

Reference number
ISO/IEC 17826:2012(E)

© ISO/IEC 2012

INTERNATIONAL
STANDARD

ISO/IEC
17826

First edition
2012-11-15

Information technology — Cloud Data
Management Interface (CDMI)

Technologies de l'information — Interface de management des
données du nuage informatique (CDMI)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

 COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2012 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

November 15, 2012

International lSO/IEC

Standard

Information Technology -
Cloud Data Management Interface (CDMI™)

Reference Number

ISO/IEC 17826:2012(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

2 ©ISO/IEC 2012 – All rights reserved

PATENT STATEMENT

CAUTION: The developers of this international standard have requested that holders of patents that may
be required for the implementation of the standard, disclose such patents to the publisher. However,
neither the developers nor the publisher have undertaken a patent search in order to identify which, if any,
patents may apply to this international standard. As of the date of publication of this international standard,
following calls for the identification of patents that may be required for the implementation of the standard,
no such claims have been made. No further patent search is conducted by the developer or the publisher
in respect to any standard it processes. No representation is made or implied that licenses are not required
to avoid infringement in the use of this international standard.

Copyright Notice

This ISO document is copyright-protected by ISO. While the reproduction of working drafts or committee
drafts in any form for use by participants in the ISO standards development process is permitted without
prior permission from ISO, neither this document nor any extract from it may be reproduced, stored or
transmitted in any form for any other purpose without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as
shown below or to ISO's member body in the country of the requester:

The Storage Networking Industry Association
425 Market Street, Suite 1020
San Francisco, CA 94105

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

CDMI is a trademark of the Storage Networking Industry Association.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
Contents

Foreword...15
Introduction ..16

1 Scope ..18

2 Normative References ...18

3 Terms ..20

4 Conventions ...23

4.1 Interface Format ..23
4.2 Typographical Conventions ...23
4.3 Request and Response Body Requirements ..23
4.4 Key Word Requirements ...24

5 Overview of Cloud Storage ...25

5.1 Introduction ..25
5.2 What is Cloud Storage? ..25
5.3 Data Storage as a Service ..25
5.4 Data Management for Cloud Storage ..27
5.5 Data and Container Management ...27
5.6 Reference Model for Cloud Storage Interfaces ...28
5.7 Cloud Data Management Interface ...29
5.8 Object Model for CDMI ..30
5.9 CDMI Metadata ...31
5.10 Object ID ...32
5.11 CDMI Object ID Format ...32
5.12 Security ...33
5.13 Required HTTP Support ..34

5.13.1 RFC 2616 Support Requirements ..34
5.13.2 Content-Type Negotiation ..34
5.13.3 Range Support ...34
5.13.4 URI Escaping ...34
5.13.5 Use of URIs ..35
5.13.6 Reserved Characters ...35

5.14 Time Representations ...35
5.15 Backwards Compatibility ...36

5.15.1 Value Transfer Encoding ..36
5.15.2 Container Export Capabilities ...36

6 Common Operations ...37

6.1 Overview ...37
6.2 Discover the Capabilities of a Cloud Storage Provider ...37
6.3 Create a New Container ..38
6.4 Create a Data Object in a Container ...38
6.5 List the Contents of a Container ..39
6.6 Read the Contents of a Data Object ...39
6.7 Read Only the Value of a Data Object ..40
6.8 Delete a Data Object ...40

7 Interface Standard ...41

7.1 HTTP Status Codes ..41
7.2 Object References ...41

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 3

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
8 Data Object Resource Operations ...43

8.1 Overview ...43
8.1.1 Data Object Metadata ..44
8.1.2 Data Object Consistency ..44
8.1.3 Data Object Representations ...44

8.2 Create a Data Object Using CDMI Content Type ..44
8.2.1 Synopsis ...44
8.2.2 Delayed Completion of Create ...45
8.2.3 Capabilities ...45
8.2.4 Request Headers ...46
8.2.5 Request Message Body ...46
8.2.6 Response Headers ...48
8.2.7 Response Message Body ..49
8.2.8 Response Status ..50
8.2.9 Examples ..50

8.3 Create a Data Object using a Non-CDMI Content Type ...51
8.3.1 Synopsis ...51
8.3.2 Capability ..51
8.3.3 Request Headers ...52
8.3.4 Request Message Body ...52
8.3.5 Response Headers ...52
8.3.6 Response Message Body ..52
8.3.7 Response Status ..52
8.3.8 Example ...53

8.4 Read a Data Object using CDMI Content Type ..53
8.4.1 Synopsis ...53
8.4.2 Capabilities ...53
8.4.3 Request Headers ...54
8.4.4 Request Message Body ...54
8.4.5 Response Headers ...54
8.4.6 Response Message Body ..54
8.4.7 Response Status ..57
8.4.8 Examples ..57

8.5 Read a Data Object using a Non-CDMI Content Type ..59
8.5.1 Synopsis ...59
8.5.2 Capabilities ...59
8.5.3 Request Header ...59
8.5.4 Request Message Body ...59
8.5.5 Response Headers ...59
8.5.6 Response Message Body ..60
8.5.7 Response Status ..60
8.5.8 Examples ..60

8.6 Update a Data Object using CDMI Content Type ...61
8.6.1 Synopsis ...61
8.6.2 Capabilities ...61
8.6.3 Request Headers ...62
8.6.4 Request Message Body ...62
8.6.5 Response Header ..64
8.6.6 Response Message Body ..64
8.6.7 Response Status ..64
8.6.8 Examples ..65

8.7 Update a Data Object using a Non-CDMI Content Type ...66
8.7.1 Synopsis ...66
8.7.2 Capabilities ...67
8.7.3 Request Headers ...67
8.7.4 Request Message Body ...67
8.7.5 Response Header ..67
8.7.6 Response Message Body ..68

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

4 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
8.7.7 Response Status ..68
8.7.8 Examples ..68

8.8 Delete a Data Object using CDMI Content Type ...69
8.8.1 Synopsis ...69
8.8.2 Capability ..69
8.8.3 Request Header ...69
8.8.4 Request Message Body ...69
8.8.5 Response Headers ...69
8.8.6 Response Message Body ..69
8.8.7 Response Status ..70
8.8.8 Example ...70

8.9 Delete a Data Object using a Non-CDMI Content Type ..70
8.9.1 Synopsis ...70
8.9.2 Capability ..70
8.9.3 Request Headers ...70
8.9.4 Request Message Body ...71
8.9.5 Response Headers ...71
8.9.6 Response Message Body ..71
8.9.7 Response Status ..71
8.9.8 Example ...71

