

INTERNATIONAL
STANDARD

ISO
16750-1

Third edition
2018-11

**Road vehicles — Environmental
conditions and testing for electrical
and electronic equipment —**

**Part 1:
General**

*Véhicules routiers — Spécifications d'environnement et essais de
l'équipement électrique et électronique —*

Partie 1: Généralités

STANDARDSISO.COM : Click to view the full PDF of ISO 16750-1:2018

Reference number
ISO 16750-1:2018(E)

© ISO 2018

STANDARDSISO.COM : Click to view the full PDF of ISO 16750-1:2018

COPYRIGHT PROTECTED DOCUMENT

© ISO 2018

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

Contents

	Page
Foreword	iv
Introduction	v
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Classification by mounting location	2
4.1 Engine compartment	2
4.2 Passenger compartment	3
4.3 Luggage compartment/load compartment	3
4.4 Mounting on the exterior/in cavities	3
4.5 Other mounting locations	3
5 Operating modes	3
5.1 Operating mode 1	3
5.2 Operating mode 2	4
5.3 Operating mode 3	4
6 Functional status classification	4
6.1 General	4
6.2 Class A	4
6.3 Class B	4
6.4 Class C	4
6.5 Class D	5
6.6 Class E	5
7 Tests and requirements	5
7.1 General	5
7.2 General test conditions	5
7.3 Test sequence	5
8 Designation	5
8.1 Coding	5
8.2 Use of Code Z "as agreed"	6
Annex A (informative) Example for a test sequence plan	8
Annex B (informative) Example of life test/statement of reliability	9
Bibliography	13

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 22, *Road Vehicles*, Subcommittee SC 32, *Electrical and electronic components and general system aspects*.

This third edition cancels and replaces the second edition (ISO 16750-1:2006), which has been technically revised.

The main change compared to the previous edition is the extension of the variety of operating modes, so that not only "typical" load may be applied during the test but also maximum and minimum load.

A list of all parts in the ISO 16750 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

The concept of the ISO 16750 series is to assist its user in systematically defining and/or applying a set of internationally accepted environmental conditions, tests and operating requirements which are based on the anticipated actual environment in which the equipment will be operated and exposed to during its life cycle.

The following environmental factors have been considered in the development of this document:

- **World geography and climate:** Road vehicles are owned and operated in nearly all land regions of the Earth. Significant variation in environmental conditions due to climatic environment, including diurnal and seasonal cycles, can therefore be expected. Consideration has been given to worldwide ranges in temperature, humidity, precipitation and atmospheric conditions including dust, pollution and altitude.
- **Type of vehicle:** Environmental conditions in and on road vehicles can depend on vehicle design attributes such as engine type, engine size, suspension characteristics, vehicle mass, vehicle size, electrical supply voltage and so on. Consideration has been given to typical types of vehicles including commercial (heavy) trucks, passenger cars and trucks and diesel and gasoline engines.
- **Vehicle use conditions and operating modes:** Environmental conditions in and on the vehicle vary significantly with road quality, type of road surface, road topography, vehicle use (e.g. commuting, towing, cargo transport, etc.) and driving habits. Operating modes such as storage, starting, driving, stopping and so on have been considered.
- **Equipment life cycle:** Electrical and electronic equipment is also resistant to environmental conditions experienced during manufacture, shipping, handling, storage, vehicle assembly and vehicle maintenance and repair. Such conditions and test (e.g. handling drop test) are within the scope of the ISO 16750 series.
- **Vehicle supply voltage:** Supply voltage varies with vehicle use, operating mode, electrical distribution system design and even climatic conditions. Faults within the vehicle electrical system, such as overvoltage alternator and intermittencies in connection systems, can occur. Such conditions are within the scope of the ISO 16750 series.
- **Mounting location in the vehicle:** In current or future car concepts, systems/components are mounted in almost any location of the car. The environmental requirements for each specific application highly depend on its mounting location. Each location in a car has its distinct set of environmental loads. As an example, the range of temperatures in the engine compartment differs significantly from the range in the passenger compartment. This is also true for the vibration loads. But in this case, not only the vibration levels are different, the type of vibration load also varies. Body mount components are typically exposed to random vibrations whereas for engine mount systems/components the additional sine vibration from the engine is considered. Devices installed in doors are exposed to a high number of mechanical shocks from door slamming additionally.

