the generated frame may be set to any value.

The following constraints shall be obeyed:

a) (void)

b) The bitstream shall not contain data that result in the derivation of a reference picture that is marked as
"non-existing" in any invocation of the reference picture selection process specified in subclause 8.4.2.1.

c) The bitstream shall not contain data that result in a variable picNumL0 that is equal to the PicNum of a picture
marked as "non-existing" in any invocation of the modification process for reference picture lists for short-term
reference pictures specified in subclause 8.2.4.3.1.

d) The bitstream shall not contain data that result in a variable picNumL0 that is equal to the PicNum of a picture
marked as "non-existing" in any invocation of the assignment process of a LongTermFrameIdx to a short-term
reference picture specified in subclause 8.2.5.4.3.

NOTE – The above constraints specify that frames that are marked as "non-existing" by the process specified in this subclause must not
be referenced in the inter prediction process (subclause 8.4), the modification commands for reference picture lists for short-term
reference pictures (subclause 8.2.4.3.1), or the assignment process of a LongTermFrameIdx to a short-term reference picture
(subclause 8.2.5.4.3).

8.2.5.3 Sliding window decoded reference picture marking process

This process is invoked when adaptive_ref_pic_marking_mode_flag is equal to 0.

Depending on the properties of the current picture as specified below, the following applies:

1. Let numShortTerm be the total number of reference frames marked as "used for short-term reference". Let
numLongTerm be the total number of reference frames marked as "used for long-term reference".

2. When numShortTerm + numLongTerm is equal to Max(max_num_ref_frames, 1), the condition that
numShortTerm is greater than 0 shall be fulfilled, and the short-term reference frame that has the smallest value of
FrameNumWrap is marked as "unused for reference".

8.2.5.4 Adaptive memory control decoded reference picture marking process

This process is invoked when adaptive_ref_pic_marking_mode_flag is equal to 1.

The memory_management_control_operation commands with values of 1 to 6 are processed in the order they occur in the
bitstream after the current picture has been decoded. For each of these memory_management_control_operation commands,

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 81

one of the processes specified in subclauses 8.2.5.4.1 to 8.2.5.4.6 is invoked depending on the value of
memory_management_control_operation. The memory_management_control_operation command with value of 0 specifies
the end of memory_management_control_operation commands.

Memory management control operations are applied to pictures as follows:

– memory_management_control_operation commands are applied to the frames specified.

8.2.5.4.1 Marking process of a short-term reference picture as "unused for reference"

This process is invoked when memory_management_control_operation is equal to 1.

Let picNumX be specified by

picNumX = CurrPicNum − (difference_of_pic_nums_minus1 + 1). (8-19)

The value of picNumX is used to mark a short-term reference picture as "unused for reference" as follows:

– the short-term reference frame specified by picNumX is marked as "unused for reference".

8.2.5.4.2 Marking process of a long-term reference picture as "unused for reference"

This process is invoked when memory_management_control_operation is equal to 2.

The value of LongTermPicNum is used to mark a long-term reference picture as "unused for reference" as follows:

– the long-term reference frame having LongTermPicNum equal to long_term_pic_num is marked as "unused for
reference".

8.2.5.4.3 Assignment process of a LongTermFrameIdx to a short-term reference picture

This process is invoked when memory_management_control_operation is equal to 3.

Given the syntax element difference_of_pic_nums_minus1, the variable picNumX is obtained as specified in
subclause 8.2.5.4.1. picNumX shall refer to a frame marked as "used for short-term reference" and not marked as "non-
existing".

When LongTermFrameIdx equal to long_term_frame_idx is already assigned to a long-term reference frame, that frame is
marked as "unused for reference".

The value of LongTermFrameIdx is used to mark a picture from "used for short-term reference" to "used for long-term
reference" as follows:

– The marking of the short-term reference frame specified by picNumX is changed from "used for short-term reference" to
"used for long-term reference" and assigned LongTermFrameIdx equal to long_term_frame_idx.

8.2.5.4.4 Decoding process for MaxLongTermFrameIdx

This process is invoked when memory_management_control_operation is equal to 4.

All pictures for which LongTermFrameIdx is greater than max_long_term_frame_idx_plus1 − 1 and that are marked as "used
for long-term reference" are marked as "unused for reference".

The variable MaxLongTermFrameIdx is derived as follows:

– If max_long_term_frame_idx_plus1 is equal to 0, MaxLongTermFrameIdx is set equal to "no long-term frame indices".

– Otherwise (max_long_term_frame_idx_plus1 is greater than 0), MaxLongTermFrameIdx is set equal to
max_long_term_frame_idx_plus1 − 1.

NOTE – The memory_management_control_operation command equal to 4 can be used to mark long-term reference pictures as
"unused for reference". The frequency of transmitting max_long_term_frame_idx_plus1 is not specified by this International Standard.
However, the encoder should send a memory_management_control_operation command equal to 4 upon receiving an error message,
such as an intra refresh request message.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

82 © ISO/IEC 2015 – All rights reserved

8.2.5.4.5 Marking process of all reference pictures as "unused for reference" and setting
MaxLongTermFrameIdx to "no long-term frame indices"

This process is invoked when memory_management_control_operation is equal to 5.

All reference pictures are marked as "unused for reference" and the variable MaxLongTermFrameIdx is set equal to "no long-
term frame indices".

8.2.5.4.6 Process for assigning a long-term frame index to the current picture

This process is invoked when memory_management_control_operation is equal to 6.

When a variable LongTermFrameIdx equal to long_term_frame_idx is already assigned to a long-term reference frame, that
frame is marked as "unused for reference".

The current picture is marked as "used for long-term reference" and assigned LongTermFrameIdx equal to
long_term_frame_idx.

8.3 Intra prediction process

This process is invoked for I macroblock types.

Inputs to this process are constructed samples prior to the deblocking filter process and, for Intra_4x4 prediction modes, the
values of Intra4x4PredMode from neighbouring macroblocks.

Outputs of this process are specified as follows:

– If the macroblock prediction mode is Intra_4x4, the outputs are constructed luma samples prior to the deblocking filter
process and chroma prediction samples of the macroblock predC, where C is equal to Cb and Cr.

– Otherwise, if mb_type is not equal to I_PCM, the outputs are luma prediction samples of the macroblock predL and
chroma prediction samples of the macroblock predC, where C is equal to Cb and Cr.

– Otherwise (mb_type is equal to I_PCM), the outputs are constructed luma and chroma samples prior to the deblocking
filter process.

The variable MvCnt is set equal to 0.

Depending on the value of mb_type the following applies:

– If mb_type is equal to I_PCM, the sample construction process for I_PCM macroblocks as specified in subclause 8.3.5
is invoked.

– Otherwise (mb_type is not equal to I_PCM), the following applies:

1. The decoding processes for Intra prediction modes are described for the luma component as follows:

– If the macroblock prediction mode is equal to Intra_4x4, the Intra_4x4 prediction process for luma samples as
specified in subclause 8.3.1 is invoked.

– Otherwise (the macroblock prediction mode is equal to Intra_16x16), the Intra_16x16 prediction process as
specified in subclause 8.3.3 is invoked with S′L as the input and the outputs are luma prediction samples of
the macroblock predL.

2. the Intra prediction process for chroma samples as specified in subclause 8.3.4 is invoked with S′Cb, and S′Cr as the
inputs and the outputs are chroma prediction samples of the macroblock predCb and predCr.

Samples used in the Intra prediction process are the sample values prior to alteration by any deblocking filter operation.

8.3.1 Intra_4x4 prediction process for luma samples

This process is invoked when the macroblock prediction mode is equal to Intra_4x4.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 83

Inputs to this process are the values of Intra4x4PredMode (if available) from neighbouring macroblocks or macroblock pairs.

The luma component of a macroblock consists of 16 blocks of 4x4 luma samples. These blocks are inverse scanned using the
4x4 luma block inverse scanning process as specified in subclause 6.4.3.

For all 4x4 luma blocks of the luma component of a macroblock with luma4x4BlkIdx = 0..15, the derivation process for the
Intra4x4PredMode as specified in subclause 8.3.1.1 is invoked with luma4x4BlkIdx as well as Intra4x4PredMode that are
previously (in decoding order) derived for adjacent macroblocks as the input and the variable
Intra4x4PredMode[luma4x4BlkIdx] as the output.

For each luma block of 4x4 samples indexed using luma4x4BlkIdx = 0..15, the following ordered steps are specified:

1. The Intra_4x4 sample prediction process in subclause 8.3.1.2 is invoked with luma4x4BlkIdx and the array S′L
containing constructed luma samples prior to the deblocking filter process from adjacent luma blocks as the inputs and
the outputs are the Intra_4x4 luma prediction samples pred4x4L[x, y] with x, y = 0..3.

2. The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the current macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx as the input
and the output being assigned to (xO, yO).

3. The values of the prediction samples predL[xO + x, yO + y] with x, y = 0..3 are derived by

predL[xO + x, yO + y] = pred4x4L[x, y] (8-20)

4. The transform coefficient decoding process and picture construction process prior to deblocking filter process in
subclause 8.5 is invoked with predL and luma4x4BlkIdx as the input and the constructed samples for the current 4x4
luma block S′L as the output.

8.3.1.1 Derivation process for Intra4x4PredMode

Inputs to this process are the index of the 4x4 luma block luma4x4BlkIdx and variable arrays Intra4x4PredMode (if
available) that are previously (in decoding order) derived for adjacent macroblocks.

Output of this process is the variable Intra4x4PredMode[luma4x4BlkIdx].

Table 8-1 specifies the values for Intra4x4PredMode[luma4x4BlkIdx] and the associated names.

Table 8-1 – Specification of Intra4x4PredMode[luma4x4BlkIdx] and associated names

Intra4x4PredMode[luma4x4BlkIdx] Name of Intra4x4PredMode[luma4x4BlkIdx]

0 Intra_4x4_Vertical (prediction mode)

1 Intra_4x4_Horizontal (prediction mode)

2 Intra_4x4_DC (prediction mode)

3 Intra_4x4_Diagonal_Down_Left (prediction mode)

4 Intra_4x4_Diagonal_Down_Right (prediction mode)

5 Intra_4x4_Vertical_Right (prediction mode)

6 Intra_4x4_Horizontal_Down (prediction mode)

7 Intra_4x4_Vertical_Left (prediction mode)

8 Intra_4x4_Horizontal_Up (prediction mode)

Intra4x4PredMode[luma4x4BlkIdx] labelled 0, 1, 3, 4, 5, 6, 7, and 8 represent directions of predictions as illustrated in
Figure 8-1.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

84 © ISO/IEC 2015 – All rights reserved

0

1

43

57

8

6

Figure 8-1 – Intra_4x4 prediction mode directions (informative)

Intra4x4PredMode[luma4x4BlkIdx] is derived as specified by the following ordered steps:

1. The process specified in subclause 6.4.11.4 is invoked with luma4x4BlkIdx given as input and the output is assigned
to mbAddrA, luma4x4BlkIdxA, mbAddrB, and luma4x4BlkIdxB.

2. The variable dcPredModePredictedFlag is derived as follows:

– If any of the following conditions are true, dcPredModePredictedFlag is set equal to 1

– the macroblock with address mbAddrA is not available

– the macroblock with address mbAddrB is not available

– the macroblock with address mbAddrA is available and coded in an Inter macroblock prediction mode
and constrained_intra_pred_flag is equal to 1

– the macroblock with address mbAddrB is available and coded in an Inter macroblock prediction mode
and constrained_intra_pred_flag is equal to 1

– Otherwise, dcPredModePredictedFlag is set equal to 0.

3. For N being either replaced by A or B, the variables intraMxMPredModeN are derived as follows:

– If dcPredModePredictedFlag is equal to 1 or the macroblock with address mbAddrN is not coded in Intra_4x4
macroblock prediction mode, intraMxMPredModeN is set equal to 2 (Intra_4x4_DC prediction mode).

– Otherwise (dcPredModePredictedFlag is equal to 0 and the macroblock with address mbAddrN is coded in
Intra_4x4 macroblock prediction mode), the following applies:

– If the macroblock with address mbAddrN is coded in Intra_4x4 macroblock prediction mode,
intraMxMPredModeN is set equal to Intra4x4PredMode[luma4x4BlkIdxN], where Intra4x4PredMode
is the variable array assigned to the macroblock mbAddrN.

4. Intra4x4PredMode[luma4x4BlkIdx] is derived by applying the following procedure:

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 85

predIntra4x4PredMode = Min(intraMxMPredModeA, intraMxMPredModeB)
if(prev_intra4x4_pred_mode_flag[luma4x4BlkIdx])
 Intra4x4PredMode[luma4x4BlkIdx] = predIntra4x4PredMode
else (8-21)

if(rem_intra4x4_pred_mode[luma4x4BlkIdx] < predIntra4x4PredMode)
 Intra4x4PredMode[luma4x4BlkIdx] = rem_intra4x4_pred_mode[luma4x4BlkIdx]
else

Intra4x4PredMode[luma4x4BlkIdx] = rem_intra4x4_pred_mode[luma4x4BlkIdx] + 1

8.3.1.2 Intra_4x4 sample prediction

This process is invoked for each 4x4 luma block of a macroblock with macroblock prediction mode equal to Intra_4x4
followed by the transform decoding process and picture construction process prior to deblocking for each 4x4 luma block.

Inputs to this process are:

– the index of a 4x4 luma block luma4x4BlkIdx,

– an (PicWidthInSamplesL)x(PicHeightInSamplesL) array cSL containing constructed luma samples prior to the deblocking
filter process of neighbouring macroblocks.

Output of this process are the prediction samples pred4x4L[x, y], with x, y = 0..3, for the 4x4 luma block with index
luma4x4BlkIdx.

The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the current macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx as the input and the
output being assigned to (xO, yO).

The 13 neighbouring samples p[x, y] that are constructed luma samples prior to the deblocking filter process, with x = −1,
y = −1..3 and x = 0..7, y = −1, are derived as specified by the following ordered steps:

1. The luma location (xN, yN) is specified by

xN = xO + x (8-22)

yN = yO + y (8-23)

2. The derivation process for neighbouring locations in subclause 6.4.12 is invoked for luma locations with (xN, yN) as
input and mbAddrN and (xW, yW) as output.

3. Each sample p[x, y] with x = −1, y = −1..3 and x = 0..7, y = −1 is derived as follows:

– If any of the following conditions are true, the sample p[x, y] is marked as "not available for Intra_4x4
prediction"

– mbAddrN is not available,

– the macroblock mbAddrN is coded in an Inter macroblock prediction mode and
constrained_intra_pred_flag is equal to 1,

– the macroblock mbAddrN has mb_type equal to SI and constrained_intra_pred_flag is equal to 1 and the
current macroblock does not have mb_type equal to SI,

– x is greater than 3 and luma4x4BlkIdx is equal to 3 or 11.

– Otherwise, the sample p[x, y] is marked as "available for Intra_4x4 prediction" and the value of the sample
p[x, y] is derived as specified by the following ordered steps:

a. The location of the upper-left luma sample of the macroblock mbAddrN is derived by invoking the inverse
macroblock scanning process in subclause 6.4.1 with mbAddrN as the input and the output is assigned to
(xM, yM).

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

86 © ISO/IEC 2015 – All rights reserved

b. the sample value p[x, y] is derived as follows:

p[x, y] = cSL[xM + xW, yM + yW] (8-24)
When samples p[x, −1], with x = 4..7, are marked as "not available for Intra_4x4 prediction," and the sample p[3, −1] is
marked as "available for Intra_4x4 prediction," the sample value of p[3, −1] is substituted for sample values p[x, −1], with
x = 4..7, and samples p[x, −1], with x = 4..7, are marked as "available for Intra_4x4 prediction".

NOTE – Each block is assumed to be constructed into a picture array prior to decoding of the next block.

Depending on Intra4x4PredMode[luma4x4BlkIdx], one of the Intra_4x4 prediction modes specified in subclauses 8.3.1.2.1
to 8.3.1.2.9 is invoked.

8.3.1.2.1 Specification of Intra_4x4_Vertical prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 0.

This mode shall be used only when the samples p[x, −1] with x = 0..3 are marked as "available for Intra_4x4 prediction".

The values of the prediction samples pred4x4L[x, y], with x, y = 0..3, are derived by

pred4x4L[x, y] = p[x, −1], with x, y = 0..3 (8-25)

8.3.1.2.2 Specification of Intra_4x4_Horizontal prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 1.

This mode shall be used only when the samples p[−1, y], with y = 0..3, are marked as "available for Intra_4x4 prediction".

The values of the prediction samples pred4x4L[x, y], with x, y = 0..3, are derived by

pred4x4L[x, y] = p[−1, y], with x,y = 0..3 (8-26)

8.3.1.2.3 Specification of Intra_4x4_DC prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 2.

The values of the prediction samples pred4x4L[x, y], with x, y = 0..3, are derived as follows:

– If all samples p[x, −1], with x = 0..3, and p[−1, y], with y = 0..3, are marked as "available for Intra_4x4 prediction",
the values of the prediction samples pred4x4L[x, y], with x, y = 0..3, are derived by

pred4x4L[x, y] = (p[0, −1] + p[1, −1] + p[2, −1] + p[3, −1] +
 p[−1, 0] + p[−1, 1] + p[−1, 2] + p[−1, 3] + 4) >> 3 (8-27)

– Otherwise, if any samples p[x, −1], with x = 0..3, are marked as "not available for Intra_4x4 prediction" and all
samples p[−1, y], with y = 0..3, are marked as "available for Intra_4x4 prediction", the values of the prediction samples
pred4x4L[x, y], with x, y = 0..3, are derived by

pred4x4L[x, y] = (p[−1, 0] + p[−1, 1] + p[−1, 2] + p[−1, 3] + 2) >> 2 (8-28)

– Otherwise, if any samples p[−1, y], with y = 0..3, are marked as "not available for Intra_4x4 prediction" and all
samples p[x, −1], with x = 0 .. 3, are marked as "available for Intra_4x4 prediction", the values of the prediction
samples pred4x4L[x, y], with x, y = 0 .. 3, are derived by

pred4x4L[x, y] = (p[0, −1] + p[1, −1] + p[2, −1] + p[3, −1] + 2) >> 2 (8-29)

– Otherwise (some samples p[x, −1], with x = 0..3, and some samples p[−1, y], with y = 0..3, are marked as "not
available for Intra_4x4 prediction"), the values of the prediction samples pred4x4L[x, y], with x, y = 0..3, are derived
by (wherein BitDepthY is equal to 8 in this standard):

pred4x4L[x, y] = (1 << (BitDepthY− 1)) (8-30)
NOTE – A 4x4 luma block can always be predicted using this mode.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 87

8.3.1.2.4 Specification of Intra_4x4_Diagonal_Down_Left prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 3.

This mode shall be used only when the samples p[x, −1] with x = 0..7 are marked as "available for Intra_4x4 prediction".

The values of the prediction samples pred4x4L[x, y], with x, y = 0..3, are derived as follows:

– If x is equal to 3 and y is equal to 3,

pred4x4L[x, y] = (p[6, −1] + 3 * p[7, −1] + 2) >> 2 (8-31)

– Otherwise (x is not equal to 3 or y is not equal to 3),

pred4x4L[x, y] = (p[x + y, −1] + 2 * p[x + y + 1, −1] + p[x + y + 2, −1] + 2) >> 2 (8-32)

8.3.1.2.5 Specification of Intra_4x4_Diagonal_Down_Right prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 4.

This mode shall be used only when the samples p[x, −1] with x = 0..3 and p[−1, y] with y = −1..3 are marked as "available
for Intra_4x4 prediction".

The values of the prediction samples pred4x4L[x, y], with x, y = 0..3, are derived as follows:

– If x is greater than y,

pred4x4L[x, y] = (p[x − y − 2, −1] + 2 * p[x − y − 1, −1] + p[x − y, −1] + 2) >> 2 (8-33)
– Otherwise if x is less than y,

pred4x4L[x, y] = (p[−1, y − x − 2] + 2 * p[−1, y − x − 1] + p[−1, y − x] + 2) >> 2 (8-34)
– Otherwise (x is equal to y),

pred4x4L[x, y] = (p[0, −1] + 2 * p[−1, −1] + p[−1, 0] + 2) >> 2 (8-35)

8.3.1.2.6 Specification of Intra_4x4_Vertical_Right prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 5.

This mode shall be used only when the samples p[x, −1] with x = 0..3 and p[−1, y] with y = −1..3 are marked as "available
for Intra_4x4 prediction".

Let the variable zVR be set equal to 2 * x − y.

The values of the prediction samples pred4x4L[x, y], with x, y = 0..3, are derived as follows:

– If zVR is equal to 0, 2, 4, or 6,

pred4x4L[x, y] = (p[x − (y >> 1) − 1, −1] + p[x − (y >> 1), −1] + 1) >> 1 (8-36)

– Otherwise, if zVR is equal to 1, 3, or 5,

pred4x4L[x, y] = (p[x − (y >> 1) − 2, −1] + 2 * p[x − (y >> 1) − 1, −1] + p[x − (y >> 1), −1] + 2) >> 2
(8-37)

– Otherwise, if zVR is equal to −1,

pred4x4L[x, y] = (p[−1, 0] + 2 * p[−1, −1] + p[0, −1] + 2) >> 2 (8-38)

– Otherwise (zVR is equal to −2 or −3),

pred4x4L[x, y] = (p[−1, y − 1] + 2 * p[−1, y − 2] + p[−1, y − 3] + 2) >> 2 (8-39)

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

88 © ISO/IEC 2015 – All rights reserved

8.3.1.2.7 Specification of Intra_4x4_Horizontal_Down prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 6.

This mode shall be used only when the samples p[x, −1] with x = 0..3 and p[−1, y] with y = −1..3 are marked as "available
for Intra_4x4 prediction".