9 Container Object Resource Operations ..72

9.1 Overview ...72
9.1.1 Container Metadata ..73
9.1.2 Reserved Container Names ...73
9.1.3 Container Object Addressing ...73
9.1.4 Container Object Representations ...73

9.2 Create a Container Object using CDMI Content Type ..74
9.2.1 Synopsis ...74
9.2.2 Delayed Completion of Create ...74
9.2.3 Capabilities ...74
9.2.4 Request Headers ...75
9.2.5 Request Message Body ...75
9.2.6 Response Headers ...77
9.2.7 Response Message Body ..77
9.2.8 Response Status ..78
9.2.9 Example ...79

9.3 Create a Container Object using a Non-CDMI Content Type ...80
9.3.1 Synopsis ...80
9.3.2 Capability ..80
9.3.3 Request Headers ...80
9.3.4 Request Message Body ...80
9.3.5 Response Headers ...80
9.3.6 Response Message Body ..80
9.3.7 Response Status ..81
9.3.8 Example ...81

9.4 Read a Container Object using CDMI Content Type ..81
9.4.1 Synopsis ...81
9.4.2 Capabilities ...81
9.4.3 Request Headers ...82
9.4.4 Request Message Body ...82
9.4.5 Response Headers ...82
9.4.6 Response Message Body ..83
9.4.7 Response Status ..84
9.4.8 Examples ..85

9.5 Update a Container Object using CDMI Content Type ...86
9.5.1 Synopsis ...86
9.5.2 Delayed Completion of Snapshot ...87

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 5

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
9.5.3 Capabilities ...87
9.5.4 Request Headers ...87
9.5.5 Request Message Body ...88
9.5.6 Response Header ..89
9.5.7 Response Message Body ..89
9.5.8 Response Status ..89
9.5.9 Examples ..90

9.6 Delete a Container Object using CDMI Content Type ...91
9.6.1 Synopsis ...91
9.6.2 Capability ..91
9.6.3 Request Header ...91
9.6.4 Request Message Body ...91
9.6.5 Response Headers ...91
9.6.6 Response Message Body ..91
9.6.7 Response Status ..92
9.6.8 Example ...92

9.7 Delete a Container Object using a Non-CDMI Content Type ..92
9.7.1 Synopsis ...92
9.7.2 Capability ..92
9.7.3 Request Headers ...92
9.7.4 Request Message Body ...93
9.7.5 Response Headers ...93
9.7.6 Response Message Body ..93
9.7.7 Response Status ..93
9.7.8 Example ...93

9.8 Create (POST) a New Data Object using CDMI Content Type ...93
9.8.1 Synopsis ...93
9.8.2 Delayed Completion of Create ...94
9.8.3 Capabilities ...94
9.8.4 Request Headers ...95
9.8.5 Request Message Body ...96
9.8.6 Response Headers ...98
9.8.7 Response Message Body ..98
9.8.8 Response Status ..99
9.8.9 Examples ..100

9.9 Create (POST) a New Data Object using a Non-CDMI Content Type101
9.9.1 Synopsis ...101
9.9.2 Capability ..101
9.9.3 Request Header ...101
9.9.4 Request Message Body ...101
9.9.5 Response Header ..102
9.9.6 Response Message Body ..102
9.9.7 Response Status ..102
9.9.8 Examples ..102

9.10 Create (POST) a New Queue Object using CDMI Content Type ..103
9.10.1 Synopsis ...103
9.10.2 Delayed Completion of Create ...103
9.10.3 Capabilities ...104
9.10.4 Request Headers ...104
9.10.5 Request Message Body ...105
9.10.6 Response Headers ...106
9.10.7 Response Message Body ..106
9.10.8 Response Status ..107
9.10.9 Example ...108

10 Domain Object Resource Operations ..109

10.1 Overview ...109
10.1.1 Domain Object Metadata ..109

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

6 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
10.1.2 Domain Object Summaries ..109
10.1.3 Domain Object Membership ...112
10.1.4 Domain Usage in Access Control ...114
10.1.5 Domain Object Representations ..115

10.2 Create a Domain Object using CDMI Content Type ...115
10.2.1 Synopsis ...115
10.2.2 Capabilities ...115
10.2.3 Request Headers ...115
10.2.4 Request Message Body ...116
10.2.5 Response Headers ...117
10.2.6 Response Message Body ..117
10.2.7 Response Status ..118
10.2.8 Example ...118

10.3 Read a Domain Object using CDMI Content Type ..119
10.3.1 Synopsis ...119
10.3.2 Capabilities ...119
10.3.3 Request Headers ...119
10.3.4 Request Message Body ...119
10.3.5 Response Headers ...120
10.3.6 Response Message Body ..120
10.3.7 Response Status ..121
10.3.8 Examples ..121

10.4 Update a Domain Object using CDMI Content Type ...122
10.4.1 Synopsis ...122
10.4.2 Capability ..123
10.4.3 Request Headers ...123
10.4.4 Request Message Body ...123
10.4.5 Response Header ..124
10.4.6 Response Message Body ..124
10.4.7 Response Status ..124
10.4.8 Example ...125

10.5 Delete a Domain Object using CDMI Content Type ..125
10.5.1 Synopsis ...125
10.5.2 Capability ..125
10.5.3 Request Headers ...125
10.5.4 Request Message Body ...125
10.5.5 Response Headers ...126
10.5.6 Response Message Body ..126
10.5.7 Response Status ..126
10.5.8 Example ...126

11 Queue Object Resource Operations ..127

11.1 Overview ...127
11.1.1 Queue Object Metadata ...128
11.1.2 Queue Object Addressing ..128
11.1.3 Queue Object Representations ..128

11.2 Create a Queue Object using CDMI Content Type ...128
11.2.1 Synopsis ...128
11.2.2 Delayed Completion of Create: ..128
11.2.3 Capabilities ...129
11.2.4 Request Headers ...129
11.2.5 Request Message Body ...130
11.2.6 Response Headers ...131
11.2.7 Response Message Body ..131
11.2.8 Response Status ..132
11.2.9 Example ...132

11.3 Read a Queue Object using CDMI Content Type ...133
11.3.1 Synopsis ...133

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 7

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
11.3.2 Capabilities ...134
11.3.3 Request Headers ...134
11.3.4 Request Message Body ...134
11.3.5 Response Headers ...134
11.3.6 Response Message Body ..135
11.3.7 Response Status ..137
11.3.8 Examples ..137