It is desirable for the car manufacturer to group the different environmental load types and levels in a reasonable number of standard requirement sets. This strategy makes it possible to carry systems/components from one car project to another. Furthermore, the exact requirement levels are often unknown when designing a component for a future car concept. The expected environmental loads are usually compiled from other car concepts with similar conditions. The grouping is normally done by mounting location, but it is difficult to define the right number of different mounting locations and respective load profiles, because there is a conflict of aims between having only few requirement classes and tailoring to the requirement levels for each application. The reason is that the environmental loads are not only depending on the mounting location. There are other major factors that affect the stress levels for systems/components. For examples, body styles, drive-train concepts or package densities can create absolutely different requirement levels for devices that are installed in different cars at almost the same location.

The concept of the ISO 16750 series is to define requirement classes for separate load types. It distinguishes between electrical, mechanical, thermal, climatic and chemical loads. For each load type, several requirement classes are defined. Every requirement class is determined by a specific code letter. The complete environmental requirement set is created by defining the code letter combination. The code letters are defined in the respective clauses of this document. Additionally, tables in the annexes of each part consists of usual mounting locations and define examples of their respective code letters. For normal applications, these code letters are used. If an application is very specific and therefore the given code letter combinations cannot be used, it is possible to create new code letter combinations to serve this purpose. In case none of the given code letters is useable, new requirement levels can be created by using the code letter Z. In this case, the specific requirements need to be defined separately but it is desirable not to change the test methods.

It is recommended to consider at least the following mounting locations for a device under test (DUT) with respect to thermal, mechanical, climatic and chemical load.

0.1 Applicability to manufacturers' responsibility

Due to technology limitations or variations in vehicle design, the vehicle manufacturer may be required to place a component in a location where it cannot withstand the environmental conditions described in the ISO 16750 series. Under these circumstances, it is the responsibility of the vehicle manufacturer to provide the necessary environmental protection.

0.2 Applicability to wiring harnesses, cables and electrical connectors

Although some environmental conditions and tests in the ISO 16750 series may be relevant to vehicle wiring harnesses, cables and connectors, its scope is not sufficient to be used as a complete standard. It is therefore not recommended that the ISO 16750 series be directly applied to such devices and equipment. Applicable standards are taken into account.

0.3 Applicability to parts or assemblies in or on equipment

The ISO 16750 series describes environmental conditions and tests to be applied to electrical and electronic equipment directly mounted in or on the vehicle. It is not intended for direct application to parts or assemblies that are part of the equipment. For example, the ISO 16750 series should not be directly applied to integrated circuits (ICs) and discrete components, electrical connectors, printed circuit boards (PCBs), gauges, displays, controls, etc. that are attached in or on the equipment. Electrical, mechanical, climatic and chemical loads for such parts and assemblies can be quite different from those described in the ISO 16750 series.

On the other hand, it is desirable to use the ISO 16750 series to help derive environmental conditions and test requirements for parts and assemblies that are intended for use in road vehicle equipment. For example, a temperature range of -40°C to 90°C may be specified for an assembly contained inside a piece of equipment having a temperature range of -40°C to 70°C and a temperature rise of 20°C .

0.4 Applicability relative to system integration and validation

The user of the ISO 16750 series is cautioned to understand that the scope of the ISO 16750 series is limited to conditions and testing at the equipment level, and therefore does not represent all conditions and testing necessary for complete verification and validation of the vehicle system. Environmental and reliability testing of equipment parts and vehicle systems may be required.