Let the variable zHD be set equal to 2 * y − x.

The values of the prediction samples pred4x4L[x, y], with x, y = 0..3, are derived as follows:

– If zHD is equal to 0, 2, 4, or 6,

pred4x4L[x, y] = (p[−1, y − (x >> 1) − 1] + p[−1, y − (x >> 1)] + 1) >> 1 (8-40)

– Otherwise, if zHD is equal to 1, 3, or 5,

pred4x4L[x, y] = (p[−1, y − (x >> 1) − 2] + 2 * p[−1, y − (x >> 1) − 1] + p[−1, y − (x >> 1)] + 2) >> 2
(8-41)

– Otherwise, if zHD is equal to −1,

pred4x4L[x, y] = (p[−1, 0] + 2 * p[−1, −1] + p[0, −1] + 2) >> 2 (8-42)

– Otherwise (zHD is equal to −2 or −3),

pred4x4L[x, y] = (p[x − 1, −1] + 2 * p[x − 2, −1] + p[x − 3, −1] + 2) >> 2 (8-43)

8.3.1.2.8 Specification of Intra_4x4_Vertical_Left prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 7.

This mode shall be used only when the samples p[x, −1] with x = 0..7 are marked as "available for Intra_4x4 prediction".

The values of the prediction samples pred4x4L[x, y], with x, y = 0..3, are derived as follows:

– If y is equal to 0 or 2,

pred4x4L[x, y] = (p[x + (y >> 1), −1] + p[x + (y >> 1) + 1, −1] + 1) >> 1 (8-44)

– Otherwise (y is equal to 1 or 3),

pred4x4L[x, y] = (p[x + (y >> 1), −1] + 2 * p[x + (y >> 1) + 1, −1] + p[x + (y >> 1) + 2, −1] + 2) >> 2
(8-45)

8.3.1.2.9 Specification of Intra_4x4_Horizontal_Up prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 8.

This mode shall be used only when the samples p[−1, y] with y = 0..3 are marked as "available for Intra_4x4 prediction".

Let the variable zHU be set equal to x + 2 * y.

The values of the prediction samples pred4x4L[x, y], with x, y = 0..3, are derived as follows:

– If zHU is equal to 0, 2, or 4

pred4x4L[x, y] = (p[−1, y + (x >> 1)] + p[−1, y + (x >> 1) + 1] + 1) >> 1 (8-46)

– Otherwise, if zHU is equal to 1 or 3

pred4x4L[x, y] = (p[−1, y + (x >> 1)] + 2 * p[−1, y + (x >> 1) + 1] + p[−1, y + (x >> 1) + 2] + 2) >> 2
(8-47)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 89

– Otherwise, if zHU is equal to 5,

pred4x4L[x, y] = (p[−1, 2] + 3 * p[−1, 3] + 2) >> 2 (8-48)

– Otherwise (zHU is greater than 5),

pred4x4L[x, y] = p[−1, 3] (8-49)

8.3.2 (void)

8.3.3 Intra_16x16 prediction process for luma samples

This process is invoked when the macroblock prediction mode is equal to Intra_16x16. It specifies how the Intra prediction
luma samples for the current macroblock are derived.

Input to this process is a (PicWidthInSamplesL)x(PicHeightInSamplesL) array cSL containing constructed luma samples prior
to the deblocking filter process of neighbouring macroblocks.

Outputs of this process are Intra prediction luma samples for the current macroblock predL[x, y].

The 33 neighbouring samples p[x, y] that are constructed luma samples prior to the deblocking filter process, with x = −1,
y = −1..15 and with x = 0..15, y = −1, are derived as specified by the following ordered steps:

1. The derivation process for neighbouring locations in subclause 6.4.12 is invoked for luma locations with (x, y)
assigned to (xN, yN) as input and mbAddrN and (xW, yW) as output.

2. Each sample p[x, y] with x = −1, y = −1..15 and with x = 0..15, y = −1 is derived as follows:

– If any of the following conditions are true, the sample p[x, y] is marked as "not available for Intra_16x16
prediction":

– mbAddrN is not available,

– the macroblock mbAddrN is coded in an Inter macroblock prediction mode and constrained_intra_pred_flag is
equal to 1,

– the macroblock mbAddrN has mb_type equal to SI and constrained_intra_pred_flag is equal to 1.

– Otherwise, the sample p[x, y] is marked as "available for Intra_16x16 prediction" and the value of the sample
p[x, y] is derived as specified by the following ordered steps:

a. The location of the upper-left luma sample of the macroblock mbAddrN is derived by invoking the inverse
macroblock scanning process in subclause 6.4.1 with mbAddrN as the input and the output is assigned to
(xM, yM).

b. the sample value p[x, y] is derived as follows:

p[x, y] = cSL[xM + xW, yM + yW] (8-50)

Let predL[x, y] with x, y = 0..15 denote the prediction samples for the 16x16 luma block samples.

Intra_16x16 prediction modes are specified in Table 8-2.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

90 © ISO/IEC 2015 – All rights reserved

Table 8-2 – Specification of Intra16x16PredMode and associated names

Intra16x16PredMode Name of Intra16x16PredMode

0 Intra_16x16_Vertical (prediction mode)

1 Intra_16x16_Horizontal (prediction mode)

2 Intra_16x16_DC (prediction mode)

3 Intra_16x16_Plane (prediction mode)

Depending on Intra16x16PredMode, one of the Intra_16x16 prediction modes specified in subclauses 8.3.3.1 to 8.3.3.4 is
invoked.

8.3.3.1 Specification of Intra_16x16_Vertical prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[x, −1] with x = 0..15 are marked as "available for
Intra_16x16 prediction".

The values of the prediction samples predL[x, y], with x, y = 0..15, are derived by

predL[x, y] = p[x, −1], with x, y = 0..15 (8-51)

8.3.3.2 Specification of Intra_16x16_Horizontal prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[−1, y] with y = 0..15 are marked as "available for
Intra_16x16 prediction".

The values of the prediction samples predL[x, y], with x, y = 0..15, are derived by

predL[x, y] = p[−1, y], with x, y = 0..15 (8-52)

8.3.3.3 Specification of Intra_16x16_DC prediction mode

This Intra_16x16 prediction mode operates, depending on whether the neighbouring samples are marked as "available for
Intra_16x16 prediction", as follows:

– If all neighbouring samples p[x, −1], with x = 0..15, and p[−1, y], with y = 0..15, are marked as "available for
Intra_16x16 prediction", the prediction for all luma samples in the macroblock is given by:

predL[x, y] = [] []∑ ∑
= =

>>+−+−
15

0x'

15

0y'
516)y'1,p1,x'p(, with x, y = 0..15 (8-53)

– Otherwise, if any of the neighbouring samples p[x, −1], with x = 0..15, are marked as "not available for Intra_16x16
prediction" and all of the neighbouring samples p[−1, y], with y = 0..15, are marked as "available for Intra_16x16
prediction", the prediction for all luma samples in the macroblock is given by:

predL[x, y] = [] 48)y'1,p(
15

0y'
>>+−∑

=

, with x, y = 0..15 (8-54)

– Otherwise, if any of the neighbouring samples p[−1, y], with y = 0..15, are marked as "not available for Intra_16x16
prediction" and all of the neighbouring samples p[x, −1], with x = 0..15, are marked as "available for Intra_16x16
prediction", the prediction for all luma samples in the macroblock is given by:

predL[x, y] = []∑
=

>>+−
15

0x'
48)1,x'p(, with x, y = 0..15 (8-55)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 91

– Otherwise (some of the neighbouring samples p[x, −1], with x = 0..15, and some of the neighbouring samples
p[−1, y], with y = 0..15, are marked as "not available for Intra_16x16 prediction"), the prediction for all luma samples
in the macroblock is given by:

predL[x, y] = (1 << (BitDepthY− 1)), with x, y = 0..15 (8-56)

8.3.3.4 Specification of Intra_16x16_Plane prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[x, −1] with x =−1..15 and p[−1, y] with y = 0..15
are marked as "available for Intra_16x16 prediction".

The values of the prediction samples predL[x, y], with x, y = 0..15, are derived by

predL[x, y] = Clip1Y((a + b * (x − 7) + c * (y − 7) + 16) >> 5), with x, y = 0..15, (8-57)

where

a = 16 * (p[−1, 15] + p[15, −1]) (8-58)

b = (5 * H + 32) >> 6 (8-59)

c = (5 * V + 32) >> 6 (8-60)

and H and V are specified as

[] []∑
=

−++=
7

0x'
) 1- ,x'-6 p - 1 ,x'8 p (*) 1 x'(H (8-61)

[] []∑
=

++=
7

0y'
) y'-6 1,- p- y'8 1,- p (*) 1y' (V (8-62)

8.3.4 Intra prediction process for chroma samples

This process is invoked for I macroblock types. It specifies how the Intra prediction chroma samples for the current
macroblock are derived. (ChromaArrayType = 1 in this standard).

Inputs to this process are two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays cSCb and cSCr containing constructed
chroma samples prior to the deblocking filter process of neighbouring macroblocks.

Outputs of this process are Intra prediction chroma samples for the current macroblock predCb[x, y] and predCr[x, y].

The following applies:

the following text specifies the Intra prediction chroma samples for the current macroblock predCb[x, y] and predCr[x, y].

Both chroma blocks (Cb and Cr) of the macroblock use the same prediction mode. The prediction mode is applied to each of
the chroma blocks separately. The process specified in this subclause is invoked for each chroma block. In the remainder of
this subclause, chroma block refers to one of the two chroma blocks and the subscript C is used as a replacement of the
subscript Cb or Cr.

The neighbouring samples p[x, y] that are constructed chroma samples prior to the deblocking filter process, with x = −1,
y = −1..MbHeightC − 1 and with x = 0..MbWidthC − 1, y = −1, are derived as specified by the following ordered steps:

1. The derivation process for neighbouring locations in subclause 6.4.12 is invoked for chroma locations with (x, y)
assigned to (xN, yN) as input and mbAddrN and (xW, yW) as output.

2. Each sample p[x, y] is derived as follows:

– If any of the following conditions are true, the sample p[x, y] is marked as "not available for Intra chroma
prediction":

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

92 © ISO/IEC 2015 – All rights reserved

– mbAddrN is not available,

– the macroblock mbAddrN is coded in an Inter macroblock prediction mode and constrained_intra_pred_flag is
equal to 1,

– the macroblock mbAddrN has mb_type equal to SI and constrained_intra_pred_flag is equal to 1 and the
current macroblock does not have mb_type equal to SI.

– Otherwise, the sample p[x, y] is marked as "available for Intra chroma prediction" and the value of the sample
p[x, y] is derived as specified by the following ordered steps:

a. The location of the upper-left luma sample of the macroblock mbAddrN is derived by invoking the inverse
macroblock scanning process in subclause 6.4.1 with mbAddrN as the input and the output is assigned to
(xL, yL).

b. The location (xM, yM) of the upper-left chroma sample of the macroblock mbAddr is derived by:

xM = (xL >> 4) * MbWidthC (8-63)
yM = ((yL >> 4)* MbHeightC) + (yL % 2) (8-64)

c. the sample value p[x, y] is derived as follows:

p[x, y] = cSC[xM + xW, yM + yW] (8-65)

Let predC[x, y] with x = 0..MbWidthC − 1, y = 0..MbHeightC − 1 denote the prediction samples for the chroma block
samples.

Intra chroma prediction modes are specified in Table 8-3.

Table 8-3 – Specification of Intra chroma prediction modes and associated names

intra_chroma_pred_mode Name of intra_chroma_pred_mode

0 Intra_Chroma_DC (prediction mode)

1 Intra_Chroma_Horizontal (prediction mode)

2 Intra_Chroma_Vertical (prediction mode)

3 Intra_Chroma_Plane (prediction mode)

Depending on intra_chroma_pred_mode, one of the Intra chroma prediction modes specified in subclauses 8.3.4.1 to 8.3.4.4is
invoked.

8.3.4.1 Specification of Intra_Chroma_DC prediction mode

This Intra chroma prediction mode is invoked when intra_chroma_pred_mode is equal to 0. (ChromaArrayType = 1 in this
standard).

For each chroma block of 4x4 samples indexed by chroma4x4BlkIdx = 0..(1 << (ChromaArrayType + 1)) − 1, the
following applies:

– The position of the upper-left sample of a 4x4 chroma block with index chroma4x4BlkIdx inside the current macroblock
is derived by invoking the inverse 4x4 chroma block scanning process in subclause 6.4.7 with chroma4x4BlkIdx as the
input and the output being assigned to (xO, yO).

– Depending on the values of xO and yO, the following applies:

– If (xO, yO) is equal to (0, 0) or xO and yO are greater than 0, the values of the prediction samples
predC[x + xO, y + yO] with x, y = 0..3 are derived as follows:

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 93

– If all samples p[x + xO, −1], with x = 0..3, and p[−1, y +yO], with y = 0..3, are marked as "available for
Intra chroma prediction", the values of the prediction samples predC[x + xO, y + yO], with x, y = 0..3, are
derived as:

34]yO'y,1[p]1,xO'x[p] yOy xO, x[pred
3

0'y

3

0'x
C >>








++−+−+=++ ∑∑

==
, with x, y = 0..3. (8-66)

– Otherwise, if any samples p[x + xO, −1], with x = 0..3, are marked as "not available for Intra chroma
prediction" and all samples p[−1, y +yO], with y = 0..3, are marked as "available for Intra chroma
prediction", the values of the prediction samples predC[x + xO, y + yO], with x, y = 0..3, are derived as:

22]yO'y,1[p] yOy xO, x[pred
3

0'y
C >>










++−=++ ∑

=

, with x, y = 0..3. (8-67)

– Otherwise, if any samples p[−1, y +yO], with y = 0..3, are marked as "not available for Intra chroma
prediction" and all samples p[x + xO, −1], with x = 0..3, are marked as "available for Intra chroma
prediction", the values of the prediction samples predC[x + xO, y + yO], with x, y = 0..3, are derived as:

22]1,xO'x[p] yOy xO, x[pred
3

0x'
C >>








+−+=++ ∑

=

, with x, y = 0..3. (8-68)

– Otherwise (some samples p[x + xO, −1], with x = 0..3, and some samples p[−1, y +yO], with y = 0..3, are
marked as "not available for Intra chroma prediction"), the values of the prediction samples
predC[x + xO, y + yO], with x, y = 0..3, are derived as (wherein BitDepthC is equal to 8 in this standard):

predC[x + xO, y + yO] = (1 << (BitDepthC− 1)), with x, y = 0..3. (8-69)

– Otherwise, if xO is greater than 0 and yO is equal to 0, the values of the prediction samples predC[x + xO, y + yO]
with x, y = 0..3 are derived as follows:

– If all samples p[x + xO, −1], with x = 0..3, are marked as "available for Intra chroma prediction", the values
of the prediction samples predC[x + xO, y + yO], with x, y = 0..3, are derived as:

22]1,xO'x[p] yOy xO, x[pred
3

0x'
C >>








+−+=++ ∑

=

, with x, y = 0..3. (8-70)

– Otherwise, if all samples p[−1, y +yO], with y = 0..3, are marked as "available for Intra chroma prediction",
the values of the prediction samples predC[x + xO, y + yO], with x, y = 0..3, are derived as:

22]yO'y,1[p] yOy xO, x[pred
3

0'y
C >>










++−=++ ∑

=

, with x, y = 0..3. (8-71)

– Otherwise (some samples p[x + xO, −1], with x = 0..3, and some samples p[−1, y +yO], with y = 0..3, are
marked as "not available for Intra chroma prediction"), the values of the prediction samples
predC[x + xO, y + yO], with x, y = 0..3, are derived as:

predC[x + xO, y + yO] = (1 << (BitDepthC− 1)), with x, y = 0..3. (8-72)

– Otherwise (xO is equal to 0 and yO is greater than 0), the values of the prediction samples predC[x + xO, y + yO]
with x, y = 0..3 are derived as follows:

– If all samples p[−1, y +yO], with y = 0..3, are marked as "available for Intra chroma prediction", the values
of the prediction samples predC[x + xO, y + yO], with x, y = 0..3, are derived as:

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

94 © ISO/IEC 2015 – All rights reserved

22]yO'y,1[p] yOy xO, x[pred
3

0'y
C >>










++−=++ ∑

=

, with x, y = 0..3. (8-73)

– Otherwise, if all samples p[x + xO, −1], with x = 0..3, are marked as "available for Intra chroma prediction",
the values of the prediction samples predC[x + xO, y + yO], with x, y = 0..3, are derived as:

predC[x + xO, y + yO] = (1 << (BitDepthC − 1)), with x, y = 0..3. (8-74)

– Otherwise (some samples p[x + xO, −1], with x = 0..3, and some samples p[−1, y +yO], with y = 0..3, are
marked as "not available for Intra chroma prediction"), the values of the prediction samples
predC[x + xO, y + yO], with x, y = 0..3, are derived as:

predC[x + xO, y + yO] = (1 << (BitDepthC− 1)), with x, y = 0..3. (8-75)

8.3.4.2 Specification of Intra_Chroma_Horizontal prediction mode

This Intra chroma prediction mode is invoked when intra_chroma_pred_mode is equal to 1.

This mode shall be used only when the samples p[−1, y] with y = 0..MbHeightC − 1 are marked as "available for Intra
chroma prediction".

The values of the prediction samples predC[x, y] are derived as:

predC[x, y] = p[−1, y], with x = 0..MbWidthC − 1 and y = 0..MbHeightC − 1 (8-76)

8.3.4.3 Specification of Intra_Chroma_Vertical prediction mode

This Intra chroma prediction mode is invoked when intra_chroma_pred_mode is equal to 2.

This mode shall be used only when the samples p[x, −1] with x = 0..MbWidthC − 1 are marked as "available for Intra
chroma prediction".

The values of the prediction samples predC[x, y] are derived as:

predC[x, y] = p[x, −1], with x = 0..MbWidthC − 1 and y = 0..MbHeightC − 1 (8-77)

8.3.4.4 Specification of Intra_Chroma_Plane prediction mode

This Intra chroma prediction mode is invoked when intra_chroma_pred_mode is equal to 3. (ChromaArrayType = 1 in this
standard)

This mode shall be used only when the samples p[x, −1], with x = 0..MbWidthC − 1 and p[−1, y], with
y = −1..MbHeightC − 1 are marked as "available for Intra chroma prediction".

The values of the prediction samples predC[x, y] are derived by:

predC[x, y] = Clip1C((a + b * (x − 3) + c * (y − 3) + 16) >> 5),
with x = 0..MbWidthC − 1 and y = 0..MbHeightC − 1 (8-78)

where

a = 16 * (p[−1, MbHeightC − 1] + p[MbWidthC − 1, −1]) (8-79)

b = (34 * H + 32) >> 6 (8-80)

c = (34 * V + 32) >> 6 (8-81)

and H and V are specified as:

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 95

[] []∑
+

=

−−+−−+++=
 xCF 3

0'x
)1 ,'xxCF2p1 ,'xxCF4p(*)1'x(H (8-82)

∑
+

=

−+−−++−+=
yCF3

0'y
])'yyCF2 ,1[p]'yyCF4 ,1[p(*)1'y(V (8-83)

8.3.5 Sample construction process for I_PCM macroblocks

This process is invoked when mb_type is equal to I_PCM.

The position of the upper-left luma sample of the current macroblock is derived by invoking the inverse macroblock scanning
process in subclause 6.4.1 with CurrMbAddr as input and the output being assigned to (xP, yP).

The constructed luma samples prior to the deblocking process are generated as specified by:

for(i = 0; i < 256; i++)
S′L[xP + (i % 16), yP + (i / 16))] = pcm_sample_luma[i] (8-84)

The constructed chroma samples prior to the deblocking process are generated as specified by:

for(i = 0; i < MbWidthC * MbHeightC; i++) {
S′Cb[(xP / 2) + (i % MbWidthC),

((yP + 2− 1) / 2) + (i / MbWidthC)] =
 pcm_sample_chroma[i] (8-85)

S′Cr[(xP / 2) + (i % MbWidthC),
((yP + 2− 1) / 2) + (i / MbWidthC)] =
 pcm_sample_chroma[i + MbWidthC * MbHeightC]

}

8.4 Inter prediction process

This process is invoked when decoding P macroblock types.

Outputs of this process are Inter prediction samples for the current macroblock that are a 16x16 array predL of luma samples
and two (MbWidthC)x(MbHeightC) arrays predCb and predCr of chroma samples, one for each of the chroma components Cb
and Cr.

The partitioning of a macroblock is specified by mb_type. Each macroblock partition is referred to by mbPartIdx. When the
macroblock partitioning consists of partitions that are equal to sub-macroblocks, each sub-macroblock can be further
partitioned into sub-macroblock partitions as specified by sub_mb_type[mbPartIdx]. Each sub-macroblock partition is
referred to by subMbPartIdx. When the macroblock partitioning does not consist of sub-macroblocks, subMbPartIdx is set
equal to 0.

The following steps are specified for each macroblock partition or for each sub-macroblock partition.

The functions MbPartWidth(), MbPartHeight(), SubMbPartWidth(), and SubMbPartHeight() describing the width and
height of macroblock partitions and sub-macroblock partitions are specified in Tables 7-9 and 7-12.