11.4 Update a Queue Object using CDMI Content Type ..139
11.4.1 Synopsis ...139
11.4.2 Capability ..139
11.4.3 Request Headers ...140
11.4.4 Request Message Body ...140
11.4.5 Response Header ..141
11.4.6 Response Message Body ..141
11.4.7 Response Status ..141
11.4.8 Example ...141

11.5 Delete a Queue Object using CDMI Content Type ...142
11.5.1 Synopsis ...142
11.5.2 Capability ..142
11.5.3 Request Header ...142
11.5.4 Request Message Body ...142
11.5.5 Response Headers ...142
11.5.6 Response Message Body ..142
11.5.7 Response Status ..143
11.5.8 Example ...143

11.6 Enqueue a New Queue Value using CDMI Content Type ..143
11.6.1 Synopsis ...143
11.6.2 Capability ..143
11.6.3 Request Headers ...144
11.6.4 Request Message Body ...144
11.6.5 Response Headers ...145
11.6.6 Response Message Body ..145
11.6.7 Response Status ..146
11.6.8 Examples ..146

11.7 Delete a Queue Object Value using CDMI Content Type ...148
11.7.1 Synopsis ...148
11.7.2 Capability ..148
11.7.3 Request Header ...148
11.7.4 Request Message Body ...148
11.7.5 Response Headers ...148
11.7.6 Response Message Body ..148
11.7.7 Response Status ..149
11.7.8 Example ...149

12 Capability Object Resource Operations ..150

12.1 Overview ...150
12.1.1 Cloud Storage System-Wide Capabilities ..151
12.1.2 Storage System Metadata Capabilities ..154
12.1.3 Data System Metadata Capabilities ...154
12.1.4 Data Object Capabilities ...157
12.1.5 Container Capabilities ..157
12.1.6 Domain Object Capabilities ..159
12.1.7 Queue Object Capabilities ..160
12.1.8 Capability Object Representations ...160

12.2 Read a Capabilities Object using CDMI Content Type ...160
12.2.1 Synopsis ...160
12.2.2 Capability ..161
12.2.3 Request Headers ...161

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

8 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
12.2.4 Request Message Body ...161
12.2.5 Response Headers ...161
12.2.6 Response Message Body ..162
12.2.7 Response Status ..162
12.2.8 Examples ..163

13 Exported Protocols ..165

13.1 Overview ...165
13.2 Exported Protocol Structure ..166

13.2.1 Mapping Names from CDMI to Another Protocol ...167
13.2.1.1 Capabilities ...167
13.2.1.2 Domains ...167
13.2.1.3 Caching ..167
13.2.1.4 Groups ...168
13.2.1.5 Synopsis ...168

13.2.2 Administrative Users ..169
13.2.3 User and Groupname Mapping Syntax and Evaluation Rules169

13.3 Discovering and Mounting Containers via Foreign Protocols ..170
13.4 NFS Exported Protocol ..171
13.5 CIFS Exported Protocol ...173
13.6 OCCI Exported Protocol ..173
13.7 iSCSI Export Modifications ..174

13.7.1 Read Container ..174
13.7.2 Create and Update Containers ...174
13.7.3 Modify an Export ..175

13.8 WebDAV Exported Protocol ...175

14 Snapshots ..176

15 Serialization/Deserialization ...177

15.1 Overview ...177
15.2 Exporting Serialized Data ..177
15.3 Importing Serialized Data ..177

15.3.1 Canonical Format ...178
15.3.2 Example JSON Canonical Serialized Format ...178

16 Metadata ...180

16.1 Access Control ..180
16.1.1 ACL and ACE Structure ...180
16.1.2 ACE Types ...180
16.1.3 ACE Who ..180
16.1.4 ACE Flags ..181
16.1.5 ACE Mask Bits ...182
16.1.6 ACL Evaluation ...183
16.1.7 Example ACE Mask Expressions ...185
16.1.8 Canonical Format for ACE Hexadecimal Quantities ..185
16.1.9 JSON Format for ACLs ..186

16.2 Support for User Metadata ..187
16.3 Support for Storage System Metadata ..187
16.4 Support for Data System Metadata ...188
16.5 Support for Provided Data System Metadata ..193

17 Retention and Hold Management ...195

17.1 Introduction ..195
17.2 Retention Management Disciplines ...195
17.3 CDMI Retention ...195
17.4 CDMI Hold ...196
17.5 CDMI Auto-deletion ...198

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 9

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
17.6 Retention Security Considerations ..198

18 Scope Specification ...199

18.1 Introduction ..199
18.2 Examples ...199
18.3 Query Matching Expressions ..200

19 Results Specification ..205

19.1 Introduction ..205
19.2 Examples ...205

20 Logging ...207

20.1 Overview ...207
20.2 Object Logging ..207
20.3 Security Logging ..207
20.4 Data Management Logging ...208
20.5 Logging Queues ..208
20.6 Logging Security Considerations ...210

21 Notification Queues ...211

22 Query Queues ..215

22.1 Overview ...215
22.2 Extending CDMI Query ...217

Annex A
(normative)
Transport Security .. 218

A.1 Introduction ..218
A.2 General Requirements for HTTP Implementations ...218
A.3 Basic HTTP Security ...219
A.4 HTTP over TLS (HTTPS) ..219
A.5 Transport Layer Security (TLS) ...219

A.5.1 Cipher Suites ...220
A.5.2 Digital Certificates ..220

Annex B
(informative)
Bibliography .. 224

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

10 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

©ISO/IEC 2012 – All rights reserved 11

Figures

Figure 1 – Existing Data Storage Interface Standards ..26
Figure 2 – Storage Interfaces for Object Storage Client Data ...27
Figure 3 – Cloud Storage Reference Model ..28
Figure 4 – CDMI Object Model ..30
Figure 5 – Object Transitions between Named and ID-only ..31
Figure 6 – Object ID Format ..32
Figure 7 – Hierarchy of Capabilities ..150
Figure 8 – CDMI and OCCI in an Integrated Cloud Computing Environment ...165
Figure 9 – Snapshot Container Structure ..176
Figure 10 – Object Retention ...196
Figure 11 – Object Hold ...197
Figure 12 – Object Hold on Object with Retention ..197
Figure 13 – Object with Multiple Holds ..197

