INTERNATIONAL STANDARD ISO/IEC 9899:1990
TECHNICAL CORRIGENDUM 2

Published 1996-04-01

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION® MEXXAYHAPOAHAR OPITAHU3ALINA MO CTAHAAPTU3ALUNU - ORGANISATION INTERNATIONALE DE NORMALISATION
INTERNATIONAL ELECTROTECHNICAL COMMISSIONs MEXXAYHAPOAHAA O3NEKTPOTEXHUYECKAA KOMMUCCUA+<COMMISSION ELECTROTECHNIQUE INTERNATIONALE

Programming tanguages — C
TECHNICAL CORRIGENDUM 2

Langagps de programmation — C

RECTIFICATIF TECHNIQUE 2

Technidal corrigendum 2 to International Standard ISO/IEC 9899:1990 was ,prepared by Joint Technical Committee
ISO/IEC|JTC 1, Information technology.

Page 6
In subdlause 5.1.2.1, page 6, delete:

There afe otherwise no reserved external identifiers.

Page7

In subdlause 5.1.2.2.3, page 7, add at the end of the first sentence the footnote:

In accordance with subclause 6.1.2.4,:0bjects with automatic storage duration declared in main will no
longer have storage guaranteed to be reserved in the former case even where they would in the latter.

Page 1
In subTause 5.2.1.2, page 11) change the third bullet item:

wherein each sequence,of-multibyte characters begins in an initial shift state and enters other implementa-
tion-defined shift states

to:
wherei{ each sequence of multibyte characters begins in an initial shift state and enters other locale-specific

shift stqtes
Page?2
In subclause 6.1.2.4, page 22, first paragraph, change:
There are two storage durations: static and automatic.
to:

There are three storage durations: static, automatic, and allocated. Allocated storage is described in 7.10.3.

ICS 35.060 Ref. No. ISO/IEC 9899:1990/Cor.2:1996(E)
Descriptors: data processing, computer software, artificial languages, programming languages, C (programming language).
© ISO/IEC 1996

Printed in Switzerland


https://iecnorm.com/api/?name=608a0b340a3494c260d8afada1a7a380

ISO/IEC 9899:1990/Cor.2:1996(E) © ISOMEC

Page 25
In subclause 6.1.2.6, page 25, first paragraph, change:

Moreover, two structure, union, or enumerated types declared in separate translation units are compatible
if they have the same number of members, the same member names, and compatible member types; for two
structures, the members shall be in the same order; for two structures or unions, the bit-fields shall have the
same widths; for two enumerated types, the members shall have the same values.

to:

Moreover, two structure, umon, or enumerated types declared in separate lranslauon umts are compauble
if at least one | :

and compatibje member types for two complete structure types, the members shall be in the same order
for two complete structure or union types, the bit-fields shall have the same widths; for two enumerated
types, the members shall have the same values.

Page 31
In subclause6.1.4, page 31, change the last paragraph of Semantics (before the Example) from:

Identical string literals of either form need not be distinct. If the program attempts to modify a string literal
of either form, the behavior is undefined.

to:

These arrays [need not be distinct provided their elements have the appropriate values. If the program
attempts to mpdify such an array, the behavior is undefined.

Page 36

Insubclause p.2.2.1, page 36, change the parenthetic remark in the final sentence of the first paragraph:
(including, regursively, any member of all contained structures or unions)

to:
(including, refursively, any member or element of all contained aggregates orunions)
Page 41
In subclause|6.3.2.2, page 41, second paragraph, change:

If the dxpression that denotes the called function has a type that includes a prototype, the
argumepts are implicitly converted, as if by assignment,‘to-the types of the corresponding
paramelers.

to:

If the gxpression that denotes the called function has a type that includes a prototype, the
argumepnts are implicitly converted, as if by -assignment, to the types of the corresponding
parameters, taking the type of each parametet to be the unqualified version of its declared type.

Page 45
In subclause|6.3.4, page 45, change the paragraph under Constraints:

Unless the type name specifies void type, the type name shall specify qualified or unqualified scalar type
and the operand shall have scalar type.

to:

Unless the type name specifi€s.a void type, the type name shall specify qualified or unqualified scalar type
and the operand shall have’scalar type.

Page 61
In subclause|6.5.2.2, page 61, second paragraph of Semantics, change:
Each enumerpted type shall be compatible with an integer type; the choice of type is implementation-de-

fined.
to:

Each enumerated type shall be compatible with an integer type. The choice of type is implementation-de-
fined, but shall be capable of representing the values of all the members of the enumeration.

In subclause 6.5.2.2, page 61, append to Semantics:
The enumerated type is complete at the } that terminates the list of enumerator declarations.


https://iecnorm.com/api/?name=608a0b340a3494c260d8afada1a7a380

© ISO/EC ISO/TEC 9899:1990/Cor.2:1996(E)

Page 72

In subclause 6.5.7, page 72, the penultimate paragraph of Semantics (before Examples), add after the
comma:

or fewer characters in a string literal or wide string literal used to initialize an array of known size, and
elements of character or wchar_t type

Page 89
In subclause 6.8.3, page 89, change, in both paragraphs 2 and 3:
may be redefined by another #de£ine preprocessing directive provided that

fo:

shall not be redefined by another #define preprocessing directive unless
Page 99

In subclause 7.1.7, page 99, insert after the words in parentheses in the second sentence ¢f the first
paragraph:

or a type (after promotion) not expected by a function with variable number.of‘arguments
Page 102

In subclause 7.3, page 102, second paragraph, change:

Those functions that have implementation-defined aspects only whenniot in the "C" locale are ngted below.

The term printing character refers to a member of an implementation-defined set of characters, each of
which occupies one printing position on a display device; the tetn control character refers to a member of
an implementation-defined set of characters that are not printing characters.

to:
Those functions that have locale-specific aspects.Only when not in the "C" locale are noted below.

The term printing character refers to a member ofa locale-specific set of characters, each of whidh occupies
one printing position on a display device; thé term control character refers to a member of a locdle-specific
set of characters that are not printing characters.

In subclause 7.3.1.2, page 102, subclatise 7.3.1.6, page 103, subclause 7.3.1.9, page 104, and|subclause
7.3.1.10, page 104, change:

is one of an implementation-defined set of characters

to:

is one of a locale-specific-set of characters

Page 107

In subclause 7.4:1.1, page 107, second paragraph of Description, change:

a value of " " for locale specifies the implementation-defined native environment.
to:

a value of "" for Locale specifies the locale-specific native environment.

Page 122

In subclause 7.8.1, page 122, change the last sentence from:

The va_start and va_end macros shall be invoked in the function accepting a varying number of
arguments, if access to the varying arguments is desired.

to:

The va_start and va_end macros shall be invoked in corresponding pairs in the function gccepting a
varying number of arguments, if access to the varying arguments is desired. T

In subclause 7.8.1.1, page 122, add at the end of the second paragraph of the Description:

va_start shall not be invoked again for the same ap without an intervening invocation of va_end for
the same ap.

Page 151
In subclause 7.10.1.4, page 151, subclause 7.10.1.5, page 152, and 7.10.1.6, page 152, change:
In other than the "C" locale, additional impicmentation-defined subject sequence forms may be accepted.


https://iecnorm.com/api/?name=608a0b340a3494c260d8afada1a7a380