The range of the macroblock partition index mbPartIdx is derived as follows:

– mbPartIdx proceeds over values 0..NumMbPart(mb_type) − 1.

For each value of mbPartIdx, the variables partWidth and partHeight for each macroblock partition or sub-macroblock
partition in the macroblock are derived as follows:

– If mb_type is not equal to P_8x8 or P_8x8ref0, subMbPartIdx is set equal to 0, and partWidth and partHeight are
derived as:

partWidth = MbPartWidth(mb_type) (8-86)

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

96 © ISO/IEC 2015 – All rights reserved

partHeight = MbPartHeight(mb_type) (8-87)

– Otherwise, if mb_type is equal to P_8x8 or P_8x8ref0, subMbPartIdx proceeds over values
0..NumSubMbPart(sub_mb_type[mbPartIdx]) − 1, and partWidth and partHeight are derived as:

partWidth = SubMbPartWidth(sub_mb_type[mbPartIdx]) (8-88)

partHeight = SubMbPartHeight(sub_mb_type[mbPartIdx]). (8-89)

The variables partWidthC and partHeightC are derived as:

partWidthC = partWidth / 2 (8-90)
partHeightC = partHeight / 2 (8-91)

Let the variable MvCnt be initially set equal to 0 before any invocation of subclause 8.4.1 for the macroblock.

The Inter prediction process for a macroblock partition mbPartIdx and a sub-macroblock partition subMbPartIdx consists of
the following ordered steps:

1. The derivation process for motion vector components and reference indices as specified in subclause 8.4.1 is invoked.

Inputs to this process are:

– a macroblock partition mbPartIdx,

– a sub-macroblock partition subMbPartIdx.

Outputs of this process are:

– luma motion vector mvL0 and the chroma motion vector mvCL0

– reference indices refIdxL0

– prediction list utilization flag predFlagL0

– the sub-macroblock partition motion vector count subMvCnt.

2. The variable MvCnt is incremented by subMvCnt.

3. (void)

4. The decoding process for Inter prediction samples as specified in subclause 8.4.2 is invoked.

Inputs to this process are:

– a macroblock partition mbPartIdx,

– a sub-macroblock partition subMbPartIdx,

– variables specifying partition width and height for luma and chroma (if available), partWidth, partHeight,
partWidthC (if available), and partHeightC (if available),

– luma motion vector mvL0 and the chroma motion vector mvCL0,

– reference index refIdxL0,

– prediction list utilization flag predFlagL0,

Outputs of this process are inter prediction samples (pred); which are a (partWidth)x(partHeight) array predPartL of
prediction luma samples and two (partWidthC)x(partHeightC) arrays predPartCr, and predPartCb of prediction chroma
samples, one for each of the chroma components Cb and Cr.

For use in derivation processes of variables invoked later in the decoding process, the following assignments are made:

MvL0[mbPartIdx][subMbPartIdx] = mvL0 (8-92)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 97

RefIdxL0[mbPartIdx] = refIdxL0 (8-93)

PredFlagL0[mbPartIdx] = predFlagL0 (8-94)

The location of the upper-left sample of the macroblock partition relative to the upper-left sample of the macroblock is
derived by invoking the inverse macroblock partition scanning process as described in subclause 6.4.2.1 with mbPartIdx as
the input and (xP, yP) as the output.

The location of the upper-left sample of the sub-macroblock partition relative to the upper-left sample of the macroblock
partition is derived by invoking the inverse sub-macroblock partition scanning process as described in subclause 6.4.2.2 with
subMbPartIdx as the input and (xS, yS) as the output.

The macroblock prediction is formed by placing the macroblock or sub-macroblock partition prediction samples in their
correct relative positions in the macroblock, as follows.

The variable predL[xP + xS + x, yP + yS + y] with x = 0..partWidth − 1, y = 0..partHeight − 1 is derived by:

predL[xP + xS + x, yP + yS + y] = predPartL[x, y] (8-95)

The variable predC with x = 0..partWidthC − 1, y = 0..partHeightC − 1, and C in predC and predPartC being replaced by Cb or
Cr is derived by:

predC[xP / 2 + xS / 2 + x, yP / 2+ yS / 2+ y] = predPartC[x, y]
(8-96)

8.4.1 Derivation process for motion vector components and reference indices

Inputs to this process are:

– a macroblock partition mbPartIdx,

– a sub-macroblock partition subMbPartIdx.

Outputs of this process are:

– luma motion vector mvL0 and the chroma motion vector mvCL0,

– reference index refIdxL0,

– prediction list utilization flag predFlagL0,

– a motion vector count variable subMvCnt.

For the derivation of the variables mvL0 as well as refIdxL0, the following applies:

1.The variables refIdxL0 and predFlagL0 are derived as follows:
– If MbPartPredMode(mb_type, mbPartIdx) or SubMbPredMode(sub_mb_type[mbPartIdx]) is equal to

Pred_L0,

refIdxL0 = ref_idx_l0[mbPartIdx] (8-97)

predFlagL0 = 1 (8-98)
– Otherwise, the variables refIdxL0 and predFlagL0 are specified by

refIdxL0 = −1 (8-99)

predFlagL0 = 0 (8-100)

2.The motion vector count variable subMvCnt is set equal to predFlagL0.

3.The variable currSubMbType is derived as follows:
 currSubMbType is set equal to "na".

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

98 © ISO/IEC 2015 – All rights reserved

4.When predFlagL0 is equal to 1, the derivation process for luma motion vector prediction in subclause 8.4.1.3 is
invoked with mbPartIdx subMbPartIdx, refIdxL0, and currSubMbType as the inputs and the output being
mvpL0. The luma motion vectors are derived by

mvL0[0] = mvpL0[0] + mvd_l0[mbPartIdx][subMbPartIdx][0] (8-101)

mvL0[1] = mvpL0[1] + mvd_l0[mbPartIdx][subMbPartIdx][1] (8-102)

When predFlagL0 is equal to 1, the derivation process for chroma motion vectors in subclause 8.4.1.4 is invoked with mvL0
and refIdxL0 as input and the output being mvCL0.

8.4.1.1 Derivation process for luma motion vectors for skipped macroblocks in P slices

This process is invoked when mb_type is equal to P_Skip.

Outputs of this process are the motion vector mvL0 and the reference index refIdxL0.

The reference index refIdxL0 for a skipped macroblock is derived as:

refIdxL0 = 0. (8-103)

For the derivation of the motion vector mvL0 of a P_Skip macroblock type, the following ordered steps are specified:

1. The process specified in subclause 8.4.1.3.2 is invoked with mbPartIdx set equal to 0, subMbPartIdx set equal to 0,
currSubMbType set equal to "na", and listSuffixFlag set equal to 0 as input and the output is assigned to mbAddrA,
mbAddrB, mvL0A, mvL0B, refIdxL0A, and refIdxL0B.

2. The variable mvL0 is specified as follows:

– If any of the following conditions are true, both components of the motion vector mvL0 are set equal to 0:

– mbAddrA is not available,

– mbAddrB is not available,

– refIdxL0A is equal to 0 and both components of mvL0A are equal to 0,

– refIdxL0B is equal to 0 and both components of mvL0B are equal to 0.

– Otherwise, the derivation process for luma motion vector prediction as specified in subclause 8.4.1.3 is
invoked with mbPartIdx = 0, subMbPartIdx = 0, refIdxL0, and currSubMbType = "na" as inputs and the
output is assigned to mvL0.

NOTE – The output is directly assigned to mvL0, since the predictor is equal to the actual motion vector.

8.4.1.2 (void)

8.4.1.3 Derivation process for luma motion vector prediction

Inputs to this process are:

– the macroblock partition index mbPartIdx,

– the sub-macroblock partition index subMbPartIdx,

– the reference index of the current partition refIdxL0

– the variable currSubMbType.

Output of this process is the prediction mvpL0 of the motion vector mvL0 .

The derivation process for the neighbouring blocks for motion data in subclause 8.4.1.3.2 is invoked with mbPartIdx,
subMbPartIdx, currSubMbType, and listSuffixFlag = 0 as the input and with mbAddrN\mbPartIdxN\subMbPartIdxN,
reference indices refIdxL0N and the motion vectors mvL0N with N being replaced by A, B, or C as the output.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 99

The motion vector predictor mvpL0 is derived as follows:

– If MbPartWidth(mb_type) is equal to 16, MbPartHeight(mb_type) is equal to 8, mbPartIdx is equal to 0, and
refIdxL0B is equal to refIdxL0, the motion vector predictor mvpL0 is derived by:

mvpL0 = mvL0B (8-104)

– Otherwise, if MbPartWidth(mb_type) is equal to 16, MbPartHeight(mb_type) is equal to 8, mbPartIdx is equal to 1,
and refIdxL0A is equal to refIdxL0, the motion vector predictor mvpL0 is derived by:

mvpL0 = mvL0A (8-105)

– Otherwise, if MbPartWidth(mb_type) is equal to 8, MbPartHeight(mb_type) is equal to 16, mbPartIdx is equal to 0,
and refIdxL0A is equal to refIdxL0, the motion vector predictor mvpL0 is derived by:

mvpL0 = mvL0A (8-106)
– Otherwise, if MbPartWidth(mb_type) is equal to 8, MbPartHeight(mb_type) is equal to 16, mbPartIdx is equal to 1,

and refIdxL0C is equal to refIdxL0, the motion vector predictor mvpL0 is derived by:

mvpL0 = mvL0C (8-107)

– Otherwise, the derivation process for median luma motion vector prediction in subclause 8.4.1.3.1 is invoked with
mbAddrN\mbPartIdxN\subMbPartIdxN, mvL0N, refIdxL0N with N being replaced by A, B, or C, and refIdxL0 as the
inputs and the output is assigned to the motion vector predictor mvpL0.

Figure 8-2 illustrates the non-median prediction as specified in Equations 8-104 to 8-107.

8*16 16*8

Figure 8-2 – Directional segmentation prediction (informative)

8.4.1.3.1 Derivation process for median luma motion vector prediction

Inputs to this process are:

– the neighbouring partitions mbAddrN\mbPartIdxN\subMbPartIdxN (with N being replaced by A, B, or C),

– the motion vectors mvL0N (with N being replaced by A, B, or C) of the neighbouring partitions,

– the reference indices refIdxL0N (with N being replaced by A, B, or C) of the neighbouring partitions,

– the reference index refIdxL0 of the current partition.

Output of this process is the motion vector prediction mvpL0.

The variable mvpL0 is derived as specified by the following ordered steps:

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

100 © ISO/IEC 2015 – All rights reserved

1. When both partitions mbAddrB\mbPartIdxB\subMbPartIdxB and mbAddrC\mbPartIdxC\subMbPartIdxC are not
available and mbAddrA\mbPartIdxA\subMbPartIdxA is available,

mvL0B = mvL0A (8-108)

mvL0C = mvL0A (8-109)

refIdxL0B = refIdxL0A (8-110)

refIdxL0C = refIdxL0A (8-111)

2. Depending on reference indices refIdxL0A, refIdxL0B, or refIdxL0C, the following applies:

– If one and only one of the reference indices refIdxL0A, refIdxL0B, or refIdxL0C is equal to the reference index
refIdxL0 of the current partition, the following applies. Let refIdxL0N be the reference index that is equal to
refIdxL0, the motion vector mvL0N is assigned to the motion vector prediction mvpL0:

mvpL0 = mvL0N (8-112)

– Otherwise, each component of the motion vector prediction mvpL0 is given by the median of the corresponding
vector components of the motion vector mvL0A, mvL0B, and mvL0C:

mvpL0[0] = Median(mvL0A[0], mvL0B[0], mvL0C[0]) (8-113)

mvpL0[1] = Median(mvL0A[1], mvL0B[1], mvL0C[1]) (8-114)

8.4.1.3.2 Derivation process for motion data of neighbouring partitions

Inputs to this process are:

– the macroblock partition index mbPartIdx,

– the sub-macroblock partition index subMbPartIdx,

– the current sub-macroblock type currSubMbType,

– the list suffix flag listSuffixFlag.

Outputs of this process are (with N being replaced by A, B, or C)

– mbAddrN\mbPartIdxN\subMbPartIdxN specifying neighbouring partitions,

– the motion vectors mvL0N of the neighbouring partitions,

– the reference indices refIdxL0N of the neighbouring partitions.

Variable names that include the string "L0" are interpreted with the 0 being equal to listSuffixFlag.

The partitions mbAddrN\mbPartIdxN\subMbPartIdxN with N being either A, B, or C are derived in the following ordered
steps:

1. Let mbAddrD\mbPartIdxD\subMbPartIdxD be variables specifying an additional neighbouring partition.

2. The process in subclause 6.4.11.7 is invoked with mbPartIdx, currSubMbType, and subMbPartIdx as input and the
output is assigned to mbAddrN\mbPartIdxN\subMbPartIdxN with N being replaced by A, B, C, or D.

3. When the partition mbAddrC\mbPartIdxC\subMbPartIdxC is not available, the following applies:

mbAddrC = mbAddrD (8-115)

mbPartIdxC = mbPartIdxD (8-116)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 101

subMbPartIdxC = subMbPartIdxD (8-117)
The motion vectors mvL0N and reference indices refIdxL0N (with N being A, B, or C) are derived as follows:

– If the macroblock partition or sub-macroblock partition mbAddrN\mbPartIdxN\subMbPartIdxN is not available or
mbAddrN is coded in an Intra macroblock prediction mode or predFlagL0 of mbAddrN\mbPartIdxN\subMbPartIdxN is
equal to 0, both components of mvL0N are set equal to 0 and refIdxL0N is set equal to −1.

– Otherwise, the following ordered steps are specified:

1. The motion vector mvL0N and reference index refIdxL0N are set equal to
MvL0[mbPartIdxN][subMbPartIdxN] and RefIdxL0[mbPartIdxN], respectively, which are the motion
vector mvL0 and reference index refIdxL0 that have been assigned to the (sub-)macroblock partition
mbAddrN\mbPartIdxN\subMbPartIdxN.

2. The variables mvL0N[1] and refIdxL0N are further processed as follows:

– Otherwise, the vertical motion vector component mvL0N[1] and the reference index refIdxL0N remain
unchanged.

8.4.1.4 Derivation process for chroma motion vectors

Inputs to this process are a luma motion vector mvL0 and a reference index refIdxL0.

Output of this process is a chroma motion vector mvCL0.

A chroma motion vector is derived from the corresponding luma motion vector.

The precision of the chroma motion vector components is 1 ÷ (4 * 2) horizontally and 1 ÷ (4 * 2) vertically.
NOTE – For example, when using the 4:2:0 chroma format, since the units of luma motion vectors are one-quarter luma sample units
and chroma has half horizontal and vertical resolution compared to luma, the units of chroma motion vectors are one-eighth chroma
sample units, i.e., a value of 1 for the chroma motion vector refers to a one-eighth chroma sample displacement. For example, when the
luma vector applies to 8x16 luma samples, the corresponding chroma vector in 4:2:0 chroma format applies to 4x8 chroma samples and
when the luma vector applies to 4x4 luma samples, the corresponding chroma vector in 4:2:0 chroma format applies to 2x2 chroma
samples.

For the derivation of the motion vector mvCL0, the following applies:

– the horizontal and vertical components of the chroma motion vector mvCL0 are derived as:

mvCL0[0] = mvL0[0] (8-118)
mvCL0[1] = mvL0[1] (8-119)

8.4.2 Decoding process for Inter prediction samples

Inputs to this process are:

– a macroblock partition mbPartIdx,

– a sub-macroblock partition subMbPartIdx,

– variables specifying partition width and height for luma and chroma (if available), partWidth, partHeight, partWidthC (if
available) and partHeightC (if available),

– luma motion vectors mvL0 and chroma motion vectors mvCL0,

– reference indices refIdxL0,

– prediction list utilization flags, predFlagL0,

Outputs of this process are the Inter prediction samples predPart, which are a (partWidth)x(partHeight) array predPartL of
prediction luma samples two (partWidthC)x(partHeightC) arrays predPartCb, predPartCr of prediction chroma samples, one for
each of the chroma components Cb and Cr.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

102 © ISO/IEC 2015 – All rights reserved

Let predPartL0L be (partWidth)x(partHeight) arrays of predicted luma sample values. Let predPartL0Cb, and predPartL0Cr,
be (partWidthC)x(partHeightC) arrays of predicted chroma sample values.

When predFlagL0 is equal to 1, the following applies:

– The reference picture consisting of an ordered two-dimensional array refPicL0Lof luma samples and two ordered two-
dimensional arrays refPicL0Cband refPicL0Crof chroma samples is derived by invoking the process specified in
subclause 8.4.2.1 with refIdxL0 and RefPicList0 given as input.

– The array predPartL0Land the arrays predPartL0Cband predPartL0Crare derived by invoking the process specified in
subclause 8.4.2.2 with the current partition specified by mbPartIdx\subMbPartIdx, the motion vectors mvL0, mvCL0 (if
available), and the reference arrays with refPicL0L, refPicL0Cb(if available), and refPicL0Cr(if available) given as input.

For C being replaced by L, Cb (if available), or Cr (if available), the array predPartC of the prediction samples of component
C is derived by

predPartC[x, y] = predPartL0C[x, y] (8-120)

8.4.2.1 Reference picture selection process

Input to this process is a reference index refIdxL0

Output of this process is a reference picture consisting of a two-dimensional array of luma samples refPicL0L and two two-
dimensional arrays of chroma samples refPicL0Cb and refPicL0Cr.

The reference picture list RefPicList0 (which has been derived as specified in subclause 8.2.4) consists of the following.

– each entry of RefPicList0 is a reference frame

For the derivation of the reference picture, the following applies:

– the reference frame RefPicList0[refIdxL0] is the output. The output reference frame consists of a
(PicWidthInSamplesL)x(PicHeightInSamplesL) array of luma samples refPicL0L and two
(PicWidthInSamplesC)x(PicHeightInSamplesC) arrays of chroma samples refPicL0Cb and refPicL0Cr.

The following applies:

– the reference picture sample arrays refPicL0L, refPicL0Cb, and refPicL0Cr correspond to decoded sample arrays SL, SCb,
SCr derived in subclause 8.7 for a previously-decoded reference frame.

8.4.2.2 Fractional sample interpolation process

Inputs to this process are:

– the current partition given by its partition index mbPartIdx and its sub-macroblock partition index subMbPartIdx,

– the width and height partWidth, partHeight of this partition in luma-sample units,

– a luma motion vector mvL0 given in quarter-luma-sample units,

– a chroma motion vector mvCL0 with a precision of one-(4*2)-th chroma-sample units horizontally and one-(4*2)-th
chroma-sample units vertically,

– the selected reference picture sample arrays refPicL0L, refPicL0Cb, and refPicL0Cr.

Outputs of this process are:

– a (partWidth)x(partHeight) array predPartL0Lof prediction luma sample values,

– two (partWidthC)x(partHeightC) arrays predPartL0Cb, and predPartL0Crof prediction chroma sample values.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 103

Let (xAL, yAL) be the location given in full-sample units of the upper-left luma sample of the current partition given by
mbPartIdx\subMbPartIdx relative to the upper-left luma sample location of the given two-dimensional array of luma samples.

Let (xIntL, yIntL) be a luma location given in full-sample units and (xFracL, yFracL) be an offset given in quarter-sample
units. These variables are used only inside this subclause for specifying general fractional-sample locations inside the
reference sample arrays refPicL0L, refPicL0Cb(if available), and refPicL0Cr(if available).

For each luma sample location (0 <= xL < partWidth, 0 <= yL < partHeight) inside the prediction luma sample array
predPartL0L, the corresponding prediction luma sample value predPartL0L[xL, yL] is derived as specified by the following
ordered steps:

1. The variables xIntL, yIntL, xFracL, and yFracL are derived by:

xIntL = xAL + (mvL0[0] >> 2) + xL (8-121)
yIntL = yAL + (mvL0[1] >> 2) + yL (8-122)

xFracL = mvL0[0]& 3 (8-123)
yFracL = mvL0[1]& 3 (8-124)

2. The prediction luma sample value predPartL0L[xL, yL] is derived by invoking the process specified in
subclause 8.4.2.2.1 with (xIntL, yIntL), (xFracL, yFracL) and refPicL0L given as input.

Let (xIntC, yIntC) be a chroma location given in full-sample units and (xFracC, yFracC) be an offset given in one-(4*2)-th
chroma-sample units horizontally and one-(4*2)-th chroma-sample units vertically. These variables are used only inside this
subclause for specifying general fractional-sample locations inside the reference sample arrays refPicL0Cb, and refPicL0Cr.

For each chroma sample location (0 <= xC < partWidthC, 0 <= yC < partHeightC) inside the prediction chroma sample arrays
predPartL0Cb and predPartL0Cr, the corresponding prediction chroma sample values predPartL0Cb[xC, yC] and
predPartL0Cr[xC, yC] are derived as specified by the following ordered steps:

1. the variables xIntC, yIntC, xFracC, and yFracC are derived as follows:

xIntC = (xAL / 2) + (mvCL0[0] >> 3) + xC (8-125)
yIntC = (yAL / 2) + (mvCL0[1] >> 3) + yC (8-126)

xFracC = mvCL0[0]& 7 (8-127)
yFracC = mvCL0[1]& 7 (8-128)

2. the following applies:

– The prediction sample value predPartL0Cb[xC, yC] is derived by invoking the process specified in
subclause 8.4.2.2.2 with (xIntC, yIntC), (xFracC, yFracC) and refPicL0Cb given as input.