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
Tables

Table 1 – Interface Format .. 23
Table 2 – Key Word Requirements ... 24
Table 3 – Types of Resources in the Model .. 30
Table 4 – Creation/Consumption of Storage System Metadata .. 31
Table 5 – Relative URIs Resolved Against Root URIs .. 35
Table 6 – HTTP Status Codes... 41
Table 7 – Request Headers for Creating a CDMI Data Object using CDMI Content Type 46
Table 8 – Request Message Body - Create a Data Object using CDMI Content Type 46
Table 9 – Response Headers - Create a Data Object using CDMI Content Type 48
Table 10 – Response Message Body - Create a Data Object using CDMI Content Type 49
Table 11 – HTTP Status Codes - Create a Data Object using CDMI Content Type 50
Table 12 – Request Headers - Create a CDMI Data Object using a Non-CDMI Content Type 52
Table 13 – HTTP Status Codes - Create a Data Object using a Non-CDMI Content Type 52
Table 14 – Request Headers - Read a CDMI Data Object using CDMI Content Type 54
Table 15 – Response Headers - Read a CDMI Data Object using CDMI Content Type 54
Table 16 – Response Message Body - Read a Data Object using CDMI Content Type 54
Table 17 – HTTP Status Codes - Read a CDMI Data Object using CDMI Content Type 57
Table 18 – Request Header - Read a CDMI Data Object using a Non-CDMI Content Type 59
Table 19 – Response Headers - Read a CDMI Data Object using a Non-CDMI Content Type 59
Table 20 – HTTP Status Codes - Read a CDMI Data Object using a Non-CDMI Content Type 60
Table 21 – Request Headers - Update a CDMI Data Object using CDMI Content Type 62
Table 22 – Request Message Body - Update a CDMI Data Object using CDMI Content Type 62
Table 23 – Response Header - Update a CDMI Data Object using CDMI Content Type 64
Table 24 – HTTP Status Codes - Update a CDMI Data Object using CDMI Content Type 64
Table 25 – Request Headers - Update a CDMI Data Object using a Non-CDMI Content Type 67
Table 26 – Response Header - Update a CDMI Data Object using a Non-CDMI Content Type 67
Table 27 – HTTP Status Codes - Update a CDMI Data Object using a Non-CDMI Content Type 68
Table 28 – Request Header - Delete a CDMI Data Object using CDMI Content Type 69
Table 29 – HTTP Status Codes - Delete a CDMI Data Object using CDMI Content Type 70
Table 30 – HTTP Status Codes - Delete a CDMI Data Object using a Non-CDMI Content Type............. 71
Table 31 – Container Metadata ... 73
Table 32 – Request Headers - Create a Container Object using CDMI Content Type 75
Table 33 – Request Message Body - Create a Container Object using CDMI Content Type 75
Table 34 – Response Headers - Create a Container Object using CDMI Content Type 77
Table 35 – Response Message Body - Create a Container Object using CDMI Content Type 77
Table 36 – HTTP Status Codes - Create a CDMI Container Object using CDMI Content Type 78
Table 37 – HTTP Status Codes - Create a Container Object using a Non-CDMI Content Type 81
Table 38 – Request Headers - Read a Container Object using CDMI Content Type 82
Table 39 – Response Headers - Read a Container Object using CDMI Content Type............................. 82
Table 40 – Response Message Body - Read a Container Object using CDMI Content Type 83
Table 41 – HTTP Status Codes - Read a Container Object using CDMI Content Type 84
Table 42 – Request Headers - Update a Container Object using CDMI Content Type 87
Table 43 – Request Message Body - Update a Container Object using CDMI Content Type 88
Table 44 – Response Header - Update a Container Object using CDMI Content Type 89
Table 45 – HTTP Status Codes - Update a Container Object using CDMI Content Type 89
Table 46 – Request Header - Delete a Container Object using CDMI Content Type 91
Table 47 – HTTP Status Codes - Delete a Container Object using CDMI Content Type.......................... 92
Table 48 – HTTP Status Codes - Delete a Container Object using a Non-CDMI Content Type............... 93
Table 49 – Request Headers - Create a New Data Object using CDMI Content Type 95
Table 50 – Request Message Body - Create a New Data Object using CDMI Content Type................... 96
Table 51 – Response Headers - Create a New Data Object using CDMI Content Type 98
Table 52 – Response Message Body - Create a New Data Object using CDMI Content Type 98
Table 53 – HTTP Status Codes - Create a New Data Object using CDMI Content Type 99
Table 54 – Request Header - Create a New Data Object using a Non-CDMI Content Type 101
Table 55 – Response Header - Create a New Data Object using a Non-CDMI Content Type 102
Table 56 – HTTP Status Codes - Create a New Data Object using a Non-CDMI Content Type 102