For example, the ISO 16750 series does not necessarily ensure that environmental and reliability requirements for solder joints, solderless connections, integrated circuits, and so on are met. Such items are assured at the part, material or assembly level. Likewise, vehicle and system level testing is required to validate the equipment in the vehicle application.

Road vehicles — Environmental conditions and testing for electrical and electronic equipment —

Part 1: General

1 Scope

The ISO 16750 series applies to electric and electronic systems/components for vehicles. It describes the potential environmental stresses and specifies tests and requirements recommended for the specific mounting location on/in the vehicle.

This document contains definitions and general notes. Electromagnetic compatibility (EMC) is not covered by the ISO 16750 series.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <https://www.iso.org/obp>
- IEC Electropedia: available at <http://www.electropedia.org/>

3.1

hot-soak temperature

T_{maxHS}

maximum value of the ambient temperature which may temporarily occur in the engine compartment after the vehicle has stopped and the engine is turned off

3.2

nominal voltage

U_{N}

voltage value used to describe the electrical system of a vehicle

3.3

maximum operating temperature

T_{max}

maximum value of the ambient temperature at which the systems/components can be operated continuously

3.4

minimum operating temperature

T_{min}

minimum value of the ambient temperature at which the systems/components can be operated

3.5

paint repair temperature

$T_{\max PR}$

maximum temperature which occurs during vehicle paint repair

3.6

peak to peak voltage

U_{pp}

superimposed AC voltage

3.7

supply voltage

U_S

voltage of the electrical system of a vehicle that varies with the system load and the operating condition of the generator

3.8

supply voltage minimum

$U_{S\min}$

lowest supply voltage in the specified supply voltage range of the DUT performance class A

3.9

supply voltage maximum

$U_{S\max}$

highest supply voltage in the specified supply voltage range of the DUT performance class A

3.10

supply voltage operating mode 3

U_A

supply voltage for generator in operation

3.11

supply voltage operating mode 2

U_B

supply voltage for generator not in operation

3.12

test voltage

voltage(s) applied to the DUT during a test

EXAMPLE U_A and U_B .

4 Classification by mounting location

4.1 Engine compartment

Device mounted:

- to the body;
- to the frame;
- on the flexible plenum chamber, not rigidly attached;
- in the flexible plenum chamber, not rigidly attached;
- on the engine;
- in the engine;
- on the transmission/retarder;

- in the transmission/retarder.

4.2 Passenger compartment

Device mounted in a position:

- without special requirements;
- exposed to direct solar radiation;
- exposed to radiated heat (other than solar radiation).

4.3 Luggage compartment/load compartment

Device mounted inside.

4.4 Mounting on the exterior/in cavities

Device mounted:

- to the body;
- to the frame;
- under the body/wheel housing:
 - sprung masses;
 - unsprung masses (wheel, wheel bracket, axle);
- in/on a passenger compartment door;
- to the engine compartment cover;
- to the luggage compartment lid/door;
- to the trunk lid/door;
- to passenger doors on buses;
- in cavities:
 - open towards exterior;
 - open towards interior;
- in special compartments (e.g. battery box).

4.5 Other mounting locations

For some locations with special environmental conditions (e.g. exhaust system), no standard specifications can be given. In these cases, the load shall be stated in the specification of the device.

5 Operating modes

5.1 Operating mode 1

No voltage is applied to the DUT.

- Operating mode 1.1: not connected to wiring harness.

- Operating mode 1.2: connected to wiring harness simulating vehicle installation.

5.2 Operating mode 2

The DUT is electrically operated with test voltage U_B as in a vehicle with shut-off engine and with all electrical connections made.

- Operating mode 2.1: system/component functions are not activated (e.g. sleep mode).
- Operating mode 2.2: systems/components with electric operation and control in typical operating mode.
- Operating mode 2.3: systems/components with electric operation and control in minimum load.
- Operating mode 2.4: systems/components with electric operation and control in maximum load.