– The prediction sample value predPartL0Cr[xC, yC] is derived by invoking the process specified in
subclause 8.4.2.2.2 with (xIntC, yIntC), (xFracC, yFracC) and refPicL0Cr given as input.

8.4.2.2.1 Luma sample interpolation process

Inputs to this process are:

– a luma location in full-sample units (xIntL, yIntL),

– a luma location offset in fractional-sample units (xFracL, yFracL),

– the luma sample array of the selected reference picture refPicL0L.

Output of this process is a predicted luma sample value predPartL0L[xL, yL].

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

104 © ISO/IEC 2015 – All rights reserved

bb

a cE F I JG

h

d

n

H

m

A

C

B

D

R

T

S

U

M s NK L P Q

fe g

ji k

qp r

aa

b

cc dd ee ff

hh

gg

Figure 8-3 – Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded
blocks with lower-case letters) for quarter sample luma interpolation

The variable refPicHeightEffectiveL, which is the height of the effective reference picture luma array, is derived as follows:
– refPicHeightEffectiveL is set equal to PicHeightInSamplesL.

In Figure 8-3, the positions labelled with upper-case letters within shaded blocks represent luma samples at full-sample
locations inside the given two-dimensional array refPicL0L of luma samples. These samples may be used for generating the
predicted luma sample value predPartL0L[xL, yL]. The locations (xZL, yZL) for each of the corresponding luma samples Z,
where Z may be A, B, C, D, E, F, G, H, I, J, K, L, M, N, P, Q, R, S, T, or U, inside the given array refPicL0L of luma samples
are derived as:

xZL = Clip3(0, PicWidthInSamplesL− 1, xIntL + xDZL) (8-129)
yZL = Clip3(0, refPicHeightEffectiveL− 1, yIntL + yDZL) (8-130)

Table 8-4 specifies (xDZL, yDZL) for different replacements of Z. STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 105

Table 8-4 – Differential full-sample luma locations

Z A B C D E F G H I J K L M N P Q R S T U

xDZL 0 1 0 1 −2 −1 0 1 2 3 −2 −1 0 1 2 3 0 1 0 1

yDZL −2 −2 −1 −1 0 0 0 0 0 0 1 1 1 1 1 1 2 2 3 3

Given the luma samples 'A' to 'U' at full-sample locations (xAL, yAL) to (xUL, yUL), the luma samples 'a' to 's' at fractional
sample positions are derived by the following rules. The luma prediction values at half sample positions are derived by
applying a 6-tap filter with tap values (1, −5, 20, 20, −5, 1). The luma prediction values at quarter sample positions are
derived by averaging samples at full and half sample positions. The process for each fractional position is described below.
– The samples at half sample positions labelled b are derived by first calculating intermediate values denoted as b1by

applying the 6-tap filter to the nearest integer position samples in the horizontal direction. The samples at half sample
positions labelled h are derived by first calculating intermediate values denoted as h1by applying the 6-tap filter to the
nearest integer position samples in the vertical direction:

b1 = (E − 5 * F + 20 * G + 20 * H − 5 * I + J) (8-131)
h1 = (A − 5 * C + 20 * G + 20 * M − 5 * R + T) (8-132)

The final prediction values b and h are derived using

b = Clip1Y((b1 + 16) >> 5) (8-133)
h = Clip1Y((h1 + 16) >> 5) (8-134)

– The samples at half sample position labelled as j are derived by first calculating intermediate value denoted as j1 by
applying the 6-tap filter to the intermediate values of the closest half sample positions in either the horizontal or vertical
direction because these yield an equal result:

j1 = cc − 5 * dd + 20 * h1 + 20 * m1− 5 * ee + ff, or (8-135)
j1 = aa − 5 * bb + 20 * b1 + 20 * s1− 5 * gg + hh (8-136)

where intermediate values denoted as aa, bb, gg, s1 and hh are derived by applying the 6-tap filter horizontally in the
same manner as the derivation of b1 and intermediate values denoted as cc, dd, ee, m1 and ff are derived by applying the
6-tap filter vertically in the same manner as the derivation of h1. The final prediction value j is derived using

j = Clip1Y((j1 + 512) >> 10) (8-137)
– The final prediction values s and m are derived from s1 and m1 in the same manner as the derivation of b and h, as given

by

s = Clip1Y((s1 + 16) >> 5) (8-138)
m = Clip1Y((m1 + 16) >> 5) (8-139)

– The samples at quarter sample positions labelled as a, c, d, n, f, i, k, and q are derived by averaging with upward
rounding of the two nearest samples at integer and half sample positions using

a = (G + b + 1) >> 1 (8-140)
c = (H + b + 1) >> 1 (8-141)
d = (G + h + 1) >> 1 (8-142)
n = (M + h + 1) >> 1 (8-143)
f = (b + j + 1) >> 1 (8-144)
i = (h + j + 1) >> 1 (8-145)
k = (j + m + 1) >> 1 (8-146)
q = (j + s + 1) >> 1 (8-147)

– The samples at quarter sample positions labelled as e, g, p, and r are derived by averaging with upward rounding of the
two nearest samples at half sample positions in the diagonal direction using

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

106 © ISO/IEC 2015 – All rights reserved

e = (b + h + 1) >> 1 (8-148)
g = (b + m + 1) >> 1 (8-149)
p = (h + s + 1) >> 1 (8-150)
r = (m + s + 1) >> 1. (8-151)

The luma location offset in fractional-sample units (xFracL, yFracL) specifies which of the generated luma samples at full-
sample and fractional-sample locations is assigned to the predicted luma sample value predPartL0L[xL, yL]. This assignment
is done according to Table 8-5. The value of predPartL0L[xL, yL] is the output.

Table 8-5 – Assignment of the luma prediction sample predPartL0L[xL, yL]

xFracL 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

yFracL 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

predPartL0L[xL, yL] G d h n a e i p b f j q c g k r

8.4.2.2.2 Chroma sample interpolation process

Inputs to this process are:

– a chroma location in full-sample units (xIntC, yIntC),

– a chroma location offset in fractional-sample units (xFracC, yFracC),

– chroma component samples from the selected reference picture refPicL0C.

Output of this process is a predicted chroma sample value predPartL0C[xC, yC].

In Figure 8-4, the positions labelled with A, B, C, and D represent chroma samples at full-sample locations inside the given
two-dimensional array refPicL0C of chroma samples.

A B

C D

xFracC

yFracC

8-xFracC

8-yFracC

Figure 8-4 – Fractional sample position dependent variables in chroma interpolation and surrounding integer position
samples A, B, C, and D

The variable refPicHeightEffectiveC,which is the height of the effective reference picture chroma array, is derived as follows:

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 107

– refPicHeightEffectiveC is set equal to PicHeightInSamplesC.

The sample coordinates specified in Equations 8-152 through 8-159 are used for generating the predicted chroma sample
value predPartL0C[xC, yC].

xAC = Clip3(0, PicWidthInSamplesC− 1, xIntC) (8-152)
xBC = Clip3(0, PicWidthInSamplesC− 1, xIntC + 1) (8-153)
xCC = Clip3(0, PicWidthInSamplesC− 1, xIntC) (8-154)
xDC = Clip3(0, PicWidthInSamplesC− 1, xIntC + 1) (8-155)

yAC = Clip3(0, refPicHeightEffectiveC− 1, yIntC) (8-156)
yBC = Clip3(0, refPicHeightEffectiveC− 1, yIntC) (8-157)
yCC = Clip3(0, refPicHeightEffectiveC− 1, yIntC + 1) (8-158)
yDC = Clip3(0, refPicHeightEffectiveC− 1, yIntC + 1) (8-159)

Given the chroma samples A, B, C, and D at full-sample locations specified in Equations 8-152 through 8-159, the predicted
chroma sample value predPartL0C[xC, yC] is derived as:

predPartL0C[xC, yC] = ((8 − xFracC) * (8 − yFracC) * A + xFracC * (8 − yFracC) * B +
 (8 − xFracC) * yFracC * C + xFracC * yFracC * D + 32) >> 6 (8-160)

8.5 Transform coefficient decoding process and picture construction process prior to
deblocking filter process

Inputs to this process are Intra16x16DCLevel (if available), Intra16x16ACLevel (if available), LumaLevel4x4 (if available),
LumaLevel8x8 (if available), ChromaDCLevel (if available), ChromaACLevel (if available), CbLevel4x4 (if available),
CrLevel4x4 (if available), CbLevel8x8 (if available), CrLevel8x8 (if available), and available Inter or Intra prediction sample
arrays for the current macroblock for the applicable components predL, predCb, or predCr.

NOTE – When decoding a macroblock in Intra_4x4 macroblock prediction mode, the luma component of the macroblock prediction
array may not be complete, since for each 4x4 luma block, the Intra_4x4 prediction process for luma samples as specified in
subclause 8.3.1 and the process specified in this subclause are iterated.

Outputs of this process are the constructed sample arrays prior to the deblocking filter process for the applicable components
S′L, S′Cb, or S′Cr.

NOTE – When decoding a macroblock in Intra_4x4 macroblock prediction mode, the luma component of the macroblock constructed
sample arrays prior to the deblocking filter process may not be complete, since for each 4x4 luma block, the Intra_4x4 prediction
process for luma samples as specified in subclause 8.3.1 and the process specified in this subclause are iterated.

This subclause specifies transform coefficient decoding and picture construction prior to the deblocking filter process.

When the current macroblock is coded as P_Skip, all values of LumaLevel4x4, LumaLevel8x8, CbLevel4x4, CbLevel8x8,
CrLevel4x4, CrLevel8x8, ChromaDCLevel, ChromaACLevel are set equal to 0 for the current macroblock.

8.5.1 Specification of transform decoding process for 4x4 luma residual blocks

When the current macroblock prediction mode is not equal to Intra_16x16, the variable LumaLevel4x4 contains the levels for
the luma transform coefficients. For a 4x4 luma block indexed by luma4x4BlkIdx = 0..15, the following ordered steps are
specified:

1. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in subclause 8.5.6 is invoked
with LumaLevel4x4[luma4x4BlkIdx] as the input and the two-dimensional array c as the output.

2. The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.12 is invoked with c as
the input and r as the output.

3. (void)

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

108 © ISO/IEC 2015 – All rights reserved

4. The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the macroblock is derived
by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx as the input and the
output being assigned to (xO, yO).

5. The 4x4 array u with elements uij for i, j = 0..3 is derived as:

uij = Clip1Y(predL[xO + j, yO + i] + rij) (8-161)

6. The picture construction process prior to deblocking filter process in subclause 8.5.14 is invoked with u and
luma4x4BlkIdx as the inputs.

8.5.2 Specification of transform decoding process for luma samples of Intra_16x16 macroblock
prediction mode

When the current macroblock prediction mode is equal to Intra_16x16, the variables Intra16x16DCLevel and
Intra16x16ACLevel contain the levels for the luma transform coefficients. The transform coefficient decoding proceeds in the
following ordered steps:

1. The 4x4 luma DC transform coefficients of all 4x4 luma blocks of the macroblock are decoded.

a. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in subclause 8.5.6 is
invoked with Intra16x16DCLevel as the input and the two-dimensional array c as the output.

b. The scaling and transformation process for luma DC transform coefficients for Intra_16x16 macroblock type as
specified in subclause 8.5.10 is invoked with BitDepthY, QP′Y, and c as the input and dcY as the output.

2. The 16x16 array rMb is derived by processing the 4x4 luma blocks indexed by luma4x4BlkIdx = 0..15, and for each
4x4 luma block, the following ordered steps are specified:

a. The variable lumaList, which is a list of 16 entries, is derived. The first entry of lumaList is the corresponding
value from the array dcY. Figure 8-5 shows the assignment of the indices of the array dcY to the luma4x4BlkIdx.
The two numbers in the small squares refer to indices i and j in dcYij, and the numbers in large squares refer to
luma4x4BlkIdx.

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

Figure 8-5 – Assignment of the indices of dcY to luma4x4BlkIdx

The elements in lumaList with index k = 1..15 are specified as:

lumaList[k] = Intra16x16ACLevel[luma4x4BlkIdx][k − 1] (8-162)

b. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in subclause 8.5.6 is
invoked with lumaList as the input and the two-dimensional array c as the output.

c. The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.12 is invoked with c
as the input and r as the output.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 109

d. The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx as the
input and the output being assigned to (xO, yO).

e. The elements rMb[x, y] of the 16x16 array rMb with x = xO..xO + 3 and y = yO..yO + 3are derived by

rMb[xO + j, yO + i] = rij (8-163)

3. (void)

4. The 16x16 array u with elements uij for i, j = 0..15 is derived as

uij = Clip1Y(predL[j, i] + rMb[j, i]) (8-164)

5. The picture construction process prior to deblocking filter process in subclause 8.5.14 is invoked with u as the input.

8.5.3 (void)

8.5.4 Specification of transform decoding process for chroma samples

This process is invoked for each chroma component Cb and Cr separately.

For each chroma component, the variables ChromaDCLevel[iCbCr] and ChromaACLevel[iCbCr], with iCbCr set equal to
0 for Cb and iCbCr set equal to 1 for Cr, contain the levels for both components of the chroma transform coefficients.

Let the variable numChroma4x4Blks be set equal to (MbWidthC / 4) * (MbHeightC / 4).

For each chroma component, the transform decoding proceeds separately in the following ordered steps:

1. The numChroma4x4Blks chroma DC transform coefficients of the 4x4 chroma blocks of the component indexed by
iCbCr of the macroblock are decoded as specified in the following ordered steps:

a. The 2x2 array c is derived using the inverse raster scanning process applied to ChromaDCLevel as follows:









=

]3][iCbCr[velChromaDCLe]2][iCbCr[velChromaDCLe
]1][iCbCr[velChromaDCLe]0][iCbCr[velChromaDCLe

c (8-165)

b. The scaling and transformation process for chroma DC transform coefficients as specified in subclause 8.5.11 is
invoked with c as the input and dcC as the output.

2. The (MbWidthC)x(MbHeightC) array rMb is derived by processing the 4x4 chroma blocks indexed by
chroma4x4BlkIdx = 0..numChroma4x4Blks − 1 of the component indexed by iCbCr, and for each 4x4 chroma block,
the following ordered steps are specified:

a. The variable chromaList, which is a list of 16 entries, is derived. The first entry of chromaList is the
corresponding value from the array dcC. Figure 8-6 shows the assignment of the indices of the array dcC to the
chroma4x4BlkIdx. The two numbers in the small squares refer to indices i and j in dcCij, and the numbers in
large squares refer to chroma4x4BlkIdx.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

110 © ISO/IEC 2015 – All rights reserved

0 1

2 3

00 01

10 11

Figure 8-6 – Assignment of the indices of dcC to chroma4x4BlkIdx:

The elements in chromaList with index k = 1..15 are specified as:

chromaList[k] = ChromaACLevel[chroma4x4BlkIdx][k − 1] (8-166)

b. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in subclause 8.5.6 is
invoked with chromaList as the input and the two-dimensional array c as the output.

c. The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.12 is invoked with
c as the input and r as the output.

d. The position of the upper-left sample of a 4x4 chroma block with index chroma4x4BlkIdx inside the current
macroblock is derived by invoking the inverse 4x4 chroma block scanning process as specified in
subclause 6.4.7 with chroma4x4BlkIdx as the input and the output being assigned to (xO, yO).

e. The elements rMb[x, y] of the (MbWidthC)x(MbHeightC) array rMb with x = xO..xO + 3 and y = yO..yO + 3
are derived by:

rMb[xO + j, yO + i] = rij (8-167)

3. (void)

4. The (MbWidthC)x(MbHeightC) array u with elements uij for i = 0..MbHeightC − 1 and j = 0..MbWidthC − 1 is
derived as:

uij = Clip1C(predC[j, i] + rMb[j, i]) (8-168)

5. The picture construction process prior to deblocking filter process in subclause 8.5.14 is invoked with u as the input.

8.5.5 (void)

8.5.6 Inverse scanning process for 4x4 transform coefficients and scaling lists

Input to this process is a list of 16 values.

Output of this process is a variable c containing a two-dimensional array of 4x4 values. In the case of transform coefficients,
these 4x4 values represent levels assigned to locations in the transform block. In the case of applying the inverse scanning
process to a scaling list, the output variable c contains a two-dimensional array representing a 4x4 scaling matrix.

When this subclause is invoked with a list of transform coefficient levels as the input, the sequence of transform coefficient
levels is mapped to the transform coefficient level positions. Table 8-6 specifies the mapping: inverse zig-zag scan. The
inverse zig-zag scan is used for transform coefficients in frame macroblocks.

When this subclause is invoked with a scaling list as the input, the sequence of scaling list entries is mapped to the positions
in the corresponding scaling matrix. For this mapping, the inverse zig-zag scan is used.

Figure 8-7 illustrates the scan.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 111

Figure 8-7 – 4x4 block scan: the zig-zag scan.

Table 8-6 provides the mapping from the index idx of input list of 16 elements to indices i and j of the two-dimensional array
c.

Table 8-6 – Specification of mapping of idx to cij for zig-zag

idx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

zig-zag c00 c01 c10 c20 c11 c02 c03 c12 c21 c30 c31 c22 c13 c23 c32 c33

8.5.7 (void)

8.5.8 Derivation process for chroma quantisation parameters

Outputs of this process are:
– QPC: the chroma quantisation parameter for each chroma component Cb and Cr,

NOTE – QP quantisation parameter values QPY and QSY are always in the range of −0 to 51, inclusive. QP quantisation parameter
values QPC and QSC are always in the range of −0 to 39, inclusive.

The value of QPC for a chroma component is determined from the current value of QPY and the value of
chroma_qp_index_offset.

NOTE – The scaling equations are specified such that the equivalent transform coefficient level scaling factor doubles for every
increment of 6 in QPY. Thus, there is an increase in the factor used for scaling of approximately 12 % for each increase of 1 in the value
of QPY.

The value of QPC for each chroma component is determined as specified in Table 8-7 based on the index denoted as qPI.

The variable qPOffset for each chroma component is derived as follows:
– If the chroma component is the Cb component, qPOffset is specified as:

qPOffset = chroma_qp_index_offset (8-169)
– Otherwise (the chroma component is the Cr component), qPOffset is specified as:

qPOffset = chroma_qp_index_offset (8-170)

The value of qPI for each chroma component is derived as:

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

112 © ISO/IEC 2015 – All rights reserved

qPI = Clip3(−0, 51, QPY + qPOffset) (8-171)

The value of QP′C for the chroma components is derived as:

QP′C = QPC + 0 (8-172)

Table 8-7 – Specification of QPC as a function of qPI

qPI <30 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

QPC = qPI 29 30 31 32 32 33 34 34 35 35 36 36 37 37 37 38 38 38 39 39 39 39

8.5.9 Derivation process for scaling functions

Outputs of this process are:
– LevelScale4x4: the scaling factor for 4x4 block transform luma or chroma coefficient levels,

LevelScale4x4(m, i, j) is specified by:

LevelScale4x4(m, i, j) = 16 * normAdjust4x4(m, i, j) (8-173)

where

()







=

otherwise;v
(1,1), toequal) 2 % j 2, % i (forv
(0,0), toequal) 2 % j 2, % i (forv

ji,m,4x4normAdjust

m2

m1

m0

 (8-174)

where the first and second subscripts of v are row and column indices, respectively, of the matrix specified as:



























=

232918
202516
182314
162013
141811
131610

v . (8-175)

8.5.10 Scaling and transformation process for DC transform coefficients for Intra_16x16 macroblock type

Inputs to this process are:

– the variables bitDepth and qP,

– transform coefficient level values for DC transform coefficients of Intra_16x16 macroblocks as a 4x4 array c with
elements cij, where i and j form a two-dimensional frequency index.

Outputs of this process are 16 scaled DC values for 4x4 blocks of Intra_16x16 macroblocks as a 4x4 array dcY with elements
dcYij.

The following applies:

– the following text of this process specifies the output.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 113

The inverse transform for the 4x4 luma DC transform coefficients is specified by:



















−−
−−

−−
∗



















∗



















−−
−−

−−
=

1111
1111
1111
1111

cccc
cccc
cccc
cccc

1111
1111
1111
1111

f

33323130

23222120

13121110

03020100

. (8-176)

The bitstream shall not contain data that result in any element fij of f with i, j = 0..3 that exceeds the range of integer values
from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

After the inverse transform, the scaling is performed as follows:

– If qP is greater than or equal to 36, the scaled result is derived as:

dcYij = (fij * LevelScale4x4(qP % 6, 0, 0)) << (qP / 6 − 6), with i, j = 0…3 (8-177)

– Otherwise (qP is less than 36), the scaled result is derived as:

dcYij = (fij * LevelScale4x4(qP % 6, 0, 0) + (1 << (5 − qP / 6))) >> (6 −qP / 6), with i, j = 0…3 (8-178)

The bitstream shall not contain data that result in any element dcYij of dcY with i, j = 0..3 that exceeds the range of integer
values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

NOTE – When entropy_coding_mode_flag is equal to 0 and qP is less than 10 and profile_idc is equal to 66, 77, or 88, the range of
values that can be represented for the elements cij of c is not sufficient to represent the full range of values of the elements dcYij of dcY
that could be necessary to form a close approximation of the content of any possible source picture by use of the Intra_16x16
macroblock type.
NOTE – Since the range limit imposed on the elements dcYij of dcY is imposed after the right shift in Equation 8-178, a larger range of
values must be supported in the decoder prior to the right shift.

8.5.11 Scaling and transformation process for chroma DC transform coefficients

Inputs to this process are transform coefficient level values for chroma DC transform coefficients of one chroma component
of the macroblock as an (MbWidthC / 4)x(MbHeightC / 4) array c with elements cij, where i and j form a two-dimensional
frequency index.