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 12

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
Table 57 – Request Headers - Create a New Queue Object using CDMI Content Type........................ 104
Table 58 – Request Message Body - Create a New Queue Object using CDMI Content Type.............. 105
Table 59 – Response Headers - Create a New CDMI Queue Object using CDMI Content Type........... 106
Table 60 – Response Message Body - Create a New Queue Object with CDMI Content 106
Table 61 – HTTP Status Codes - Create a New CDMI Queue Object using CDMI Content Type.......... 107
Table 62 – Required Metadata for a Domain Object ... 109
Table 63 – Contents of Domain Summary Objects ... 111
Table 64 – Required Settings for Domain Member User Objects ... 113
Table 65 – Required Settings for Domain Member Delegation Objects.. 114
Table 66 – Request Headers - Create a Domain Object using CDMI Content Type 115
Table 67 – Request Message Body - Create a Domain Object using CDMI Content Type 116
Table 68 – Response Headers - Create a Domain Object using CDMI Content Type............................ 117
Table 69 – Response Message Body - Create a Domain Object using CDMI Content Type 117
Table 70 – HTTP Status Codes - Create a Domain Object using CDMI Content Type 118
Table 71 – Request Headers - Read a Domain Object using CDMI Content Type................................. 119
Table 72 – Response Headers - Read a Domain Object using CDMI Content Type.............................. 120
Table 73 – Response Message Body - Read a Domain Object using CDMI Content Type.................... 120
Table 74 – HTTP Status Codes - Read a Domain Object using CDMI Content Type............................. 121
Table 75 – Request Headers - Update a Domain Object using CDMI Content Type.............................. 123
Table 76 – Request Message Body - Update a Domain Object using CDMI Content Type 123
Table 77 – Response Header - Update a Domain Object using CDMI Content Type............................. 124
Table 78 – HTTP Status Codes - Update a Domain Object using CDMI Content Type.......................... 124
Table 79 – Request Headers - Delete a Domain Object using CDMI Content Type............................... 125
Table 80 – HTTP Status Codes - Delete a Domain Object using CDMI Content Type........................... 126
Table 81 – Request Headers - Create a Queue Object using CDMI Content Type 129
Table 82 – Request Message Body - Create a Queue Object using CDMI Content Type...................... 130
Table 83 – Response Headers - Create a Queue Object using CDMI Content Type 131
Table 84 – Response Message Body - Create a Queue Object using CDMI Content Type 131
Table 85 – HTTP Status Codes - Create a Queue Object using CDMI Content Type 132
Table 86 – Request Headers - Read a Queue Object using CDMI Content Type 134
Table 87 – Response Headers - Read a Queue Object using CDMI Content Type 134
Table 88 – Response Message Body - Read a Queue Object using CDMI Content Type 135
Table 89 – HTTP Status Codes - Read a Queue Object using CDMI Content Type 137
Table 90 – Request Headers - Update a Queue Object using CDMI Content Type 140
Table 91 – Request Message Body - Update a Queue Object using CDMI Content Type 140
Table 92 – Response Header - Update a Queue Object using CDMI Content Type 141
Table 93 – HTTP Status Codes - Update a Queue Object using CDMI Content Type 141
Table 94 – Request Header - Delete a Queue Object using CDMI Content Type 142
Table 95 – HTTP Status Codes - Delete a Queue Object using CDMI Content Type 143
Table 96 – Request Headers - Enqueue a New Queue Object Value using CDMI Content Type 144
Table 97 – Request Message Body - Enqueue a New Queue Value using CDMI Content Type 144
Table 98 – HTTP Status Codes - Enqueue a New Queue Object Value using CDMI Content Type 146
Table 99 – Request Header - Delete a Queue Object Value using CDMI Content Type 148
Table 100 – HTTP Status Codes - Delete a Queue Object Value using CDMI Content Type 149
Table 101 – System-Wide Capabilities.. 151
Table 102 – Capabilities for Storage System Metadata .. 154
Table 103 – Capabilities for Data System Metadata ... 154
Table 104 – Capabilities for Data Objects ... 157
Table 105 – Capabilities for Containers .. 157
Table 106 – Capabilities for Domain Objects .. 159
Table 107 – Capabilities for Queue Objects.. 160
Table 108 – Request Headers - Read a Capabilities Object using CDMI Content Type 161
Table 109 – Response Headers - Read a Capabilities Object using CDMI Content Type...................... 161
Table 110 – Response Message Body - Read a Capabilities Object using CDMI Content Type 162
Table 111 – HTTP Status Codes - Read a Capabilities Object using CDMI Content Type 162
Table 112 – ACE Types .. 180
Table 113 – Who Identifiers... 181
Table 114 – ACE Flags ... 181

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

13 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
Table 115 – ACE Bit Masks... 182
Table 116 – Storage System Metadata ... 187
Table 117 – Data System Metadata .. 188
Table 118 – Provided Values of Data Systems Metadata Items ... 193
Table 119 – Query Matching Expressions... 200
Table 120 – Required Metadata for a Logging Queue .. 208
Table 121 – Logging Status Metadata... 209
Table 122 – Required Metadata for a Notification Queue ... 211
Table 123 – Notification Status Metadata.. 214
Table 124 – Required Metadata for a Query Queue ... 215
Table 125 – Query Status Metadata.. 216

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 14

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

©ISO/IEC 2012 – All rights reserved 15

INFORMATION TECHNOLOGY –
CLOUD DATA MANAGEMENT INTERFACE (CDMI™)

Foreword

ISO (International Organization for Standardization) and IEC (International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or
IEC participate in the development of International Standards. Their preparation is entrusted to technical
committees; any ISO and IEC member body interested in the subject dealt with may participate in this
preparatory work. International governmental and non-governmental organizations liaising with ISO and
IEC also participate in this preparation.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC
JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national
bodies for voting. Publication as an International Standard requires approval by at least 75 % of the
national bodies casting a vote.

The formal decisions or agreements of IEC and ISO on technical matters express, as nearly as possible,
an international consensus of opinion on the relevant subjects since each technical committee has
representation from all interested IEC and ISO member bodies.

IEC, ISO and ISO/IEC publications have the form of recommendations for international use and are
accepted by IEC and ISO member bodies in that sense. While all reasonable efforts are made to ensure
that the technical content of IEC, ISO and ISO/IEC publications is accurate, IEC or ISO cannot be held
responsible for the way in which they are used or for any misinterpretation by any end user.

In order to promote international uniformity, IEC and ISO member bodies undertake to apply IEC, ISO and
ISO/IEC publications transparently to the maximum extent possible in their national and regional
publications. Any divergence between any ISO/IEC publication and the corresponding national or regional
publication should be clearly indicated in the latter.

ISO and IEC provide no marking procedure to indicate their approval and cannot be rendered responsible
for any equipment declared to be in conformity with an ISO/IEC publication.

All users should ensure that they have the latest edition of this publication.

No liability shall attach to IEC or ISO or its directors, employees, servants or agents including individual
experts and members of their technical committees and IEC or ISO member bodies for any personal injury,
property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs
(including legal fees) and expenses arising out of the publication of, use of, or reliance upon, this ISO/IEC
publication or any other IEC, ISO or ISO/IEC publications.

Attention is drawn to the normative references cited in this publication. Use of the referenced publications
is indispensable for the correct application of this publication.

Attention is drawn to the possibility that some of the elements of this International Standard may be the
subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 6.

IMPORTANT – The ‘colour inside’ logo on the cover page of this publication indicates that it contains
colours which are considered to be useful for the correct understanding of its content. Users should
therefore print this document using a colour printer.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

1

2

3

4

ISO/IEC 17826:2012(E)
Introduction

This CDMI™ international standard is intended for application developers who are implementing or using
cloud storage. It documents how to access cloud storage and to manage the data stored there.