5.3 Operating mode 3

The DUT is electrically operated with test voltage U_A with all electrical connections made.

- Operating mode 3.1: system/component functions are not activated.
- Operating mode 3.2: systems/components with electric operation and control in typical operating mode.
- Operating mode 3.3: systems/components with electric operation and control in minimum load.
- Operating mode 3.4: systems/components with electric operation and control in maximum load.

6 Functional status classification

6.1 General

This element describes the functional status of a DUT during and after a test.

The minimum functional status shall be given in each test. An additional test requirement may be agreed between supplier and vehicle manufacturer.

Unwanted operations of the DUT are not allowed in any of the following classes.

6.2 Class A

All functions of the device/system perform as designed during and after the test.

6.3 Class B

All functions of the device/system perform as designed during the test. However, one or more of them may go beyond the specified tolerance. All functions return automatically to within normal limits after the test. Memory functions shall remain class A.

It shall be specified by the vehicle manufacturer which function of the DUT needs to perform as designed during the test, and which function can be beyond the specified tolerance.

6.4 Class C

One or more functions of a device/system do not perform as designed during the test but return automatically to normal operation after the test.

6.5 Class D

One or more functions of a device/system do not perform as designed during the test and do not return to normal operation after the test until the device/system is reset by simple “operator/use” action.

6.6 Class E

One or more functions of a device/system do not perform as designed during and after the test and cannot be returned to proper operation without repairing or replacing the device/system.

7 Tests and requirements

7.1 General

The values specified in ISO 16750-2, ISO 16750-3, ISO 16750-4 and ISO 16750-5 cover basic requirements.

DUTs with several mounting locations shall be tested to meet the most severe requirements.

7.2 General test conditions

Unless otherwise specified, all tests shall be performed at a room temperature of $(23 \pm 5)^\circ\text{C}$ and a relative humidity of 25 % to 75 %.

The test voltages shall be as shown in [Table 1](#) unless other values are specified in other parts of ISO 16750 or are agreed upon by the users of ISO 16750, in which case such values shall be documented in the test reports.

Table 1 — Test voltages for operating modes 2 and 3 (see [5.2](#) and [5.3](#))

Test voltage	$U_N = 12\text{ V}$ system V	$U_N = 24\text{ V}$ system V
U_A	$14 \pm 0,2$	$28 \pm 0,2$
U_B	$12 \pm 0,2$	$24 \pm 0,2$

7.3 Test sequence

Prior to testing, a test sequence plan shall be agreed upon, stating the type, number, combination, and sequence of the individual tests.

A life test shall be defined specifically to the product and to be taken into account in the test sequence plan.

An example is given in [Annex A](#).

8 Designation

8.1 Coding

[Figure 1](#) describes the referred tests for the device(s) by a code form for technical specifications and/or other documentation.