Outputs of this process are the scaled DC values as an (MbWidthC / 4)x(MbHeightC / 4) array dcC with elements dcCij.
The variables bitDepth and qP are set equal to BitDepthC and QP′C, respectively.

The following ordered steps are specified:

1. The transformation process for chroma DC transform coefficients as specified in subclause 8.5.11.1 is invoked with
bitDepth and c as the inputs and the output is assigned to the (MbWidthC / 4)x(MbHeightC / 4) array f of chroma
DC values with elements fij.

2. The scaling process for chroma DC transform coefficients as specified in subclause 8.5.11.2 is invoked with
bitDepth, qP, and f as the inputs and the output is assigned to the (MbWidthC / 4)x(MbHeightC / 4) array dcC of
scaled chroma DC values with elements dcCij.

8.5.11.1 Transformation process for chroma DC transform coefficients

Inputs of this process are transform coefficient level values for chroma DC transform coefficients of one chroma component
of the macroblock as an (MbWidthC / 4)x(MbHeightC / 4) array c with elements cij, where i and j form a two-dimensional
frequency index.

Outputs of this process are the DC values as an (MbWidthC / 4)x(MbHeightC / 4) array f with elements fij.
The inverse transform is specified as follows:

– the inverse transform for the 2x2 chroma DC transform coefficients is specified as:

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

114 © ISO/IEC 2015 – All rights reserved









−

∗







∗








−

=
11
11

cc
cc

11
11

f
1110

0100 (8-179)

8.5.11.2 Scaling process for chroma DC transform coefficients

Inputs of this process are:

– the variables bitDepth and qP,

– DC values as an (MbWidthC / 4)x(MbHeightC / 4) array f with elements fij.

Outputs of this process are scaled DC values as an (MbWidthC / 4)x(MbHeightC / 4) array dcC with elements dcCij.
The bitstream shall not contain data that result in any element fij of f with i, j = 0..3 that exceeds the range of integer values
from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.
Scaling is performed as follows:

– the scaled result is derived as:

1 0,ji,5,))6qP/ ()) 0 0, 6, % qP4x4(LevelScale *f ((dcC ijij =>><<= with (8-180)

The bitstream shall not contain data that result in any element dcCij of dcC with i, j = 0..3 that exceeds the range of integer
values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

NOTE – When qP is less than 4 and profile_idc is equal to 66, 77, or 88, the range of values that can be represented for the elements cij
of c in subclause 8.5.11.1 may not be sufficient to represent the full range of values of the elements dcCij of dcC that could be necessary
to form a close approximation of the content of any possible source picture.
NOTE – Since the range limit imposed on the elements dcCij of dcC is imposed after the right shift in Equation 8-180, a larger range of
values must be supported in the decoder prior to the right shift.

8.5.12 Scaling and transformation process for residual 4x4 blocks

Input to this process is a 4x4 array c with elements cij which is either an array relating to a residual block of the luma
component or an array relating to a residual block of a chroma component.

Outputs of this process are residual sample values as 4x4 array r with elements rij.

The variable bitDepth is derived as follows:

– If the input array c relates to a luma residual block, bitDepth is set equal to BitDepthY.

– Otherwise (the input array c relates to a chroma residual block), bitDepth is set equal to BitDepthC.

The variable sMbFlag is derived as follows:

– sMbFlag is set equal to 0.

The variable qP is derived as follows:

– If the input array c relates to a luma residual block and sMbFlag is equal to 0,

qP = QP′Y (8-181)

– Otherwise, if the input array c relates to a luma residual block and sMbFlag is equal to 1,

qP = QSY (8-182)

– Otherwise, if the input array c relates to a chroma residual block and sMbFlag is equal to 0,

qP = QP′C (8-183)

– Otherwise (the input array c relates to a chroma residual block and sMbFlag is equal to 1),

qP = QSC (8-184)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 115

The following applies:

– the following ordered steps are specified:

1. The scaling process for residual 4x4 blocks as specified in subclause 8.5.12.1 is invoked with bitDepth, qP, and c as
the inputs and the output is assigned to the 4x4 array d of scaled transform coefficients with elements dij.

2. The transformation process for residual 4x4 blocks as specified in subclause 8.5.12.2 is invoked with bitDepth and
d as the inputs and the output is assigned to the 4x4 array r of residual sample values with elements rij.

8.5.12.1 Scaling process for residual 4x4 blocks

Inputs of this process are:

– the variables bitDepth and qP,

– a 4x4 array c with elements cij which is either an array relating to a residual block of luma component or an array
relating to a residual block of a chroma component.

Output of this process is a 4x4 array of scaled transform coefficients d with elements dij.
The bitstream shall not contain data that result in any element cij of c with i, j = 0..3 that exceeds the range of integer values
from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

Scaling of 4x4 block transform coefficient levels cij proceeds as follows:

– If all of the following conditions are true:

– i is equal to 0,

– j is equal to 0,

– c relates to a luma residual block coded using Intra_16x16 macroblock prediction mode or c relates to a chroma
residualblock.

the variable d00 is derived by

d00 = c00 (8-185)

– Otherwise, the following applies:

– If qP is greater than or equal to 24, the scaled result is derived as

dij = (cij * LevelScale4x4(qP%6,i,j))<<(qP / 6 −4), with i,j = 0..3 except as noted above (8-186)

– Otherwise (qP is less than 24), the scaled result is derived as

above noted asexcept 0..3ji, with), 6 / qP4 ()2) j i, 6, % qP 4x4(LevelScale *c (d qP/63
ijij =−>>+= − (8-187)

The bitstream shall not contain data that result in any element dij of d with i, j = 0..3 that exceeds the range of integer values
from −2(7 + bitDepth) to 2(7 + bitDepth)− 1, inclusive.

8.5.12.2 Transformation process for residual 4x4 blocks

Inputs of this process are:

– the variable bitDepth,

– a 4x4 array of scaled transform coefficients d with elements dij.

Outputs of this process are residual sample values as 4x4 array r with elements rij.

The bitstream shall not contain data that result in any element dij of d with i, j = 0..3 that exceeds the range of integer values
from −2(7 + bitDepth) to 2(7 + bitDepth)− 1, inclusive.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

116 © ISO/IEC 2015 – All rights reserved

The transform process shall convert the block of scaled transform coefficients to a block of output samples in a manner
mathematically equivalent to the following.
First, each (horizontal) row of scaled transform coefficients is transformed using a one-dimensional inverse transform as
follows.
A set of intermediate values is computed as follows:

ei0 = di0 + di2, with i = 0..3 (8-188)

ei1 = di0− di2, with i = 0..3 (8-189)

ei2 = (di1>> 1) − di3, with i = 0..3 (8-190)

ei3 = di1 + (di3>> 1), with i = 0..3 (8-191)

The bitstream shall not contain data that result in any element eij of e with i, j = 0..3 that exceeds the range of integer values
from −2(7 + bitDepth) to 2(7 + bitDepth)− 1, inclusive.

Then, the transformed result is computed from these intermediate values as follows:

fi0 = ei0 + ei3, with i = 0..3 (8-192)

fi1 = ei1 + ei2, with i = 0..3 (8-193)

fi2 = ei1− ei2, with i = 0..3 (8-194)

fi3 = ei0− ei3, with i = 0..3 (8-195)

The bitstream shall not contain data that result in any element fij of f with i, j = 0..3 that exceeds the range of integer values
from −2(7 + bitDepth) to 2(7 + bitDepth)− 1, inclusive.
Then, each (vertical) column of the resulting matrix is transformed using the same one-dimensional inverse transform as
follows.
A set of intermediate values is computed as follows:

g0j = f0j + f2j, with j = 0..3 (8-196)

g1j = f0j− f2j, with j = 0..3 (8-197)

g2j = (f1j>> 1) − f3j, with j = 0..3 (8-198)

g3j = f1j + (f3j>> 1), with j = 0..3 (8-199)

The bitstream shall not contain data that result in any element gij of g with i, j = 0..3 that exceeds the range of integer values
from −2(7 + bitDepth) to 2(7 + bitDepth)− 1, inclusive.

Then, the transformed result is computed from these intermediate values as follows:

h0j = g0j + g3j, with j = 0..3 (8-200)

h1j = g1j + g2j, with j = 0..3 (8-201)

h2j = g1j− g2j, with j = 0..3 (8-202)

h3j = g0j− g3j, with j = 0..3 (8-203)

The bitstream shall not contain data that result in any element hij of h with i, j = 0..3 that exceeds the range of integer values
from −2(7 + bitDepth) to 2(7 + bitDepth)− 33, inclusive.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 117

After performing both the one-dimensional horizontal and the one-dimensional vertical inverse transforms to produce an
array of transformed samples, the final constructed residual sample values is derived as:

6) 2 h (r 5
ijij >>+= with i, j = 0..3 (8-204)

8.5.13 (void)

8.5.14 Picture construction process prior to deblocking filter process

Inputs to this process are:
– a sample array u with elements uij which is a 16x16 luma block or an (MbWidthC)x(MbHeightC) chroma block or a 4x4

luma block or a 4x4 chroma block,
– when u is not a 16x16 luma block or an (MbWidthC)x(MbHeightC) chroma block, a block index luma4x4BlkIdx or

chroma4x4BlkIdx.

The position of the upper-left luma sample of the current macroblock is derived by invoking the inverse macroblock scanning
process in subclause 6.4.1 with CurrMbAddr as input and the output being assigned to (xP, yP).

When u is a luma block, for each sample uij of the luma block, the following ordered steps are specified:

1. Depending on the size of the block u, the following applies:

– If u is a 16x16 luma block, the position (xO, yO) of the upper-left sample of the 16x16 luma block inside the
macroblock is set equal to (0, 0) and the variable nE is set equal to 16.

– Otherwise, if u is an 4x4 luma block, the position of the upper-left sample of the 4x4 luma block with index
luma4x4BlkIdx inside the macroblock is derived by invoking the inverse 4x4 luma block scanning process in
subclause 6.4.3 with luma4x4BlkIdx as the input and the output being assigned to (xO, yO), and the variable
nE is set equal to 4.

2. The following applies:

S′L[xP + xO + j, yP + yO + i] = uij with i, j = 0..nE − 1 (8-205)

When u is a chroma block, for each sample uij of the chroma block, the following ordered steps are specified:

1. The subscript C in the variable S′C is replaced with Cb for the Cb chroma component and with Cr for the Cr chroma
component.

2. Depending on the size of the block u, the following applies:

– If u is an (MbWidthC)x(MbHeightC) Cb or Cr block, the variable nW is set equal to MbWidthC, the variable
nH is set equal to MbHeightC, and the position (xO, yO) of the upper-left sample of the (nW)x(nH) Cb or Cr
block inside the macroblock is set equal to (0, 0).

– Otherwise, if u is a 4x4 Cb or Cr block, the variables nW and nH are set equal to 4, and the position of the
upper-left sample of a 4x4 Cb or Cr block with index chroma4x4BlkIdx inside the macroblock is derived as
follows:

– the position of the upper-left sample of the 4x4 chroma block with index chroma4x4BlkIdx inside the
macroblock is derived by invoking the inverse 4x4 chroma block scanning process in subclause 6.4.7 with
chroma4x4BlkIdx as the input and the output being assigned to (xO, yO).

3. the following applies:

S′C[(xP/ 2) + xO + j, (yP / 2) + yO + i] = uij
with i = 0..nH − 1 and j = 0..nW − 1 (8-206)

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

118 © ISO/IEC 2015 – All rights reserved

8.6 (void)

8.7 Deblocking filter process

A conditional filtering process is specified in this subclause that is an integral part of the decoding process which shall be
applied by decoders.

The conditional filtering process is applied to all 4x4 block edges of a picture, except edges at the boundary of the picture and
any edges for which the deblocking filter process is disabled by disable_deblocking_filter_idc, as specified below. This
filtering process is performed on a macroblock basis after the completion of the picture construction process prior to
deblocking filter process (as specified in subclauses 8.5) for the entire decoded picture, with all macroblocks in a picture
processed in order of increasing macroblock addresses.

NOTE – Prior to the operation of the deblocking filter process for each macroblock, the deblocked samples of the macroblock above (if
any) and the macroblock to the left (if any) of the current macroblock are always available because the deblocking filter process is
performed after the completion of the picture construction process prior to deblocking filter process for the entire decoded picture.
However, for purposes of determining which edges are to be filtered when disable_deblocking_filter_idc is equal to 2, macroblocks in
different slices are considered not available during specified steps of the operation of the deblocking filter process.

The deblocking filter process is invoked for the luma and chroma components separately. For each macroblock and each
component, vertical edges are filtered first, starting with the edge on the left-hand side of the macroblock proceeding through
the edges towards the right-hand side of the macroblock in their geometrical order, and then horizontal edges are filtered,
starting with the edge on the top of the macroblock proceeding through the edges towards the bottom of the macroblock in
their geometrical order. Figure 8-8 shows edges of a macroblock which can be interpreted as luma or chroma edges.

When interpreting the edges in Figure 8-8 as luma edges, the following applies:
– both types, the solid bold and dashed bold luma edges are filtered.

When interpreting the edges in Figure 8-8 as chroma edges, the following applies:
– only the solid bold chroma edges are filtered.

Vertical Edges

H
or

iz
on

ta
l E

dg
es

Figure 8-8 – Boundaries in a macroblock to be filtered

For the current macroblock address CurrMbAddr proceeding over values 0..PicSizeInMbs − 1, the following ordered steps
are specified:

1. The derivation process for neighbouring macroblocks specified in subclause 6.4.11.1 is invoked and the output is
assigned to mbAddrA and mbAddrB.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 119

2. The variables filterInternalEdgesFlag, filterLeftMbEdgeFlag and filterTopMbEdgeFlag are derived as specified by the
following ordered steps:

a. The variable filterInternalEdgesFlag is derived as follows:

– If disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is equal to 1, the
variable filterInternalEdgesFlag is set equal to 0.

– Otherwise (disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is not
equal to 1), the variable filterInternalEdgesFlag is set equal to 1.

b. The variable filterLeftMbEdgeFlag is derived as follows:

– If any of the following conditions are true, the variable filterLeftMbEdgeFlag is set equal to 0:

– CurrMbAddr % PicWidthInMbs is equal to 0,

– disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is equal to 1,

– disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is equal to 2
and the macroblock mbAddrA is not available.

– Otherwise, the variable filterLeftMbEdgeFlag is set equal to 1.

c. The variable filterTopMbEdgeFlag is derived as follows:

– If any of the following conditions are true, the variable filterTopMbEdgeFlag is set equal to 0:

– CurrMbAddr is less than PicWidthInMbs,

– disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is equal to 1,

– disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is equal to 2
and the macroblock mbAddrB is not available.

– Otherwise, the variable filterTopMbEdgeFlag is set equal to 1.

3. Given the variables filterInternalEdgesFlag, filterLeftMbEdgeFlag and filterTopMbEdgeFlag the deblocking filtering
is controlled as follows:

a. When filterLeftMbEdgeFlag is equal to 1, the left vertical luma edge is filtered by invoking the process
specified in subclause 8.7.1 with chromaEdgeFlag = 0, verticalEdgeFlag = 1, and (xEk, yEk) = (0, k) with
k = 0..15 as the inputs and S′L as the output.

b. When filterInternalEdgesFlag is equal to 1, the filtering of the internal vertical luma edges is specified by the
following ordered steps:

i. the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 1, and
(xEk, yEk) = (4, k) with k = 0..15 as the inputs and S′L as the output.

ii. The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 1, and
(xEk, yEk) = (8, k) with k = 0..15 as the inputs and S′L as the output.

iii. the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 1, and
(xEk, yEk) = (12, k) with k = 0..15 as the inputs and S′L as the output.

c. When filterTopMbEdgeFlag is equal to 1, the filtering of the top horizontal luma edge is specified as follows:

– Otherwise, the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0,
verticalEdgeFlag = 0, and (xEk, yEk) = (k, 0) with k = 0..15 as the inputs and S′L as the output.

d. When filterInternalEdgesFlag is equal to 1, the filtering of the internal horizontal luma edges is specified by the
following ordered steps:

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

120 © ISO/IEC 2015 – All rights reserved

i. the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 0, and
(xEk, yEk) = (k, 4) with k = 0..15 as the inputs and S′L as the output.

ii. The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 0, and
(xEk, yEk) = (k, 8) with k = 0..15 as the inputs and S′L as the output.

iii. the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 0, and
(xEk, yEk) = (k, 12) with k = 0..15 as the inputs and S′L as the output.

e. When filtering of both chroma components, with iCbCr = 0 for Cb and iCbCr = 1 for Cr, the following ordered
steps are specified:

i. When filterLeftMbEdgeFlag is equal to 1, the left vertical chroma edge is filtered by invoking the process
specified in subclause 8.7.1 with chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 1, and
(xEk, yEk) = (0, k) with k = 0..MbHeightC − 1 as the inputs and S′C with C being replaced by Cb for
iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as the output.

ii. When filterInternalEdgesFlag is equal to 1, the filtering of the internal vertical chroma edge is specified
by the following ordered steps:

(1) the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCr,
verticalEdgeFlag = 1, and (xEk, yEk) = (4, k) with k = 0..MbHeightC − 1 as the inputs and S′C with C
being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as the output.

iii. When filterTopMbEdgeFlag is equal to 1, the filtering of the top horizontal chroma edge is specified as
follows:

– the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCr,
verticalEdgeFlag = 0, and (xEk, yEk) = (k, 0) with k = 0..MbWidthC − 1 as the inputs and S′C with C
being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as the output.

iv. When filterInternalEdgesFlag is equal to 1, the filtering of the internal horizontal chroma edge is specified
by the following ordered steps:

(1) the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCr,
verticalEdgeFlag = 0, and (xEk, yEk) = (k, 4) with k = 0..MbWidthC − 1 as the inputs and S′C with C
being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as the output.

NOTE – For example, in 4:2:0 chroma format, the following applies: 3 horizontal luma edges, 1 horizontal chroma
edge for Cb, and 1 horizontal chroma edge for Cr are filtered that are internal to a macroblock.

The arrays S′L, S′Cb, S′Cr are assigned to the arrays SL, SCb, SCr (which represent the decoded picture), respectively.

8.7.1 Filtering process for block edges

Inputs to this process are chromaEdgeFlag, the chroma component index iCbCr (when chromaEdgeFlag is equal to 1),
verticalEdgeFlag, and a set of nE sample locations (xEk, yEk), with k = 0..nE − 1, expressed relative to the upper left corner
of the macroblock CurrMbAddr. The set of sample locations (xEk, yEk) represent the sample locations immediately to the
right of a vertical edge (when verticalEdgeFlag is equal to 1) or immediately below a horizontal edge (when verticalEdgeFlag
is equal to 0).

The variable nE is derived as follows:
– If chromaEdgeFlag is equal to 0, nE is set equal to 16.
– Otherwise (chromaEdgeFlag is equal to 1), nE is set equal to 8.

Let s′ be a variable specifying a luma or chroma sample array. s′ is derived as follows:
– If chromaEdgeFlag is equal to 0, s′ represents the luma sample array S′L of the current picture.
– Otherwise, if chromaEdgeFlag is equal to 1 and iCbCr is equal to 0, s′ represents the chroma sample array S′Cb of the

chroma component Cb of the current picture.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 121

– Otherwise (chromaEdgeFlag is equal to 1 and iCbCr is equal to 1), s′ represents the chroma sample array S′Cr of the
chroma component Cr of the current picture.

The position of the upper-left luma sample of the macroblock CurrMbAddr is derived by invoking the inverse macroblock
scanning process in subclause 6.4.1 with mbAddr = CurrMbAddr as input and the output being assigned to (xI, yI).

The variables xP and yP are derived as follows:
– If chromaEdgeFlag is equal to 0, xP is set equal to xI and yP is set equal to yI.
– Otherwise (chromaEdgeFlag is equal to 1), xP is set equal to xI / 2 and yP is set equal to (yI + 2− 1) / 2.

p3 p2 p1 p0 q0 q1 q2 q3

Figure 8-9 – Convention for describing samples across a 4x4 block horizontal or vertical boundary

For each sample location (xEk, yEk), k = 0..(nE − 1), the following ordered steps are specified:

1. The filtering process is applied to a set of eight samples across a 4x4 block horizontal or vertical edge denoted as pi
and qi with i = 0..3 as shown in Figure 8-9 with the edge lying between p0 and q0. pi and qi with i = 0..3 are specified
as follows:

– If verticalEdgeFlag is equal to 1,

qi = s′[xP + xEk + i, yP + yEk] (8-207)

pi = s′[xP + xEk− i − 1, yP + yEk] (8-208)

– Otherwise (verticalEdgeFlag is equal to 0),

qi = s′[xP + xEk, yP + yEk + i] (8-209)

pi = s′[xP + xEk, yP + yEk− i − 1] (8-210)

2. The process specified in subclause 8.7.2 is invoked with the sample values pi and qi (i = 0..3), chromaEdgeFlag, and
verticalEdgeFlag as the inputs, and the output is assigned to the filtered result sample values p′i and q′i with i = 0..2.