This document is organized as follows:

1 - Scope Defines the scope of this document

2 - References Lists the normative references for this document

3 - Terms Provides terminology used in this document

4 - Conventions Describes the conventions used in presenting the interfaces and
the typographical conventions used in this document

5 - Overview of Cloud Storage Provides a brief overview of cloud storage and details the
philosophy behind this International Standard as a model for the
operations

6 - Common Operations Gives an example of the resources that may be accessed and
the representations used to modify them

7 - Interface Standard Provides a description of HTTP status codes, Cloud Data
Management Interface (CDMI) object types, object references,
and object manipulations

8 - Data Object Resource Operations Provides the normative standard of data object resource
operations

9 - Container Object Resource Operations Provides the normative standard of container object resource
operations

10 - Domain Object Resource Operations Provides the normative standard of domain object resource
operations

11 - Queue Object Resource Operations Provides the normative standard of queue object resource
operations

12 - Capability Object Resource Operations Provides the normative standard of capability object resource
operations

13 - Exported Protocols Discusses how virtual machines in the cloud computing
environment may use the exported protocols from CDMI
containers

14 - Snapshots Discusses how snapshots are accessed under CDMI containers

15 - Serialization/Deserialization Discusses serialization and deserialization, including import and
export of serialized data under CDMI

16 - Metadata Provides the normative standard of the metadata used in the
interface

17 - Retention and Hold Management Describes the optional retention management disciplines to be
implemented into the system management functions

18 - Scope Specification Describes the structure of the scope specification for JSON
objects

19 - Results Specification Provides a standardized mechanism to define subsets of CDMI
object contents

20 - Logging Describes CDMI functional logging for object functions, security
events, data management events, and queues

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 16

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
21 - Notification Queues Describes how CDMI clients may efficiently discover what
changes have occurred to the system

22 - Query Queues Describes how CDMI clients may efficiently discover what
content matches a given set of metadata query criteria or full-
content search criteria

Annex A - (normative) Transport Security Provides normative text for securing the HTTP communications
protocol for transferring CDMI messages

Annex B - (informative) Bibliography Provides informative references that may contain additional
useful information

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

17 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

ISO/IEC 17826:2012(E)
1 Scope

This CDMI™ international standard specifies the interface to access cloud storage and to manage the data
stored therein. This international standard applies to developers who are implementing or using cloud
storage.

2 Normative References

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

The provisions of the referenced specifications other than ISO/IEC, IEC, ISO and ITU documents, as
identified in this clause, are valid within the context of this international standard. The reference to such a
specification within this international standard does not give it any further status within ISO/IEC. In
particular, it does not give the referenced specifications the status of an international standard.

ISO 3166, Codes for the representation of names of countries and their subdivisions (Parts 1, 2 and 3)

ISO 4217:2008, Codes for the representation of currencies and funds

ISO 8601:2004, Data elements and interchange formats – Information interchange – Representation of
dates and times

ISO/IEC 9594-8:2008, Information technology -- Open Systems Interconnection -- The Directory: Public-
key and attribute certificate frameworks

ISO/IEC 14776-414, SCSI Architecture Model - 4 (SAM-4)

IEEE Std 1003.1, 2004, POSIX ERE, The Open Group, Base Specifications Issue 6 - http://www.unix.org/
version3/ieee_std.html

RFC 2045, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies -
http://www.ietf.org/rfc/rfc2045.txt

RFC 2119, Key Words for Use in RFCs to Indicate Requirement Levels - http://tools.ietf.org/html/rfc2119

RFC 2246, The TLS Protocol Version 1.0 - http://www.ietf.org/rfc/rfc2246.txt

RFC 2578, Structure of Management Information Version 2 (SMIv2) - http://www.ietf.org/rfc/rfc2578.txt

RFC 2616, Hypertext Transfer Protocol -- HTTP/1.1 - http://www.ietf.org/rfc/rfc2616.txt

RFC 2617, HTTP Authentication: Basic and Digest Access Authentication - http://www.ietf.org/rfc/
rfc2617.txt

RFC 3280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile - http://www.ietf.org/rfc/rfc3280.txt

RFC 3530, Network File System (NFS) Version 4 Protocol - http://www.ietf.org/rfc/rfc3530.txt

RFC 3720, Internet Small Computer Systems Interface (iSCSI) - http://www.ietf.org/rfc/rfc3720.txt

RFC 3986, Uniform Resource Identifier (URI): Generic Syntax - http://www.ietf.org/rfc/rfc3986.txt

RFC 4346, The Transport Layer Security (TLS) Protocol Version 1.1 - http://www.ietf.org/rfc/rfc4346.txt

RFC 4627, The Application/JSON Media Type for JavaScript Object Notation (JSON) - http://www.ietf.org/
rfc/rfc4627.txt

RFC 4648, The Base16, Base32, and Base64 Data Encodings, http://www.ietf.org/rfc/rfc4648.txt

RFC 4918, HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV) - 
http://www.ietf.org/rfc/rfc4918.txt

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 18

http://tools.ietf.org/html/rfc2119
http://www.ietf.org/rfc/rfc3720.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc3720.txt
https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

41

42

ISO/IEC 17826:2012(E)
RFC 5246, The Transport Layer Security (TLS) Protocol Version 1.2 - http://www.ietf.org/rfc/rfc5246.txt

RFC 6208, Cloud Data Management Interface (CDMI) Media Types - http://www.ietf.org/rfc/rfc6208.txt

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

19 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

ISO/IEC 17826:2012(E)
3 Terms

For the purposes of this document, the following terms and definitions apply.

3.1
Access Control List
ACL
a persistent list, commonly composed of Access Control Entries (ACEs), that enumerates the rights of
principals (users and groups) to access resources

3.2
CDMI™
Cloud Data Management Interface

3.3
CIFS
Common Internet File System

3.4
cloud storage
see Data storage as a Service

3.5
CRC
cyclic redundancy check

3.6
CRUD
create, retrieve, update, delete

3.7
Data storage as a Service
DaaS
delivery of virtualized storage and data services on demand over a network, based on a request for a given
service level that hides limits to scalability, is either self-provisioned or provisionless, and is billed based on
consumption

3.8
domain
a shared user authorization database that contains users, groups, and their security policies and
associated accounting information

Note: Each CDMI object belongs to a single domain, and each domain provides user mapping and
accounting information.

3.9 eventual consistency
a behavior of transactional systems that does not provide immediate consistency guarantees to provide
enhanced system availability and tolerance to network partitioning

3.10
HTTP
HyperText Transfer Protocol

3.11
Infrastructure as a Service
IaaS
delivery over a network of an appropriately configured virtual computing environment, based on a request
for a given service level

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 20

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

ISO/IEC 17826:2012(E)
Note: Typically, IaaS is either self-provisioned or provisionless and is billed based on consumption.