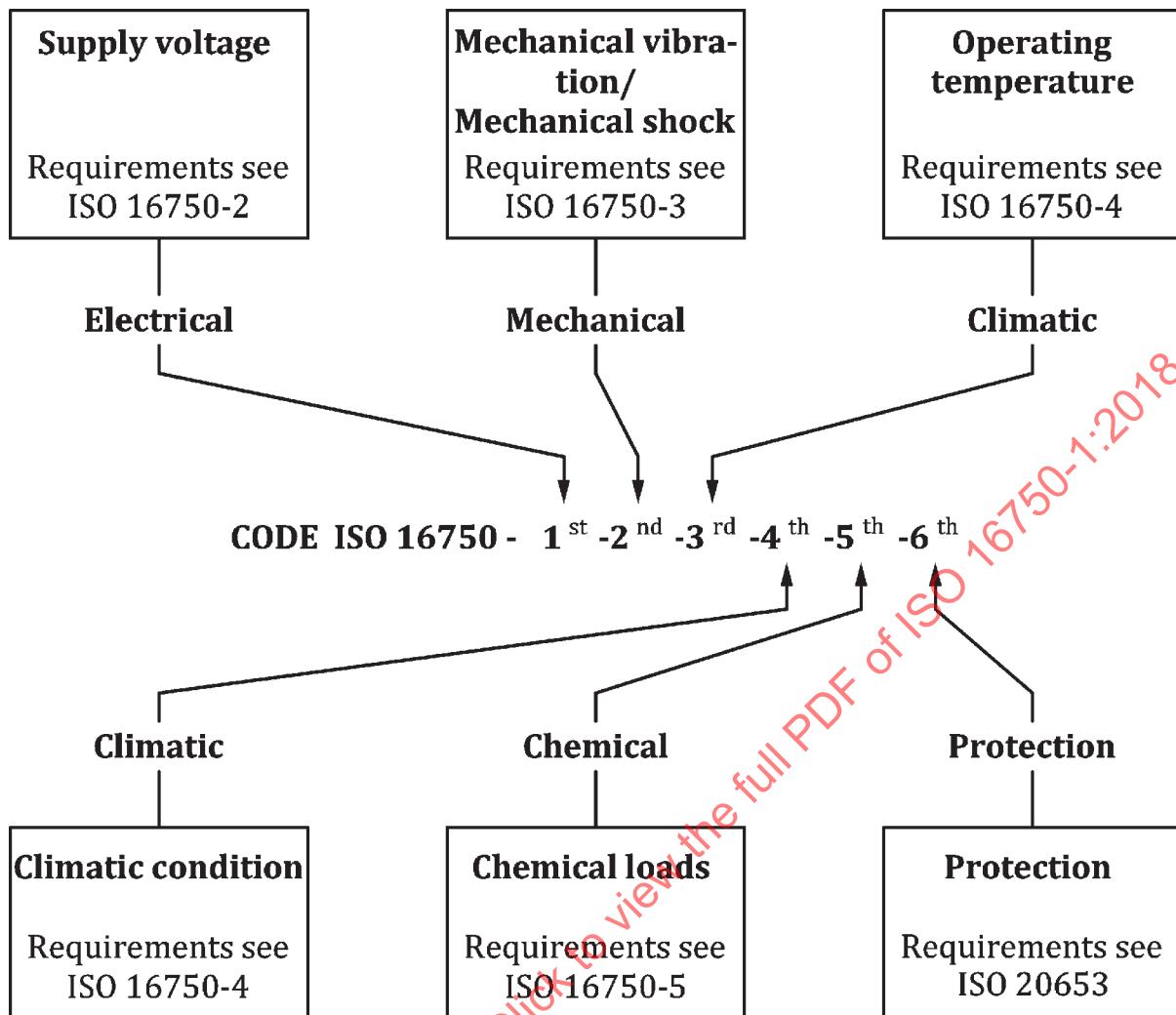


Figure 1 — Code allocation

EXAMPLE ISO 16750-A-A-H-A-A-IP6K9K

This example shows the designation of an environment requirement for a system/component with:

- electric load requirement according to code letter A in ISO 16750-2;
- mechanical load requirement according to code letter A in ISO 16750-3;
- an operating temperature requirement according to code letter H in ISO 16750-4;
- a climatic requirement according to code letter A in ISO 16750-4;
- a chemical load requirement according to code letter A in ISO 16750-5; and
- a degree of protection IP6K9K according to ISO 20653.