3. The input sample values pi and qi with i = 0..2 are replaced by the corresponding filtered result sample values p′i and
q′i with i = 0..2 inside the sample array s′ as follows:

– If verticalEdgeFlag is equal to 1,

s′[xP + xEk + i, yP + yEk] = q′i (8-211)

s′[xP + xEk− i − 1, yP + yEk] = p′i (8-212)

– Otherwise (verticalEdgeFlag is equal to 0),

s′[xP + xEk, yP + yEk + i] = q′i (8-213)

s′[xP + xEk, yP + yEk− i − 1] = p′i (8-214)

8.7.2 Filtering process for a set of samples across a horizontal or vertical block edge

Inputs to this process are the input sample values pi and qi with i in the range of 0..3 of a single set of samples across an edge
that is to be filtered, chromaEdgeFlag, and verticalEdgeFlag.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

122 © ISO/IEC 2015 – All rights reserved

Outputs of this process are the filtered result sample values p′i and q′i with i in the range of 0..2.

The content dependent boundary filtering strength variable bS is derived as follows:

– If chromaEdgeFlag is equal to 0, the derivation process for the content dependent boundary filtering strength specified in
subclause 8.7.2.1 is invoked with p0, q0, and verticalEdgeFlag as input, and the output is assigned to bS.

– Otherwise (chromaEdgeFlag is equal to 1), the bS used for filtering a set of samples of a horizontal or vertical chroma
edge is set equal to the value of bS for filtering the set of samples of a horizontal or vertical luma edge, respectively, that
contains the luma sample at location (2 * x, 2* y) inside the luma array of the frame, where (x, y) is the location of the
chroma sample q0 inside the chroma array for that frame.

Let filterOffsetA and filterOffsetB be the values of FilterOffsetA and FilterOffsetB as specified in subclause 7.4.3 for the
slice that contains the macroblock containing sample q0.

Let qPp and qPq be variables specifying quantisation parameter values for the macroblocks containing the samples p0 and q0,
respectively. The variables qPz (with z being replaced by p or q) are derived as follows:

– If chromaEdgeFlag is equal to 0, the following applies:

– If the macroblock containing the sample z0 is an I_PCM macroblock, qPz is set to 0.

– Otherwise (the macroblock containing the sample z0 is not an I_PCM macroblock), qPz is set to the value of QPY of
the macroblock containing the sample z0.

– Otherwise (chromaEdgeFlag is equal to 1), the following applies:

– If the macroblock containing the sample z0 is an I_PCM macroblock, qPz is set equal to the value of QPC that
corresponds to a value of 0 for QPY as specified in subclause 8.5.8.

– Otherwise (the macroblock containing the sample z0 is not an I_PCM macroblock), qPz is set equal to the value of
QPC that corresponds to the value QPY of the macroblock containing the sample z0 as specified in subclause 8.5.8.

The process specified in subclause 8.7.2.2 is invoked with p0, q0, p1, q1, chromaEdgeFlag, bS, filterOffsetA, filterOffsetB,
qPp, and qPq as inputs, and the outputs are assigned to filterSamplesFlag, indexA, α, and β.

Depending on the variable filterSamplesFlag, the following applies:

– If filterSamplesFlag is equal to 1, the following applies:

– If bS is less than 4, the process specified in subclause 8.7.2.3 is invoked with pi and qi (i = 0..2), chromaEdgeFlag,
bS, β, and indexA given as input, and the output is assigned to p′i and q′i (i = 0..2).

– Otherwise (bS is equal to 4), the process specified in subclause 8.7.2.4 is invoked with pi and qi (i = 0..3),
chromaEdgeFlag, α, and β given as input, and the output is assigned to p′i and q′i (i = 0..2).

– Otherwise (filterSamplesFlag is equal to 0), the filtered result samples p′i and q′i (i = 0..2) are replaced by the
corresponding input samples pi and qi:

for i = 0..2, p′i = pi (8-215)

for i = 0..2, q′i = qi (8-216)

8.7.2.1 Derivation process for the luma content dependent boundary filtering strength

Inputs to this process are the input sample values p0 and q0 of a single set of samples across an edge that is to be filtered and
verticalEdgeFlag.

Output of this process is the variable bS.

The variable bS is derived as follows:

– If the block edge is also a macroblock edge and the following condition is true, a value of bS equal to 4 is the output:

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 123

– either or both of the samples p0 or q0 is in a macroblock coded using an Intra macroblock prediction mode,

Otherwise, if the following condition is true, a value of bS equal to 3 is the output:

– either or both of the samples p0 or q0 is in a macroblock coded using an Intra macroblock prediction mode,

– Otherwise, if any of the following conditions are true, a value of bS equal to 2 is the output:

– the 4x4 luma transform block associated with the 4x4 luma block containing the sample p0 contains non-zero
transform coefficient levels,

– the 4x4 luma transform block associated with the 4x4 luma block containing the sample q0 contains non-zero
transform coefficient levels.

– Otherwise, if any of the following conditions are true, a value of bS equal to 1 is the output:

– for the prediction of the macroblock/sub-macroblock partition containing the sample p0 different reference pictures
are used than for the prediction of the macroblock/sub-macroblock partition containing the sample q0,

NOTE – The determination of whether the reference pictures used for the two macroblock/sub-macroblock partitions are
the same or different is based only on which pictures are referenced, without regard to whether the index position within a
reference picture list is different.

– one motion vector is used to predict the macroblock/sub-macroblock partition containing the sample p0 and one
motion vector is used to predict the macroblock/sub-macroblock partition containing the sample q0 and the absolute
difference between the horizontal or vertical components of the motion vectors used is greater than or equal to 4 in
units of quarter luma frame samples,

– Otherwise, a value of bS equal to 0 is the output.

8.7.2.2 Derivation process for the thresholds for each block edge

Inputs to this process are:

– the input sample values p0, q0, p1 and q1 of a single set of samples across an edge that is to be filtered,

– the variables chromaEdgeFlag and bS, for the set of input samples, as specified in subclause 8.7.2,

– the variables filterOffsetA, filterOffsetB, qPp, and qPq.

Outputs of this process are the variable filterSamplesFlag, which indicates whether the input samples are filtered, the value of
indexA, and the values of the threshold variables α and β.

Let qPav be a variable specifying an average quantisation parameter. It is derived as:

qPav = (qPp + qPq + 1) >> 1 (8-217)

Let indexA be a variable that is used to access the α table (Table 8-8) as well as the tC0 table (Table 8-9), which is used in
filtering of edges with bS less than 4 as specified in subclause 8.7.2.3, and let indexB be a variable that is used to access the β
table (Table 8-8). The variables indexA and indexB are derived as:

indexA = Clip3(0, 51, qPav + filterOffsetA) (8-218)

indexB = Clip3(0, 51, qPav + filterOffsetB) (8-219)

The variables α′ and β′ depending on the values of indexA and indexB are specified in Table 8-8. Depending on
chromaEdgeFlag, the corresponding threshold variables α and β are derived as follows:

– If chromaEdgeFlag is equal to 0,

α = α′ * (1 << (BitDepthY− 8)) (8-220)

β = β′ * (1 << (BitDepthY− 8)) (8-221)

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

124 © ISO/IEC 2015 – All rights reserved

– Otherwise (chromaEdgeFlag is equal to 1),

α = α′ * (1 << (BitDepthC− 8)) (8-222)

β = β′ * (1 << (BitDepthC− 8)) (8-223)

The variable filterSamplesFlag is derived by:

filterSamplesFlag = (bS != 0 && Abs(p0− q0) <α&& Abs(p1− p0) <β&& Abs(q1− q0) <β) (8-224)

Table 8-8 – Derivation of offset dependent threshold variables α′ and β′ from indexA and indexB

indexA (for α′) or indexB (for β′)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

α′ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 5 6 7 8 9 10 12 13

β′ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 3 3 3 3 4 4 4

Table 8-8 (concluded) – Derivation of indexA and indexB from offset dependent threshold variables α′ and β′

indexA (for α′) or indexB (for β′)

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

α′ 15 17 20 22 25 28 32 36 40 45 50 56 63 71 80 90 101 113 127 144 162 182 203 226 255 255

β′ 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18

8.7.2.3 Filtering process for edges with bS less than 4

Inputs to this process are the input sample values pi and qi (i = 0..2) of a single set of samples across an edge that is to be
filtered, chromaEdgeFlag, bS, β, and indexA, for the set of input samples, as specified in subclause 8.7.2.

Outputs of this process are the filtered result sample values p′i and q′i (i = 0..2) for the set of input sample values.

Depending on the values of indexA and bS, the variable tC0 is specified in Table 8-9.

Table 8-9 – Value of variable tC0 as a function of indexA and bS

indexA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

bS = 1 0 1 1 1

bS = 2 0 1 1 1 1 1

bS = 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 125

Table 8-9 (concluded) – Value of variable tC0 as a function of indexA and bS

indexA

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

bS = 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 4 4 4 5 6 6 7 8 9 10 11 13

bS = 2 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5 5 6 7 8 8 10 11 12 13 15 17

bS = 3 1 2 2 2 2 3 3 3 4 4 4 5 6 6 7 8 9 10 11 13 14 16 18 20 23 25

The threshold variables ap and aq are derived by:

ap = Abs(p2− p0) (8-225)
aq = Abs(q2− q0) (8-226)

The threshold variable tC is determined as follows:

– If chromaEdgeFlag is equal to 0,

tC = tC0 + ((ap<β) ? 1 : 0) + ((aq<β) ? 1 : 0) (8-227)

– Otherwise (chromaEdgeFlag is equal to 1),

tC = tC0 + 1 (8-228)

Let Clip1() be a function that is replaced by Clip1Y() when chromaEdgeFlag is equal to 0 and by Clip1C() when
chromaEdgeFlag is equal to 1.

The filtered result samples p′0 and q′0 are derived by:

∆= Clip3(−tC, tC, ((((q0− p0) << 2) + (p1− q1) + 4) >> 3)) (8-229)
p′0 = Clip1(p0 + ∆) (8-230)
q′0 = Clip1(q0−∆) (8-231)

The filtered result sample p′1 is derived as follows:

– If chromaEdgeFlag is equal to 0 and ap is less than β,

p′1 = p1 + Clip3(−tC0, tC0, (p2 + ((p0 + q0 + 1) >> 1) − (p1<< 1)) >> 1) (8-232)

– Otherwise (chromaEdgeFlag is equal to 1 or ap is greater than or equal to β),

p′1 = p1 (8-233)

The filtered result sample q′1 is derived as follows:

– If chromaEdgeFlag is equal to 0 and aq is less than β,

q′1 = q1 + Clip3(−tC0, tC0, (q2 + ((p0 + q0 + 1) >> 1) − (q1<< 1)) >> 1) (8-234)

– Otherwise (chromaEdgeFlag is equal to 1 or aq is greater than or equal to β),

q′1 = q1 (8-235)

The filtered result samples p′2 and q′2 are always set equal to the input samples p2 and q2:

p′2 = p2 (8-236)
q′2 = q2 (8-237)

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

126 © ISO/IEC 2015 – All rights reserved

8.7.2.4 Filtering process for edges for bS equal to 4

Inputs to this process are the input sample values pi and qi (i = 0..3) of a single set of samples across an edge that is to be
filtered, chromaEdgeFlag, and the values of the threshold variables α and β for the set of samples, as specified in
subclause 8.7.2.

Outputs of this process are the filtered result sample values p′i and q′i (i = 0..2) for the set of input sample values.

Let ap and aq be two threshold variables as specified in Equations 8-225 and 8-226, respectively, in subclause 8.7.2.3.

The filtered result samples p′i (i = 0..2) are derived as follows:

– If chromaEdgeFlag is equal to 0 and the following condition holds,

ap<β&& Abs(p0− q0) < ((α>> 2) + 2) (8-238)

then the variables p′0, p′1, and p′2 are derived by:

p′0 = (p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4) >> 3 (8-239)

p′1 = (p2 + p1 + p0 + q0 + 2) >> 2 (8-240)

p′2 = (2*p3 + 3*p2 + p1 + p0 + q0 + 4) >> 3 (8-241)

– Otherwise (chromaEdgeFlag is equal to 1 or the condition in Equation 8-238 does not hold), the variables p′0, p′1, and p′2
are derived by:

p′0 = (2*p1 + p0 + q1 + 2) >> 2 (8-242)

p′1 = p1 (8-243)

p′2 = p2 (8-244)

The filtered result samples q′i (i = 0..2) are derived as follows:

– If chromaEdgeFlag is equal to 0 and the following condition holds,

aq<β&& Abs(p0− q0) < ((α>> 2) + 2) (8-245)

then the variables q′0, q′1, and q′2 are derived by

q′0 = (p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4) >> 3 (8-246)

q′1 = (p0 + q0 + q1 + q2 + 2) >> 2 (8-247)

q′2 = (2*q3 + 3*q2 + q1 + q0 + p0 + 4) >> 3 (8-248)

– Otherwise (chromaEdgeFlag is equal to 1 or the condition in Equation 8-245 does not hold), the variables q′0, q′1, and q′2
are derived by:

q′0 = (2*q1 + q0 + p1 + 2) >> 2 (8-249)

q′1 = q1 (8-250)

q′2 = q2 (8-251)

9 Parsing process

Inputs to this process are bits from the RBSP.

Outputs of this process are syntax element values.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 127

This process is invoked when the descriptor of a syntax element in the syntax tables in subclause 7.3 is equal to ue(v), me(v),
se(v), te(v) (see subclause 9.1), ce(v) (see subclause 9.2)

9.1 Parsing process for Exp-Golomb codes

This process is invoked when the descriptor of a syntax element in the syntax tables in subclause 7.3 is equal to ue(v), me(v),
se(v), or te(v). For syntax elements in subclauses 7.3.4 and 7.3.5.

Inputs to this process are bits from the RBSP.

Outputs of this process are syntax element values.

Syntax elements coded as ue(v), me(v), or se(v) are Exp-Golomb-coded. Syntax elements coded as te(v) are truncated Exp-
Golomb-coded. The parsing process for these syntax elements begins with reading the bits starting at the current location in
the bitstream up to and including the first non-zero bit, and counting the number of leading bits that are equal to 0. This
process is specified as follows:

leadingZeroBits = −1
for(b = 0; !b; leadingZeroBits++) (9-1)

b = read_bits(1)

The variable codeNum is then assigned as follows:
codeNum = 2leadingZeroBits− 1 + read_bits(leadingZeroBits) (9-2)

where the value returned from read_bits(leadingZeroBits) is interpreted as a binary representation of an unsigned integer
with most significant bit written first.

Table 9-1 illustrates the structure of the Exp-Golomb code by separating the bit string into "prefix" and "suffix" bits. The
"prefix" bits are those bits that are parsed in the above pseudo-code for the computation of leadingZeroBits, and are shown as
either 0 or 1 in the bit string column of Table 9-1. The "suffix" bits are those bits that are parsed in the computation of
codeNum and are shown as xi in Table 9-1, with i being in the range 0 to leadingZeroBits − 1, inclusive. Each xi can take on
values 0 or 1.

Table 9-1 – Bit strings with "prefix" and "suffix" bits and assignment to codeNum ranges (informative)

Bit string form Range of codeNum

 1 0

 0 1 x0 1..2

 0 0 1 x1 x0 3..6

 0 0 0 1 x2 x1 x0 7..14

 0 0 0 0 1 x3 x2 x1 x0 15..30

0 0 0 0 0 1 x4 x3 x2 x1 x0 31..62

… …

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

128 © ISO/IEC 2015 – All rights reserved

Table 9-2 illustrates explicitly the assignment of bit strings to codeNum values.

Table 9-2 – Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative)

Bit string codeNum

1 0

0 1 0 1

0 1 1 2

0 0 1 0 0 3

0 0 1 0 1 4

0 0 1 1 0 5

0 0 1 1 1 6

0 0 0 1 0 0 0 7

0 0 0 1 0 0 1 8

0 0 0 1 0 1 0 9

… …

Depending on the descriptor, the value of a syntax element is derived as follows:

– If the syntax element is coded as ue(v), the value of the syntax element is equal to codeNum.

– Otherwise, if the syntax element is coded as se(v), the value of the syntax element is derived by invoking the mapping
process for signed Exp-Golomb codes as specified in subclause 9.1.1 with codeNum as the input.

– Otherwise, if the syntax element is coded as me(v), the value of the syntax element is derived by invoking the mapping
process for coded block pattern as specified in subclause 9.1.2 with codeNum as the input.

– Otherwise (the syntax element is coded as te(v)), the range of possible values for the syntax element is determined first.
The range of this syntax element may be between 0 and x, with x being greater than or equal to 1 and the range is used
in the derivation of the value of the syntax element value as follows:

– If x is greater than 1, codeNum and the value of the syntax element is derived in the same way as for syntax
elements coded as ue(v).

– Otherwise (x is equal to 1), the parsing process for codeNum which is equal to the value of the syntax element is
given by a process equivalent to:

b = read_bits(1) (9-3)
codeNum = !b

9.1.1 Mapping process for signed Exp-Golomb codes

Input to this process is codeNum as specified in subclause 9.1.

Output of this process is a value of a syntax element coded as se(v).

The syntax element is assigned to the codeNum by ordering the syntax element by its absolute value in increasing order and
representing the positive value for a given absolute value with the lower codeNum. Table 9-3 provides the assignment rule.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 129

Table 9-3 – Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(v)

codeNum syntax element value

0 0

1 1

2 −1

3 2

4 −2

5 3

6 −3

k (−1)k+1 Ceil(k÷2)

9.1.2 Mapping process for coded block pattern

Input to this process is codeNum as specified in subclause 9.1.

Output of this process is a value of the syntax element coded_block_pattern coded as me(v).

Table 9-4 shows the assignment of coded_block_pattern to codeNum depending on whether the macroblock prediction mode
is equal to Intra_4x4 or Inter.

Table 9-4 – Assignment of codeNum to values of coded_block_pattern for macroblock prediction modes

codeNum coded_block_pattern

Intra_4x4 Inter

0 47 0

1 31 16

2 15 1

3 0 2

4 23 4

5 27 8

6 29 32

7 30 3

8 7 5

9 11 10

10 13 12

11 14 15

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

130 © ISO/IEC 2015 – All rights reserved

codeNum coded_block_pattern

Intra_4x4 Inter

12 39 47

13 43 7

14 45 11

15 46 13

16 16 14

17 3 6

18 5 9

19 10 31

20 12 35

21 19 37

22 21 42

23 26 44

24 28 33

25 35 34

26 37 36

27 42 40

28 44 39

29 1 43

30 2 45

31 4 46

32 8 17

33 17 18

34 18 20

35 20 24

36 24 19

37 6 21

38 9 26

39 22 28

40 25 23

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 131

codeNum coded_block_pattern

Intra_4x4 Inter

41 32 27

42 33 29

43 34 30

44 36 22

45 40 25

46 38 38

47 41 41

9.2 CAVLC parsing process for transform coefficient levels

This process is invoked for the parsing of syntax elements with descriptor equal to ce(v) in subclause 7.3.5.3.2.

Inputs to this process are bits from slice data, a maximum number of non-zero transform coefficient levels maxNumCoeff,
the luma block index luma4x4BlkIdx or the chroma block index chroma4x4BlkIdx,cb4x4BlkIdx or cr4x4BlkIdx of the
current block of transform coefficient levels.

Output of this process is the list coeffLevel containing transform coefficient levels of the luma block with block index
luma4x4BlkIdx or the chroma block with block index chroma4x4BlkIdx, cb4x4BlkIdx or cr4x4BlkIdx.

The process is specified in the following ordered steps:

1. All transform coefficient level values coeffLevel[i], with indices i ranging from 0 to maxNumCoeff − 1, in the list
coeffLevel are set equal to 0.

2. The total number of non-zero transform coefficient levels TotalCoeff(coeff_token) and the number of trailing one
transform coefficient levels TrailingOnes(coeff_token) are derived by parsing coeff_token as specified in
subclause 9.2.1.

3. The following then applies:

– If the number of non-zero transform coefficient levels TotalCoeff(coeff_token) is equal to 0, the list coeffLevel (in
which all transform coefficient level values are equal to 0) is returned and no further steps are carried out.

– Otherwise, the following steps are carried out:

a. The non-zero transform coefficient levels are derived by parsing trailing_ones_sign_flag, level_prefix, and
level_suffix as specified in subclause 9.2.2.

b. The runs of zero transform coefficient levels before each non-zero transform coefficient level are derived by
parsing total_zeros and run_before as specified in subclause 9.2.3.

c. The level and run information are combined into the list coeffLevel as specified in subclause 9.2.4.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

132 © ISO/IEC 2015 – All rights reserved

9.2.1 Parsing process for total number of non-zero transform coefficient levels and number of trailing
ones

Inputs to this process are bits from slice data, a maximum number of non-zero transform coefficient levels maxNumCoeff,
the luma block index luma4x4BlkIdx or the chroma block index chroma4x4BlkIdx,cb4x4BlkIdx or cr4x4BlkIdx of the
current block of transform coefficient levels.

Outputs of this process are TotalCoeff(coeff_token), TrailingOnes(coeff_token), and the variable nC.

The syntax element coeff_token is decoded using one of the six VLCs specified in the six right-most columns of Table 9-5.
Each VLC specifies both TotalCoeff(coeff_token) and TrailingOnes(coeff_token) for a given codeword coeff_token.
Theselection of the applicable column ofTable 9-5is determined by a variable nC. The value of nCis derived as follows:

– If the CAVLC parsing process is invoked for ChromaDCLevel, nC is set equal to −1,

– Otherwise, the following ordered steps are performed:

1. When the CAVLC parsing process is invoked for Intra16x16DCLevel, luma4x4BlkIdx is set equal to 0.

2. (void)

3. (void)

4. The variables blkA and blkB are derived as follows:

– If the CAVLC parsing process is invoked for Intra16x16DCLevel, Intra16x16ACLevel, or LumaLevel4x4, the
process specified in subclause 6.4.11.4 is invoked with luma4x4BlkIdx as the input, and the output is
assigned to mbAddrA, mbAddrB, luma4x4BlkIdxA, and luma4x4BlkIdxB. The 4x4 luma block specified
by mbAddrA\luma4x4BlkIdxA is assigned toblkA, and the 4x4 luma block specified by
mbAddrB\luma4x4BlkIdxB is assigned to blkB.