3.12
iSCSI
Internet Small Computer Systems Interface (see RFC 3720)

3.13
LUN
Logical Unit Number (see ISO/IEC 14776-414)

3.14
MIME
Multipurpose Internet Mail Extensions (see RFC 2045)

3.15
NFS
Network File System (see RFC 3530)

3.16
object
an entity that has an object ID, a unique URI, and contains state

Note: Types of CDMI objects include data objects, containers, capabilities, domains, and queues.

3.17
object identifier
a globally-unique value assigned at creation time to identify an object

3.18
OCCI
Open Cloud Computing Interface (see OCCI specification)

3.19
Platform as a Service
PaaS
delivery over a network of a virtualized programming environment, consisting of an application deployment
stack based on a virtual computing environment

Note: Typically, PaaS is based on IaaS, is either self-provisioned or provisionless, and is billed based on
consumption.

3.20
POSIX
Portable Operating System Interface (see IEEE Std 1003.1)

3.21
private cloud
delivery of SaaS, PaaS, IaaS, and/or DaaS to a restricted set of customers, usually within a single
organization

Note: Private clouds are created due to issues of trust.

3.22
public cloud
delivery of SaaS, PaaS, IaaS, and/or DaaS to, in principle, a relatively unrestricted set of customers

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

21 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

ISO/IEC 17826:2012(E)
3.23
Representational State Transfer
REST
specific set of principles for defining, addressing, and interacting with resources addressable by URIs (see
REST thesis)

3.24
RPO
recovery point objective

3.25
RTO
recovery time objective

3.26
service level
performance targets for a service

3.27
Software as a Service
SaaS
delivery over a network, on demand, of the use of an application

3.28 thin provisioning
technology that allocates the physical capacity of a volume or file system as applications write data, rather
than pre-allocating all the physical capacity at the time of provisioning

3.29
Uniform Resource Identifier
URI
compact sequence of characters that identifies an abstract or physical resource (see RFC 3986)

3.30
virtualization
presentation of resources as if they are physical, when in fact, they are decoupled from the underlying
physical resources

3.31
WebDAV
Web Distributed Authoring and Versioning (see RFC 4918)

3.32
XAM
eXtensible Access Method (see INCITS 464-2010)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 22

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
4 Conventions

4.1 Interface Format

Each interface description has nine components, as described in Table 1.

4.2 Typographical Conventions

All code text is shown in a fixed-width font, as follows:

EXAMPLE

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "mimetype" : "text/plain",
 "metadata" : {

 },
 "value" : "This is the Value of this Data Object"
}

4.3 Request and Response Body Requirements

In request and response message body tables, the Requirement column contains one of the following
three values:

• Mandatory. The value specified in this row shall be provided.

• Conditional. If the condition(s) specified in the "Description" cell of this row (to the left of the
Requirement) is met, the value specified in this row shall be provided. Otherwise it may be
provided unless the Description specifically prohibits it, in which case it shall not be provided.

• Optional. The value specified in this row may be provided.

Table 1 - Interface Format

Component Description

Synopsis The GET, PUT, POST, and DELETE semantics

Delayed Completion of Create For long-running operations, a description of behavior when the operation does
not immediately complete

Capabilities A description of the supported operations

Request Headers The request headers, such as Accept, Authorization, Content-Length, Content-
Type, X-CDMI-Specification-Version

Request Message Body A description of the message body contents

Response Headers The response headers, such as Content-Length, Content-Type

Response Message Body A description of the message body contents

Response Status A list of HTTP status codes

Example An example of the operation

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 23

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

27

28
4.4 Key Word Requirements

In this international standard, the key words in Table 2 shall be interpreted as described in RFC 2119.

Table 2 - Key Word Requirements

Key Words Description

shall
must
required

An action described with any of these key words is unconditionally required.

shall not
must not

An action described with either of these key word phrases is unconditionally prohibited.

should
recommended

Valid reasons may exist in specific circumstances to ignore a particular action described with
either of these key words, but the full implications must be understood and carefully weighed
before choosing a different course.

should not
not recommended

Valid reasons may exist in specific circumstances to accept a particular action described by
either of these key word phrases, but the full implications should be understood and the case
carefully weighed before implementing any action described with these key words.

may
optional

An action described with either of these key words is truly optional. One vendor may choose
to include the option because a particular marketplace requires it or because the vendor feels
that it enhances the product, while another vendor may omit the same option. An
implementation which does not include a particular option must be prepared to interoperate
with another implementation that does include the option, though perhaps with reduced
functionality. Likewise, an implementation which does include a particular option must be
prepared to interoperate with another implementation that does not include the option
(except, of course, for the feature the option provides).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

24 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31
5 Overview of Cloud Storage

5.1 Introduction

When discussing cloud storage and standards, it is important to distinguish the various resources that are
being offered as services. These resources are exposed to clients as functional interfaces (i.e., data paths)
and are managed by management interfaces (i.e., control paths). This international standard explores the
various types of interfaces that are part of offerings today and shows how they are related. This
international standard defines a model for the interfaces that may be mapped to the various offerings and
a model that forms the basis for cloud storage interfaces into the future.

Another important concept in this international standard is that of metadata. When managing large
amounts of data with differing requirements, metadata is a convenient mechanism to express those
requirements in such a way that underlying data services may differentiate their treatment of the data to
meet those requirements.

The appeal of cloud storage is due to some of the same attributes that define other cloud services: pay as
you go, the illusion of infinite capacity (elasticity), and the simplicity of use/management. It is therefore
important that any interface for cloud storage support these attributes, while allowing for a multitude of
business use cases.

5.2 What is Cloud Storage?

The use of the term "cloud" in describing these new models arose from architecture drawings that typically
used a cloud as the icon for a network. The cloud represents any-to-any network connectivity in an
abstract way. In this abstraction, the network connectivity in the cloud is represented without concern for
how it is made to happen.

The cloud abstraction of complexity produces a simple base on which other features can be built. The
general cloud model extends this base by adding a pool of resources. An important part of the cloud model
is the concept of a pool of resources that is drawn from, on demand, in small increments. A relatively
recent innovation that has made this possible is virtualization.

Thus, cloud storage is simply the delivery of virtualized storage on demand. The formal term that is used
for this is Data storage as a Service (DaaS).