8.2 Use of Code Z “as agreed”

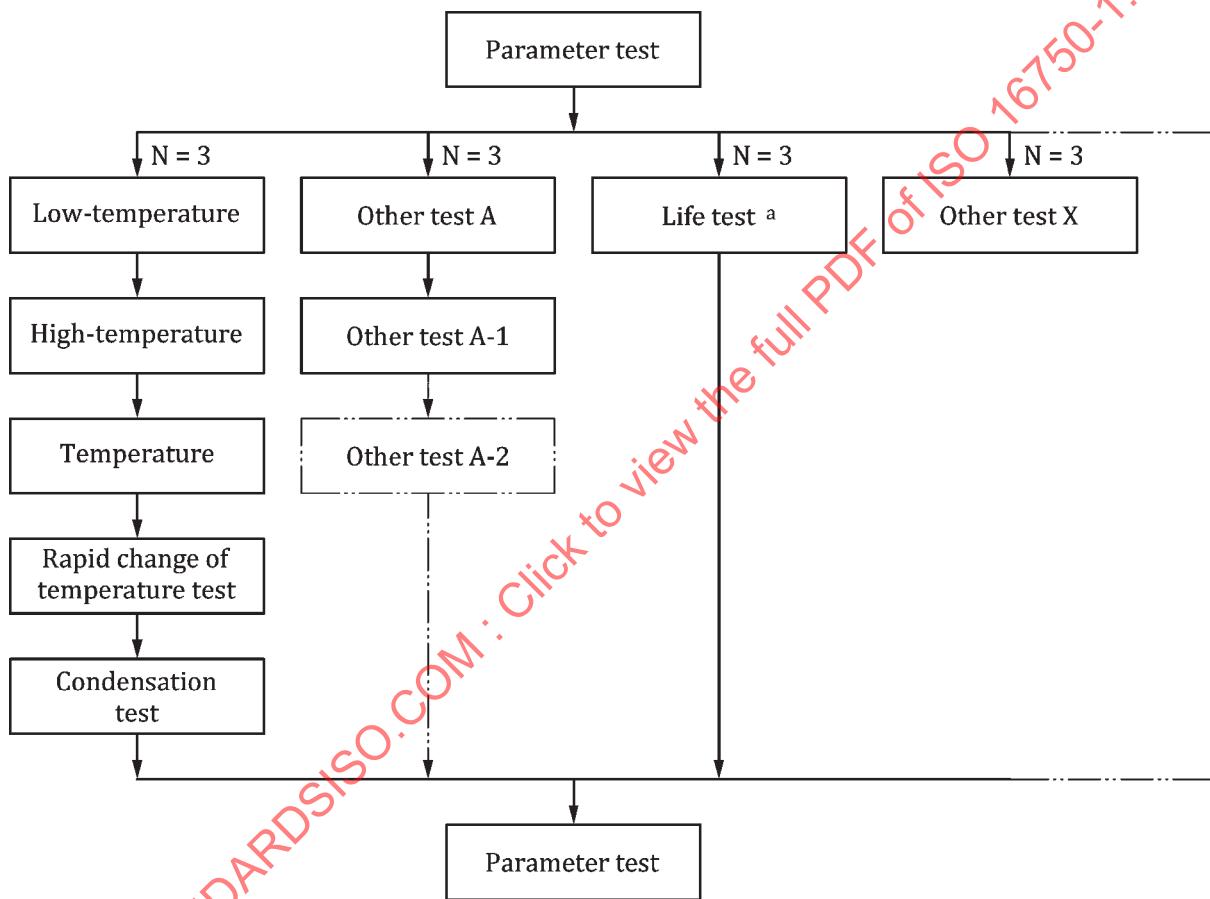
The ISO 16750 series accommodates special needs and situations through the use of Code Z “upon agreement”. The use of Code Z shall be restricted to cases where the supplier and/or vehicle manufacturer determine that the conditions or tests defined in the ISO 16750 series are:

- not suitable to achieve desired product quality/reliability objectives; and/or

- not practical.

When Code Z "upon agreement" is used, the following recommendations apply:

- The rationale (reason) for not using the provided conditions or tests shall be documented.
- A complete description of the "upon agreement" condition or test should be provided.
- Data and rationale supporting the suitability of the "upon agreement" condition or test shall be provided.
- Any specific information regarding Code Z "upon agreement" contained in ISO 16750-2, ISO 16750-3, ISO 16750-4 or ISO 16750-5 shall be documented.
- The equipment supplier and vehicle manufacturer shall agree that the "upon agreement" documentation is adequate.