– Otherwise (the CAVLC parsing process is invoked for ChromaACLevel), the process specified in
subclause 6.4.11.5 is invoked with chroma4x4BlkIdx as input, and the output is assigned to mbAddrA,
mbAddrB, chroma4x4BlkIdxA, and chroma4x4BlkIdxB. The 4x4 chroma block specified by
mbAddrA\iCbCr\chroma4x4BlkIdxA is assigned toblkA, and the 4x4 chroma block specified by
mbAddrB\iCbCr\chroma4x4BlkIdxB is assigned to blkB.

5. The variable availableFlagN with N being replaced by A and B is derived as follows:

– If any of the following conditions are true, availableFlagN is set equal to 0:

– mbAddrN is not available,

– Otherwise, availableFlagN is set equal to 1.

6. For N being replaced by A and B, when availableFlagN is equal to 1, the variable nN is derived as follows:

– If any of the following conditions are true, nN is set equal to 0:

– The macroblock mbAddrN has mb_type equal to P_Skip,

– The macroblock mbAddrN has mb_type not equal to I_PCM and all AC residual transform coefficient
levels of the neighbouring block blkN are equal to 0 due to the corresponding bit of
CodedBlockPatternLuma or CodedBlockPatternChroma being equal to 0.

– Otherwise, if mbAddrN is an I_PCM macroblock, nN is set equal to 16.

– Otherwise, nN is set equal to the value TotalCoeff(coeff_token) of the neighbouring block blkN.
NOTE – The values nA and nB that are derived using TotalCoeff(coeff_token) do not include the DC transform
coefficient levels in Intra_16x16 macroblocks or DC transform coefficient levels in chroma blocks, because these
transform coefficient levels are decoded separately. When the block above or to the left belongs to an Intra_16x16
macroblock, nA ornB is the number of decoded non-zero AC transform coefficient levels for the adjacent 4x4 block
in the Intra_16x16 macroblock. When the block above or to the left is a chroma block, nA or nB is the number of
decoded non-zero AC transform coefficient levels for the adjacent chroma block.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 133

NOTE – When parsing for Intra16x16DCLevel the values nA and nB are based on the number of non-zero transform
coefficient levels in adjacent 4x4 blocks and not on the number of non-zero DC transform coefficient levels in
adjacent 16x16 blocks.

7. The variable nC is derived as follows:

– If availableFlagA is equal to 1 and availableFlagB is equal to 1, the variable nC is set equal to
(nA + nB + 1) >> 1.

– Otherwise, if availableFlagA is equal to 1 (and availableFlagB is equal to 0), the variable nC is set equal
to nA.

– Otherwise, if availableFlagB is equal to 1 (and availableFlagA is equal to 0), the variable nC is set equal to nB.

– Otherwise (availableFlagA is equal to 0 and availableFlagB is equal to 0), the variable nC is set equal to 0.

When maxNumCoeff is equal to 15, it is a requirement of bitstream conformance that the value of TotalCoeff(coeff_token)
resulting from decoding coeff_token shall not be equal to 16.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

134 © ISO/IEC 2015 – All rights reserved

Table 9-5 – coeff_token mapping to TotalCoeff(coeff_token) and TrailingOnes(coeff_token)
Tr

ai
lin

gO
ne

s
(c

oe
ff

_t
ok

en
)

To
ta

lC
oe

ff
(c

oe
ff

_t
ok

en
)

0 <= nC < 2 2 <= nC < 4 4 <= nC < 8 8 <= nC nC = = −1

0 0 1 11 1111 0000 11 01

0 1 0001 01 0010 11 0011 11 0000 00 0001 11

1 1 01 10 1110 0000 01 1

0 2 0000 0111 0001 11 0010 11 0001 00 0001 00

1 2 0001 00 0011 1 0111 1 0001 01 0001 10

2 2 001 011 1101 0001 10 001

0 3 0000 0011 1 0000 111 0010 00 0010 00 0000 11

1 3 0000 0110 0010 10 0110 0 0010 01 0000 011

2 3 0000 101 0010 01 0111 0 0010 10 0000 010

3 3 0001 1 0101 1100 0010 11 0001 01

0 4 0000 0001 11 0000 0111 0001 111 0011 00 0000 10

1 4 0000 0011 0 0001 10 0101 0 0011 01 0000 0011

2 4 0000 0101 0001 01 0101 1 0011 10 0000 0010

3 4 0000 11 0100 1011 0011 11 0000 000

0 5 0000 0000 111 0000 0100 0001 011 0100 00 -

1 5 0000 0001 10 0000 110 0100 0 0100 01 -

2 5 0000 0010 1 0000 101 0100 1 0100 10 -

3 5 0000 100 0011 0 1010 0100 11 -

0 6 0000 0000 0111 1 0000 0011 1 0001 001 0101 00 -

1 6 0000 0000 110 0000 0110 0011 10 0101 01 -

2 6 0000 0001 01 0000 0101 0011 01 0101 10 -

3 6 0000 0100 0010 00 1001 0101 11 -

0 7 0000 0000 0101 1 0000 0001 111 0001 000 0110 00 -

1 7 0000 0000 0111 0 0000 0011 0 0010 10 0110 01 -

2 7 0000 0000 101 0000 0010 1 0010 01 0110 10 -

3 7 0000 0010 0 0001 00 1000 0110 11 -

0 8 0000 0000 0100 0 0000 0001 011 0000 1111 0111 00 -

1 8 0000 0000 0101 0 0000 0001 110 0001 110 0111 01 -

2 8 0000 0000 0110 1 0000 0001 101 0001 101 0111 10 -

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 135

Table 9-5 – coeff_token mapping to TotalCoeff(coeff_token) and TrailingOnes(coeff_token)

Tr
ai

lin
gO

ne
s

(c
oe

ff
_t

ok
en

)

To
ta

lC
oe

ff
(c

oe
ff

_t
ok

en
)

0 <= nC < 2 2 <= nC < 4 4 <= nC < 8 8 <= nC nC = = −1

3 8 0000 0001 00 0000 100 0110 1 0111 11 -

0 9 0000 0000 0011 11 0000 0000 1111 0000 1011 1000 00 -

1 9 0000 0000 0011 10 0000 0001 010 0000 1110 1000 01 -

2 9 0000 0000 0100 1 0000 0001 001 0001 010 1000 10 -

3 9 0000 0000 100 0000 0010 0 0011 00 1000 11 -

0 10 0000 0000 0010 11 0000 0000 1011 0000 0111 1 1001 00 -

1 10 0000 0000 0010 10 0000 0000 1110 0000 1010 1001 01 -

2 10 0000 0000 0011 01 0000 0000 1101 0000 1101 1001 10 -

3 10 0000 0000 0110 0 0000 0001 100 0001 100 1001 11 -

0 11 0000 0000 0001 111 0000 0000 1000 0000 0101 1 1010 00 -

1 11 0000 0000 0001 110 0000 0000 1010 0000 0111 0 1010 01 -

2 11 0000 0000 0010 01 0000 0000 1001 0000 1001 1010 10 -

3 11 0000 0000 0011 00 0000 0001 000 0000 1100 1010 11 -

0 12 0000 0000 0001 011 0000 0000 0111 1 0000 0100 0 1011 00 -

1 12 0000 0000 0001 010 0000 0000 0111 0 0000 0101 0 1011 01 -

2 12 0000 0000 0001 101 0000 0000 0110 1 0000 0110 1 1011 10 -

3 12 0000 0000 0010 00 0000 0000 1100 0000 1000 1011 11 -

0 13 0000 0000 0000 1111 0000 0000 0101 1 0000 0011 01 1100 00 -

1 13 0000 0000 0000 001 0000 0000 0101 0 0000 0011 1 1100 01 -

2 13 0000 0000 0001 001 0000 0000 0100 1 0000 0100 1 1100 10 -

3 13 0000 0000 0001 100 0000 0000 0110 0 0000 0110 0 1100 11 -

0 14 0000 0000 0000 1011 0000 0000 0011 1 0000 0010 01 1101 00 -

1 14 0000 0000 0000 1110 0000 0000 0010 11 0000 0011 00 1101 01 -

2 14 0000 0000 0000 1101 0000 0000 0011 0 0000 0010 11 1101 10 -

3 14 0000 0000 0001 000 0000 0000 0100 0 0000 0010 10 1101 11 -

0 15 0000 0000 0000 0111 0000 0000 0010 01 0000 0001 01 1110 00 -

1 15 0000 0000 0000 1010 0000 0000 0010 00 0000 0010 00 1110 01 -

2 15 0000 0000 0000 1001 0000 0000 0010 10 0000 0001 11 1110 10 -

3 15 0000 0000 0000 1100 0000 0000 0000 1 0000 0001 10 1110 11 -

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

136 © ISO/IEC 2015 – All rights reserved

Table 9-5 – coeff_token mapping to TotalCoeff(coeff_token) and TrailingOnes(coeff_token)
Tr

ai
lin

gO
ne

s
(c

oe
ff

_t
ok

en
)

To
ta

lC
oe

ff
(c

oe
ff

_t
ok

en
)

0 <= nC < 2 2 <= nC < 4 4 <= nC < 8 8 <= nC nC = = −1

0 16 0000 0000 0000 0100 0000 0000 0001 11 0000 0000 01 1111 00 -

1 16 0000 0000 0000 0110 0000 0000 0001 10 0000 0001 00 1111 01 -

2 16 0000 0000 0000 0101 0000 0000 0001 01 0000 0000 11 1111 10 -

3 16 0000 0000 0000 1000 0000 0000 0001 00 0000 0000 10 1111 11 -

9.2.2 Parsing process for level information

Inputs to this process are bits from slice data, the number of non-zero transform coefficient levels TotalCoeff(coeff_token),
and the number of trailing one transform coefficient levels TrailingOnes(coeff_token).

Output of this process is a list with name levelVal containing transform coefficient levels.

Initially an index i is set equal to 0. Then, when TrailingOnes(coeff_token) is not equal to 0, the following ordered steps are
applied TrailingOnes(coeff_token) times to decode the trailing one transform coefficient levels:

1. A 1-bit syntax element trailing_ones_sign_flag is decoded and evaluated as follows:

– If trailing_ones_sign_flag is equal to 0, levelVal[i] is set equal to 1.

– Otherwise (trailing_ones_sign_flag is equal to 1), levelVal[i] is set equal to −1.

2. The index i is incremented by 1.

Then, the variable suffixLength is initialised as follows:

– If TotalCoeff(coeff_token) is greater than 10 and TrailingOnes(coeff_token) is less than 3, suffixLength is set equal
to 1.

– Otherwise (TotalCoeff(coeff_token) is less than or equal to 10 or TrailingOnes(coeff_token) is equal to 3),
suffixLength is set equal to 0.

Then, when TotalCoeff(coeff_token) − TrailingOnes(coeff_token) is not equal to 0, the following ordered steps are applied
TotalCoeff(coeff_token) − TrailingOnes(coeff_token) times to decode the remaining non-zero level values:

1. The syntax element level_prefix is decoded as specified in subclause 9.2.2.1.

2. The variable levelSuffixSize is set as follows:

– Iflevel_prefix is equal to 14 and suffixLength is equal to 0, levelSuffixSize is set equal to 4.

– Otherwise, if level_prefix is equal to 15, levelSuffixSize is set equal tolevel_prefix − 3.

– Otherwise, levelSuffixSize is set equal to suffixLength.

3. The syntax element level_suffix is decoded as follows:

– If levelSuffixSize is greater than 0, the syntax element level_suffix is decoded as unsigned integer representation
u(v) with levelSuffixSize bits.

– Otherwise (levelSuffixSize is equal to 0), the syntax element level_suffix is inferred to be equal to 0.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 137

4. The variable levelCode is set equal to (level_prefix << suffixLength) + level_suffix.

5. (void)

6. (void)

7. When the index i is equal to TrailingOnes(coeff_token) and TrailingOnes(coeff_token) is less than 3, levelCode is
incremented by 2.

8. The variable levelVal[i] is derived as follows:

– If levelCode is an even number, levelVal[i] is set equal to (levelCode + 2) >> 1.

– Otherwise (levelCode is an odd number), levelVal[i] is set equal to (−levelCode − 1) >> 1.

9. When suffixLength is equal to 0, suffixLength is set equal to 1.

10. When the absolute value of levelVal[i] is greater than (3 << (suffixLength − 1)) and suffixLength is less than 6,
suffixLength is incremented by 1.

11. The index i is incremented by 1.

9.2.2.1 Parsing process for level_prefix

Inputs to this process are bits from slice data.

Output of this process is level_prefix.

The parsing process for this syntax element consists in reading the bits starting at the current location in the bitstream up to
and including the first non-zero bit, and counting the number of leading bits that are equal to 0. This process is specified as
follows:

leadingZeroBits = −1
for(b = 0; !b; leadingZeroBits++) (9-4)
 b = read_bits(1)
level_prefix = leadingZeroBits

Table 9-6 illustrates the codeword table for level_prefix.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

138 © ISO/IEC 2015 – All rights reserved

Table 9-6 – Codeword table for level_prefix (informative)

level_prefix bit string

0 1

1 01

2 001

3 0001

4 0000 1

5 0000 01

6 0000 001

7 0000 0001

8 0000 0000 1

9 0000 0000 01

10 0000 0000 001

11 0000 0000 0001

12 0000 0000 0000 1

13 0000 0000 0000 01

14 0000 0000 0000 001

15 0000 0000 0000 0001

9.2.3 Parsing process for run information

Inputs to this process are bits from slice data, the number of non-zero transform coefficient levels TotalCoeff(coeff_token),
and the maximum number of non-zero transform coefficient levels maxNumCoeff.

Output of this process is a list of runs of zero transform coefficient levels preceding non-zero transform coefficient levels
called runVal.

Initially, an index i is set equal to 0.

The variable zerosLeft is derived as follows:

– If the number of non-zero transform coefficient levels TotalCoeff(coeff_token) is equal to the maximum number of
non-zero transform coefficient levels maxNumCoeff, a variable zerosLeft is set equal to 0.

– Otherwise (the number of non-zero transform coefficient levels TotalCoeff(coeff_token) is less than the maximum
number of non-zero transform coefficient levels maxNumCoeff), total_zeros is decoded and zerosLeft is set equal to its
value.

The variable tzVlcIndex is setequal to TotalCoeff(coeff_token).

The VLC used to decode total_zeros is derived as follows:

– If maxNumCoeff is equal to 4, one of the VLCs specified in Table 9-9 is used.

– Otherwise (maxNumCoeff is not equal to 4), VLCs from Tables 9-7 and 9-8 are used.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 139

The following ordered steps arethen performed TotalCoeff(coeff_token) − 1 times:

1. The variable runVal[i] is derived as follows:

– If zerosLeft is greater than zero, a value run_before is decoded based on Table 9-10 and zerosLeft. runVal[i] is set
equal to run_before.

– Otherwise (zerosLeft is equal to 0), runVal[i] is set equal to 0.

2. The value of runVal[i] is subtracted from zerosLeft and the result is assigned to zerosLeft. It is a requirement of
bitstream conformance that the result of the subtraction shall be greater than or equal to 0.

3. The index i is incremented by 1.

Finally the value of zerosLeft is assigned to runVal[i].

Table 9-7 – total_zeros tables for 4x4 blocks with tzVlcIndex 1 to 7

total_zeros tzVlcIndex

1 2 3 4 5 6 7

0 1 111 0101 0001 1 0101 0000 01 0000 01

1 011 110 111 111 0100 0000 1 0000 1

2 010 101 110 0101 0011 111 101

3 0011 100 101 0100 111 110 100

4 0010 011 0100 110 110 101 011

5 0001 1 0101 0011 101 101 100 11

6 0001 0 0100 100 100 100 011 010

7 0000 11 0011 011 0011 011 010 0001

8 0000 10 0010 0010 011 0010 0001 001

9 0000 011 0001 1 0001 1 0010 0000 1 001 0000 00

10 0000 010 0001 0 0001 0 0001 0 0001 0000 00 -

11 0000 0011 0000 11 0000 01 0000 1 0000 0 - -

12 0000 0010 0000 10 0000 1 0000 0 - - -

13 0000 0001 1 0000 01 0000 00 - - - -

14 0000 0001 0 0000 00 - - - - -

15 0000 0000 1 - - - - - -

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

140 © ISO/IEC 2015 – All rights reserved

Table 9-8 – total_zeros tables for 4x4 blocks with tzVlcIndex 8 to 15

total_zeros tzVlcIndex

8 9 10 11 12 13 14 15

0 0000 01 0000 01 0000 1 0000 0000 000 00 0

1 0001 0000 00 0000 0 0001 0001 001 01 1

2 0000 1 0001 001 001 01 1 1 -

3 011 11 11 010 1 01 - -

4 11 10 10 1 001 - - -

5 10 001 01 011 - - - -

6 010 01 0001 - - - - -

7 001 0000 1 - - - - - -

8 0000 00 - - - - - - -

Table 9-9 – total_zeros tables for chroma DC 2x2 (4:2:0 chroma sampling)

total_zeros
tzVlcIndex

1 2 3

0 1 1 1

1 01 01 0

2 001 00 -

3 000 - -

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 141

Table 9-10 – Tables for run_before

run_before zerosLeft

1 2 3 4 5 6 >6

0 1 1 11 11 11 11 111

1 0 01 10 10 10 000 110

2 - 00 01 01 011 001 101

3 - - 00 001 010 011 100

4 - - - 000 001 010 011

5 - - - - 000 101 010

6 - - - - - 100 001

7 - - - - - - 0001

8 - - - - - 00001

9 - - - - - - 000001

10 - - - - - - 0000001

11 - - - - - - 00000001

12 - - - - - - 000000001

13 - - - - - - 0000000001

14 - - - - - - 00000000001

9.2.4 Combining level and run information

Input to this process are a list of transform coefficient levels called levelVal, a list of runs called runVal, and the number of
non-zero transform coefficient levels TotalCoeff(coeff_token).

Output of this process is an list coeffLevel of transform coefficient levels.

A variable coeffNum is set equal to −1 and an index i is set equal to TotalCoeff(coeff_token) − 1. The following ordered
steps are then applied TotalCoeff(coeff_token) times:

1. coeffNum is incremented by runVal[i] + 1.

2. coeffLevel[coeffNum] is set equal to levelVal[i].

3. The index i is decremented by 1.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

142 © ISO/IEC 2015 – All rights reserved

Annex A
(normative)

Profiles and levels

Profiles and levels specify restrictions on bitstreams and hence limits on the capabilities needed to decode the bitstreams.
Profiles and levels may also be used to indicate interoperability points between individual decoder implementations.

NOTE – This International Standard does not include individually selectable "options" at the decoder, as this would increase
interoperability difficulties.

Each profile specifies a subset of algorithmic features and limits that shall be supported by all decoders conforming to that
profile. All specifications that are not specified by the profile in this Annex shall be considered informative.

NOTE – Encoders are not required to make use of any particular subset of features supported in a profile. This text is derived from
ISO/IEC 14996-10 and is intended to only specify Constrained Baseline profile.

Each level specifies a set of limits on the values that may be taken by the syntax elements of this International Standard. The
same set of level definitions is used with all profiles, but individual implementations may support a different level for each
supported profile. For any given profile, levels generally correspond to decoder processing load and memory capability.

A.1 Requirements on video decoder capability
Capabilities of video decoders conforming to this International Standard are specified in terms of the ability to decode video
streams conforming to the constraints of profiles and levels specified in this annex. For each such profile, the level supported
for that profile shall also be expressed.

Specific values are specified in this annex for the syntax elements profile_idc and level_idc. All other values of profile_idc
and level_idc are reserved for future use by ITU-T | ISO/IEC.

NOTE – Decoders should not infer that when a reserved value of profile_idc or level_idc falls between the values specified in this
International Standard that this indicates intermediate capabilities between the specified profiles or levels, as there are no restrictions on
the method to be chosen by ITU-T | ISO/IEC for the use of such future reserved values.

A.2 Profiles

All constraints for picture parameter sets that are specified in subclause A.2.1 are constraints for picture parameter sets that
are activated in the bitstream. All constraints for sequence parameter sets that are specified in subclause A.2.1 are constraints
for sequence parameter sets that are activated in the bitstream.

A.2.1 Constrained Baseline profile

Bitstreams conforming to the Constrained Baseline profile shall obey the following constraints:
– Only I and P slice types may be present.
– NAL unit streams shall not contain nal_unit_type values in the range of 2 to 4, inclusive.
– Arbitrary slice order is not allowed.
– Sequence parameter sets shall have frame_mbs_only_flag equal to 1.
– Picture parameter sets shall have num_slice_groups_minus1 equal to 0 only.
– Picture parameter sets shall have redundant_pic_cnt_present_flag equal to 0 only.
– Picture parameter sets shall have weighted_pred_flag and weighted_bipred_idc both equal to 0.
– Picture parameter sets shall have entropy_coding_mode_flag equal to 0.
– The syntax element level_prefix shall not be greater than 15 (when present).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 143

– The syntax elements pcm_sample_luma[i], with i = 0..255, and pcm_sample_chroma[i], with
i = 0..2 * MbWidthC * MbHeightC − 1, shall not be equal to 0 (when present).

– The level constraints specified for the Constrained Baseline profile in subclause A.3.1 shall be fulfilled.

Conformance of a bitstream to the Constrained Baseline profile is indicated by profile_idc being equal to 66 with
constraint_set1_flag being equal to 1. Alternatively, bitstreams conforming to this Specification may indicate conformance to
the Constrained Baseline profile by profile_idc being equal to 77 with constraint_set0_flag being equal to 1 or by profile_idc
being equal to 88 with both constraint_set0_flag and constraint_set1_flag being equal to 1.

Decoders conforming to the Constrained Baseline profile at a specific level shall be capable of decoding all bitstreams in
which all of the following are true:
– profile_idc is equal to 66 or constraint_set0_flag is equal to 1,
– constraint_set1_flag is equal to 1,
– level_idc and constraint_set3_flag represent a level less than or equal to the specified level.

As defined here, a conforming Web Video Coding decoder is able to decode all bitstreams that can be decoded by a
conforming AVC Constrained Baseline Profile decoder as defined in ISO/IEC 14496-10.
All parts of this International Standard that are not part of the set of technical specifications that are
necessary for conformance to Constrained Baseline Profile shall be considered informative.

A.3 Levels

A.3.1 General

The following is specified for expressing the constraints in this annex.
– Let access unit n be the n-th access unit in decoding order with the first access unit being access unit 0.
– Let picture n be the primary coded picture or the corresponding decoded picture of access unit n.

Let the variable fR be derived as follows:

– fR is set equal to 1 ÷ 172.

Bitstreams conforming to the Constrained Baseline profile at a specified level shall obey the following constraints:

a) The nominal removal time of access unit n with n > 0 from the CPB as specified in subclause C.1.2, satisfies the
constraint that tr,n(n) − tr(n − 1) is greater than or equal to Max(PicSizeInMbs ÷ MaxMBPS, fR), where
MaxMBPS is the value specified in Table A-1 that applies to picture n − 1 and PicSizeInMbs is the number of
macroblocks in picture n − 1.

b) The difference between consecutive output times of pictures from the DPB as specified in subclause C.2.2, satisfies
the constraint that ∆to,dpb(n) >= Max(PicSizeInMbs ÷ MaxMBPS, fR), where MaxMBPS is the value specified in
Table A-1 for picture n and PicSizeInMbs is the number of macroblocks of picture n, provided that picture n is a
picture that is output and is not the last picture of the bitstream that is output.

c) The sum of the NumBytesInNALunit variables for access unit 0 is less than or equal to
384 *(Max(PicSizeInMbs, fR * MaxMBPS) + MaxMBPS * (tr(0) − tr,n(0))) ÷ MinCR, where MaxMBPS and
MinCR are the values specified in Table A-1 that apply to picture 0 and PicSizeInMbs is the number of macroblocks
in picture 0.

d) The sum of the NumBytesInNALunit variables for access unit n with n > 0 is less than or equal to
384 * MaxMBPS * (tr(n) − tr(n − 1)) ÷ MinCR, where MaxMBPS and MinCR are the values specified in
Table A-1 that apply to picture n.

e) PicWidthInMbs * FrameHeightInMbs <= MaxFS, where MaxFS is specified in Table A-1

f) PicWidthInMbs <= Sqrt(MaxFS * 8)

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

144 © ISO/IEC 2015 – All rights reserved

g) FrameHeightInMbs <= Sqrt(MaxFS * 8)

h) max_dec_frame_buffering <= MaxDpbFrames, where MaxDpbFrames is equal to
Min(MaxDpbMbs / (PicWidthInMbs * FrameHeightInMbs), 16) and MaxDpbMbs is given in Table A-1.

i) For the VCL HRD parameters, BitRate[SchedSelIdx] <= 1000 * MaxBR and CpbSize[SchedSelIdx] <= 1000 *
MaxCPB for at least one value of SchedSelIdx, where BitRate[SchedSelIdx] and CpbSize[SchedSelIdx] are given
as follows:

– If vcl_hrd_parameters_present_flag is equal to 1, BitRate[SchedSelIdx] and CpbSize[SchedSelIdx] are
given by Equations E-37 and E-38, respectively, using the syntax elements of the hrd_parameters() syntax
structure that immediately follows vcl_hrd_parameters_present_flag.

– Otherwise (vcl_hrd_parameters_present_flag is equal to 0), BitRate[SchedSelIdx] and
CpbSize[SchedSelIdx] are inferred as specified in subclause E.2.2 for VCL HRD parameters.

MaxBR and MaxCPB are specified in Table A-1 in units of 1000 bits/s and 1000 bits, respectively. The bitstream
shall satisfy these conditions for at least one value of SchedSelIdx in the range 0 to cpb_cnt_minus1, inclusive.

j) For the NAL HRD parameters, BitRate[SchedSelIdx] <= 1200 * MaxBR and CpbSize[SchedSelIdx] <= 1200 *
MaxCPB for at least one value of SchedSelIdx, where BitRate[SchedSelIdx] and CpbSize[SchedSelIdx] are given
as follows:

– If nal_hrd_parameters_present_flag is equal to 1, BitRate[SchedSelIdx] and CpbSize[SchedSelIdx] are
given by Equations E-37 and E-38, respectively, using the syntax elements of the hrd_parameters() syntax
structure that immediately follows nal_hrd_parameters_present_flag.

– Otherwise (nal_hrd_parameters_present_flag is equal to 0), BitRate[SchedSelIdx] and
CpbSize[SchedSelIdx] are inferred as specified in subclause E.2.2 for NAL HRD parameters.

MaxBR and MaxCPB are specified in Table A-1 in units of 1200 bits/s and 1200 bits, respectively. The bitstream
shall satisfy these conditions for at least one value of SchedSelIdx in the range 0 to cpb_cnt_minus1.

k) The vertical motion vector component range for luma motion vectors does not exceed MaxVmvR in units of luma
frame samples, where MaxVmvR is specified in Table A-1

l) The horizontal motion vector range does not exceed the range of −2048 to 2047.75, inclusive, in units of luma
samples

m) Let setOf2Mb be the set of unsorted pairs of macroblocks that contains the unsorted pairs of macroblocks
(mbA, mbB) of a coded video sequence for which any of the following conditions are true:

– mbA and mbB are macroblocks that belong to the same slice and are consecutive in decoding order,

– mbA is the last macroblock (in decoding order) of aslice, and mbB is the first macroblock (in decoding order)
of the next slice in decoding order,

NOTE – The macroblocks mbA and mbB can belong to different pictures.

For each unsorted pair of macroblocks (mbA, mbB) of the set setOf2Mb, the total number of motion vectors (given
by the sum of the number of motion vectors for macroblock mbA and the number of motion vectors for macroblock
mbB) does not exceed MaxMvsPer2Mb, where MaxMvsPer2Mb is specified in Table A-1. The number of motion
vectors for each macroblock is the value of the variable MvCnt after the completion of the intra or inter prediction
process for the macroblock.

NOTE – The constraint specifies that the total number of motion vectors for two consecutive macroblocks in
decoding order must not exceed MaxMvsPer2Mb.

n) The number of bits of macroblock_layer() data for any macroblock is not greater than 3200. The number of bits of
macroblock_layer() data is given by the number of bits in the macroblock_layer() syntax structure for a
macroblock.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 145

Table A-1 specifies the limits for each level. A definition of all levels identified in the "Level number" column of Table A-1
is specified for the Constrained Baseline profile. Each entry in Table A-1 indicates, for the level corresponding to the row of
the table, the absence or value of a limit that is imposed by the variable corresponding to the column of the table, as follows:

– If the table entry is marked as "-", no limit is imposed by the value of the variable as a requirement of bitstream
conformance to the profile at the specified level.

– Otherwise, the table entry specifies the value of the variable for the associated limit that is imposed as a requirement of
bitstream conformance to the profile at the specified level.

For purposes of comparison of level capabilities, a level shall be considered to be a lower (higher) level than some other level
if the level appears nearer to the top (bottom) row of Table A-1 than the other level.

In bitstreams conforming to the Constrained Baseline profile, the conformance of the bitstream to a specified level is
indicated by the syntax elements level_idc and constraint_set3_flag as follows:

– If level_idc is equal to 11 and constraint_set3_flag is equal to 1, the indicated level is level 1b.

– Otherwise (level_idc is not equal to 11 or constraint_set3_flag is not equal to 1), level_idc is equal to a value of ten
times the level number (of the indicated level) specified in Table A-1.

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

146 © ISO/IEC 2015 – All rights reserved

Table A-1 – Level limits

Level
number

Max
macroblock
processing

rate
MaxMBPS

(MB/s)

Max
frame
size

MaxFS
(MBs)

Max
decoded
picture

buffer size
MaxDpbMbs

(MBs)

Max
video

bit rate MaxBR
(1000 bits/s or

1200 bits/s)

Max
CPB size
MaxCPB

(1000 bits or
1200 bits)

Vertical MV
component

range
MaxVmvR

(luma frame
samples)

Min
compression

ratio
MinCR

Max number of
motion vectors

per two
consecutive MBs
MaxMvsPer2Mb

1 1 485 99 396 64 175 [−64,+63.75] 2 -

1b 1 485 99 396 128 350 [−64,+63.75] 2 -

1.1 3 000 396 900 192 500 [−128,+127.75] 2 -

1.2 6 000 396 2 376 384 1 000 [−128,+127.75] 2 -

1.3 11 880 396 2 376 768 2 000 [−128,+127.75] 2 -

2 11 880 396 2 376 2 000 2 000 [−128,+127.75] 2 -

2.1 19 800 792 4 752 4 000 4 000 [−256,+255.75] 2 -

2.2 20 250 1 620 8 100 4 000 4 000 [−256,+255.75] 2 -

3 40 500 1 620 8 100 10 000 10 000 [−256,+255.75] 2 32

3.1 108 000 3 600 18 000 14 000 14 000 [−512,+511.75] 4 16

3.2 216 000 5 120 20 480 20 000 20 000 [−512,+511.75] 4 16

4 245 760 8 192 32 768 20 000 25 000 [−512,+511.75] 4 16

4.1 245 760 8 192 32 768 50 000 62 500 [−512,+511.75] 2 16

4.2 522 240 8 704 34 816 50 000 62 500 [−512,+511.75] 2 16

5 589 824 22 080 110 400 135 000 135 000 [−512,+511.75] 2 16

5.1 983 040 36 864 184 320 240 000 240 000 [−512,+511.75] 2 16

Levels with non-integer level numbers in Table A-1 are referred to as "intermediate levels".
NOTE – All levels have the same status, but some applications may choose to use only the integer-numbered levels.

Informative subclause A.3.2 shows the effect of these limits on frame rates for several example picture formats.

In bitstreams conforming to the Constrained Baseline profile, (xIntmax− xIntmin + 6) * (yIntmax− yIntmin + 6) <=
MaxSubMbRectSize in macroblocks coded with mb_type equal to P_8x8 or P_8x8ref0 for all invocations of the process
specified in subclause 8.4.2.2.1 used to generate the predicted luma sample array for a single reference picture list (reference
picture list 0) for each 8x8 sub-macroblock with the macroblock partition index mbPartIdx, where
NumSubMbPart(sub_mb_type[mbPartIdx]) > 1, where MaxSubMbRectSize is specified in Table A-2 for the Constrained
Baseline profile and

– xIntmin is the minimum value of xIntL among all luma sample predictions for the sub-macroblock
– xIntmax is the maximum value of xIntL among all luma sample predictions for the sub-macroblock
– yIntmin is the minimum value of yIntL among all luma sample predictions for the sub-macroblock
– yIntmax is the maximum value of yIntL among all luma sample predictions for the sub-macroblock

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 147

Table A-2 specifies limits for each level that are specific to bitstreams conforming to the Constrained Baseline profile. Each
entryin Table A-2 indicates, for the level corresponding to the row of the table, the absence or value of a limit that is imposed
by the variable corresponding to the column of the table, as follows:

– If the table entry is marked as "-", no limit is imposed by the value of the variable as a requirement of bitstream
conformance to the profile at the specified level.

– Otherwise, the table entry specifies the value of the variable for the associated limit that is imposed as a requirement of
bitstream conformance to the profile at the specified level.

Table A-2 –Constrained Baseline profile level limits

Level number MaxSubMbRectSize

1 576

1b 576

1.1 576

1.2 576

1.3 576

2 576

2.1 576

2.2 576

3 576

3.1 -

3.2 -

4 -

4.1 -

4.2 -

5 -

5.1 -

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

148 © ISO/IEC 2015 – All rights reserved

A.3.2 Effect of level limits on frame rate (informative)

This subclause does not form an integral part of this International Standard.

Table A-3 – Maximum frame rates (frames per second) for some example frame sizes

Level: 1 1b 1.1 1.2 1.3 2 2.1

Max frame size (macroblocks): 99 99 396 396 396 396 792

Max macroblocks/second: 1 485 1 485 3 000 6 000 11 880 11 880 19 800

Max frame size (samples): 25 344 25 344 101 376 101 376 101 376 101 376 202 752

Max samples/second: 380 160 380 160 768 000 1 536 000 3 041 280 3 041 280 5 068 800

Format
Luma
Width

Luma
Height

MBs
Total

Luma
Samples

SQCIF 128 96 48 12 288 30.9 30.9 62.5 125.0 172.0 172.0 172.0

QCIF 176 144 99 25 344 15.0 15.0 30.3 60.6 120.0 120.0 172.0

QVGA 320 240 300 76 800 - - 10.0 20.0 39.6 39.6 66.0

525 SIF 352 240 330 84 480 - - 9.1 18.2 36.0 36.0 60.0

CIF 352 288 396 101 376 - - 7.6 15.2 30.0 30.0 50.0

525 HHR 352 480 660 168 960 - - - - - - 30.0

625 HHR 352 576 792 202 752 - - - - - - 25.0

VGA 640 480 1 200 307 200 - - - - - - -

525 4SIF 704 480 1 320 337 920 - - - - - - -

525 SD 720 480 1 350 345 600 - - - - - - -

4CIF 704 576 1 584 405 504 - - - - - - -

625 SD 720 576 1 620 414 720 - - - - - - -

SVGA 800 600 1 900 486 400 - - - - - - -

XGA 1024 768 3 072 786 432 - - - - - - -

720p HD 1280 720 3 600 921 600 - - - - - - -

4VGA 1280 960 4 800 1 228 800 - - - - - - -

SXGA 1280 1024 5 120 1 310 720 - - - - - - -

525 16SIF 1408 960 5 280 1 351 680 - - - - - - -

16CIF 1408 1152 6 336 1 622 016 - - - - - - -

4SVGA 1600 1200 7 500 1 920 000 - - - - - - -

1080 HD 1920 1088 8 160 2 088 960 - - - - - - -

2Kx1K 2048 1024 8 192 2 097 152 - - - - - - -

2Kx1080 2048 1088 8 704 2 228 224 - - - - - - -

4XGA 2048 1536 12 288 3 145 728 - - - - - - -

16VGA 2560 1920 19 200 4 915 200 - - - - - - -

3616x1536 (2.35:1) 3616 1536 21 696 5 554 176 - - - - - - -

3672x1536 (2.39:1) 3680 1536 22 080 5 652 480 - - - - - - -

4Kx2K 4096 2048 32 768 8 388 608 - - - - - - -

4096x2304 (16:9) 4096 2304 36 864 9 437 184 - - - - - - -

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

© ISO/IEC 2015 – All rights reserved 149

Table A-3 (continued) – Maximum frame rates (frames per second) for some example frame sizes

Level: 2.2 3 3.1 3.2 4 4.1 4.2

Max frame size (macroblocks): 1 620 1 620 3 600 5 120 8 192 8 192 8 704

Max macroblocks/second: 20 250 40 500 108 000 216 000 245 760 245 760 522 240

Max frame size (samples): 414 720 414 720 921 600 1 310 720 2 097 152 2 097 152 2 228 224

Max samples/second: 5 184 000 10 368 000 27 648 000 55 296 000 62 914 560 62 914 560 133 693 440

Format
Luma
Width

Luma
Height

MBs
Total

Luma
Samples

SQCIF 128 96 48 12 288 172.0 172.0 172.0 172.0 172.0 172.0 172.0

QCIF 176 144 99 25 344 172.0 172.0 172.0 172.0 172.0 172.0 172.0

QVGA 320 240 300 76 800 67.5 135.0 172.0 172.0 172.0 172.0 172.0

525 SIF 352 240 330 84 480 61.4 122.7 172.0 172.0 172.0 172.0 172.0

CIF 352 288 396 101 376 51.1 102.3 172.0 172.0 172.0 172.0 172.0

525 HHR 352 480 660 168 960 30.7 61.4 163.6 172.0 172.0 172.0 172.0

625 HHR 352 576 792 202 752 25.6 51.1 136.4 172.0 172.0 172.0 172.0

VGA 640 480 1 200 307 200 16.9 33.8 90.0 172.0 172.0 172.0 172.0

525 4SIF 704 480 1 320 337 920 15.3 30.7 81.8 163.6 172.0 172.0 172.0

525 SD 720 480 1 350 345 600 15.0 30.0 80.0 160.0 172.0 172.0 172.0

4CIF 704 576 1 584 405 504 12.8 25.6 68.2 136.4 155.2 155.2 172.0

625 SD 720 576 1 620 414 720 12.5 25.0 66.7 133.3 151.7 151.7 172.0

SVGA 800 600 1 900 486 400 - - 56.8 113.7 129.3 129.3 172.0

XGA 1024 768 3 072 786 432 - - 35.2 70.3 80.0 80.0 172.0

720p HD 1280 720 3 600 921 600 - - 30.0 60.0 68.3 68.3 145.1

4VGA 1280 960 4 800 1 228 800 - - - 45.0 51.2 51.2 108.8

SXGA 1280 1024 5 120 1 310 720 - - - 42.2 48.0 48.0 102.0

525 16SIF 1408 960 5 280 1 351 680 - - - - 46.5 46.5 98.9

16CIF 1408 1152 6 336 1 622 016 - - - - 38.8 38.8 82.4

4SVGA 1600 1200 7 500 1 920 000 - - - - 32.8 32.8 69.6

1080 HD 1920 1088 8 160 2 088 960 - - - - 30.1 30.1 64.0

2Kx1K 2048 1024 8 192 2 097 152 - - - - 30.0 30.0 63.8

2Kx1080 2048 1088 8 704 2 228 224 - - - - - - 60.0

4XGA 2048 1536 12 288 3 145 728 - - - - - - -

16VGA 2560 1920 19 200 4 915 200 - - - - - - -

3616x1536 (2.35:1) 3616 1536 21 696 5 554 176 - - - - - - -

3672x1536 (2.39:1) 3680 1536 22 080 5 652 480 - - - - - - -

4Kx2K 4096 2048 32 768 8 388 608 - - - - - - -

4096x2304 (16:9) 4096 2304 36 864 9 437 184 - - - - - - -

ISO/IEC 14496-29:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

ISO/IEC 14496-29:2015(E)

150 © ISO/IEC 2015 – All rights reserved

Table A-3 (concluded) – Maximum frame rates (frames per second) for some example frame sizes

Level: 5 5.1

Max frame size (macroblocks): 22 080 36 864

Max macroblocks/second: 589 824 983 040

Max frame size (samples): 5 652 480 9 437 184

Max samples/second: 150 994 944 251 658 240

Format
Luma
Width

Luma
Height

MBs
Total

Luma
Samples

SQCIF 128 96 48 12 288 172.0 172.0

QCIF 176 144 99 25 344 172.0 172.0

QVGA 320 240 300 76 800 172.0 172.0

525 SIF 352 240 330 84 480 172.0 172.0

CIF 352 288 396 101 376 172.0 172.0

525 HHR 352 480 660 168 960 172.0 172.0

625 HHR 352 576 792 202 752 172.0 172.0

VGA 640 480 1 200 307 200 172.0 172.0

525 4SIF 704 480 1 320 337 920 172.0 172.0

525 SD 720 480 1 350 345 600 172.0 172.0

4CIF 704 576 1 584 405 504 172.0 172.0

625 SD 720 576 1 620 414 720 172.0 172.0

SVGA 800 600 1 900 486 400 172.0 172.0

XGA 1024 768 3 072 786 432 172.0 172.0

720p HD 1280 720 3 600 921 600 163.8 172.0

4VGA 1280 960 4 800 1 228 800 122.9 172.0

SXGA 1280 1024 5 120 1 310 720 115.2 172.0

525 16SIF 1408 960 5 280 1 351 680 111.7 172.0

16CIF 1408 1152 6 336 1 622 016 93.1 155.2

4SVGA 1600 1200 7 500 1 920 000 78.6 131.1

1080 HD 1920 1088 8 160 2 088 960 72.3 120.5

2Kx1K 2048 1024 8 192 2 097 152 72.0 120.0

2Kx1080 2048 1088 8 704 2 228 224 67.8 112.9

4XGA 2048 1536 12 288 3 145 728 48.0 80.0

16VGA 2560 1920 19 200 4 915 200 30.7 51.2

3616x1536 (2.35:1) 3616 1536 21 696 5 554 176 27.2 45.3

3672x1536 (2.39:1) 3680 1536 22 080 5 652 480 26.7 44.5

4Kx2K 4096 2048 32 768 8 388 608 - 30.0

4096x2304 (16:9) 4096 2304 36 864 9 437 184 - 26.7

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
9:2

01
5

https://standardsiso.com/api/?name=80c7fbc0583b36a7ae10b89c0957f87e

	Blank Page