Annex A

(informative)

Example for a test sequence plan

[Figure A.1](#) shows a test procedure plan, only as an example. It cannot be carried over as an exact template for an actual test plan.

NOTE The individual test sequences can be conducted in parallel by consideration of the economy and duration for testing.

^a See [Annex B](#).

Figure A.1 — Test sequence plan (example)

Annex B (informative)

Example of life test/statement of reliability

B.1 General

In addition to environmental loads, a product used in the vehicle will be subjected to loads induced by its own function, hereafter referred to as functional loads.

These loads are simulated by life tests which generally comprise a combination of functional loads and relevant environmental loads occurring simultaneously.

These tests are performed according to programmes derived from in-practice operation.

B.2 Aim of life tests

B.2.1 General

Two fundamentally different cases are to be distinguished, depending on the type of the problem.

B.2.2 Potential design weaknesses

Using real-time life tests or accelerated life tests (with corresponding load increase), the design can be checked for functional loads combined with further environmental loads in order to discover design weaknesses. Generally, only a small number of DUT is sufficient to achieve this. This case is by far the most frequent. However, the results are not suitable for deriving a statement on reliability as the number of DUT is too low for a statistically correct statement.

B.2.3 Reliability

Determining reliability is a totally different task. The following step-by-step method is suggested:

- 1) Determine the type of load which is relevant for service life and specific to the product and determine the test to be conducted.
- 2) Determine the in-practice load, for example running time, mean temperature, etc.
- 3) Specify the survival probability and confidence levels and calculate the necessary number of DUT or a test duration on the basis of in-practice load, based on statistical correlation. Generally, this calculation requires extensive testing.
- 4) A reduction of this extensive testing resulting from step 3 to feasible values can be performed by a permissible increase of load on the basis of an appropriate correlation between in-practice experience and testing. The increase in load should not lead to a change of the expected damage process. Generally, compared to the check of potential design weaknesses, considerably more extensive testing will be required.

It is recommended to use the step-by-step method also in the first case for checking design. However, step 3 is then omitted (statistics calculation).

B.3 Calculation of characteristic reliability values on the basis of test data

B.3.1 General statistical correlation

If characteristic reliability values are required, e.g. stating the survival probability, $R(t)$, for the period of time, t , and with a necessarily specified confidence level, P_A , these can be evaluated by the statistical calculation described in the [Formula \(B.1\)](#), using life test data.

The calculation is based on the following correlation: Correlating the Weibull distribution with the binomial distribution yields:

$$R(t) \geq (1 - P_A)^{\frac{1}{n}} \times \left(\frac{T}{t} \right)^{\beta} \quad (\text{B.1})$$

where

$R(t)$ is the survival probability as a function of time (or cycles/operations);

P_A is the confidence level (assumption);

β is the Weibull form factor;

n is the number of DUT;

t is the test duration (time or cycles or operations);

T is the specified service life (time or cycles or operations).

When applying this correlation, two conditions should be met:

- There should be no failures during testing; if failures occur, only the test duration up to the first failure should be used for the calculation.
- Failures expected in practice should have Weibull distribution.

Depending on the task, the equation described above should be solved to give the required quantity, other quantities should be known. If this is not the case, these quantities should be determined by experiment or by using figures based on experience.

In the following, the method is explained by using an example.

B.3.2 Example for the determination of the test duration required for a given reliability

B.3.2.1 DUT

A plastic coated coil without moving parts used in the passenger car engine compartment has been chosen for this example.

Specifications are:

- service life: 10 years;
- survival probability: $R = 0,99$ (failure rate 1 %);
- confidence level: $P_A = 0,9$ (normal value).