5.3 Data Storage as a Service

By abstracting data storage behind a set of service interfaces and delivering it on demand, a wide range of
actual offerings and implementations are possible. The only type of storage that is excluded from this
definition is that which is delivered in fixed-capacity increments instead of based on demand.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 25

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50
An important part of any DaaS offering is the support of legacy clients. Support is accommodated with
existing standard protocols such as iSCSI (and others) for block and CIFS/NFS or WebDAV for file
network storage, as shown in Figure 1.

The difference between the purchase of a dedicated appliance and that of cloud storage is not the
functional interface, but the fact that the storage is delivered on demand. The customer pays for either
what they actually use or what they have allocated for use. In the case of block storage, a Logical Unit
Number (LUN), or virtual volume, is the granularity of allocation. For file protocols, a file system is the unit
of granularity. In either case, the actual storage space may be thin provisioned and billed for based on
actual usage. Data services, such as compression and deduplication, may be used to further reduce the
actual space consumed.

Managing this storage is typically done out of band for these standard data storage interfaces, either
through an API, or more commonly, through an administrative browser-based user interface. This out-of-
band interface may be used to invoke other data services as well (e.g., snapshot and cloning).

In this model, the underlying storage space exposed by the out-of-band interfaces is abstracted and
exposed using the notion of a container. A container is not only a useful abstraction for storage space, but
also serves as a grouping of the data stored in it and a point of control for applying data services in the
aggregate.

Each data object is created, retrieved, updated, and deleted as a separate resource. In this type of
interface, a container, if used, is a simple grouping of data objects for convenience. Nothing prevents the

Figure 1 - Existing Data Storage Interface Standards

Container

POSIX (NFS, CIFS,
WebDAV)

iSCSI LUNs, Targets

Block Storage Client Filesystem Client

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

26 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81
concept of containers from being hierarchical, although any given implementation might support only a
single level (see Figure 2).

5.4 Data Management for Cloud Storage

Many of the initial offerings of cloud storage focused on a kind of "best effort" quality of storage service and
ignored most other types of data services. To address the needs of enterprise applications with cloud
storage, however, there is an increasing need to offer better quality of service and the deployment of
additional data services.

Cloud storage may lose its abstraction and simplicity benefits if new data services that require complex
management are added. Cloud storage customers are likely to resist new demands on their time (e.g.,
setting up backup schedules through dedicated interfaces, deploying data services individually for data
elements).

By supporting metadata in a cloud storage interface and prescribing how the storage system and data
system metadata is interpreted to meet the requirements of the data, the simplicity required by the cloud
storage model may be maintained while still addressing the requirements of enterprise applications and
their data.

User metadata is retained by the cloud and may be used to find the data objects and containers by
performing a query for specific metadata values. The schema for this metadata may be determined by
each application, domain, or user. For more information on support for user metadata, see 16.2.

Storage system metadata is produced/interpreted by the cloud offering and basic storage functions (e.g.,
modification and access statistics, access control). For more information on support for storage system
metadata, see 16.3.

Data system metadata is interpreted by the cloud offering as data requirements that control the operation
of underlying data services for that data. It may apply to an aggregation of data objects in a container or to
individual data objects, if the offering supports this level of granularity. For more information on support for
data system metadata, see 16.4.

5.5 Data and Container Management

There is no reason that managing data and managing containers should involve different interfaces.
Therefore, the use of metadata is extended from applying to individual data elements to applying to
containers of data as well. Thus, any data placed into a container inherits the data system metadata of the
container into which it was placed. When creating a new container within an existing container, the new
container would similarly inherit the metadata settings of its parent's data system metadata. After a data

Figure 2 - Storage Interfaces for Object Storage Client Data

Object Storage Client

CRUD
operations via
HTTP

Container
 Container

Container

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 27

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96
element is created, the data system metadata may be overridden at the container or individual data
element level, as desired.

Even if the provided interface does not support setting metadata on individual data elements, metadata
may still be applied to the containers. In such a case, the interface does not provide a mechanism to
override metadata that an individual data element inherits from its parent container. For file-based
interfaces that support extended attributes (e.g., CIFS, NFSv4), these extended attributes may be used to
specify the data system metadata to override that specified for the container.

5.6 Reference Model for Cloud Storage Interfaces

The Cloud Storage Reference Model is shown in Figure 3.

This model shows multiple types of cloud data storage interfaces that are able to support both legacy and
new applications. All of the interfaces allow storage to be provided on demand, drawn from a pool of
resources. The storage capacity is drawn from a pool of storage capacity provided by storage services.
The data services are applied to individual data elements, as determined by the data system metadata.
Metadata specifies the data requirements on the basis of individual data elements or on groups of data
elements (containers).

Figure 3 - Cloud Storage Reference Model

Data Storage Cloud

Storage
Services

Data Services

Storage
Services

Data Services

Storage
Services

Data Services

Storage
Services

Data Services

Storage
Services

Data Services

Storage
Services

Data Services

CDMI

Cloud Data
Management

Ta
b

le
Ta

b
le

Ta
b

le
Ta

b
le

Ta
b

le

Draws resources
on demand

 Container

POSIX (NFS,
CIFS, WebDAV)

iSCSI, FC, FCoE
LUNs, Targets

XAM VIM
for CDMI Database/Table

Client

XAM ClientObject Storage Client

Block Storage Client File System Client

CDMI Multiple, vendor-
specific interfaces

Container
 Container

Container

Data/Storage
Management Client

Management of the cloud
storage can be standalone
or part of the overall cloud
computing management.

Clients acting in the role of using a data storage interface

Clients acting in the
role of managing data/
storage

Clients can be inside the
storage cloud (i.e.,
providing storage
resources to the cloud as
well as consuming them)
or outside the storage
cloud (i.e., only consuming
resources).

Information
Services
(future)
Information

Services
(future)
Information

Services
(future)

Exports to cloud
computing

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

28 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138
5.7 Cloud Data Management Interface

The Cloud Data Management Interface (CDMI™) shown in Figure 3 may be used to create, retrieve,
update, and delete objects in a cloud. The features of the CDMI include functions that

• allow clients to discover the capabilities available in the cloud storage offering;

• manage containers and the data that is placed in them; and

• allow metadata to be associated with containers and the objects they contain.

This international standard divides operations into two types: those that use a CDMI content type in the
HTTP body and those that do not. While much of the same data is available via both types, providing both
allows for CDMI-aware clients and non-CDMI-aware clients to interact with a CDMI provider.

CDMI may also be used by administrative and management applications to manage containers, domains,
security access, and monitoring/billing information, even for storage that is functionally accessible by
legacy or proprietary protocols. The capabilities of the underlying storage and data services are exposed
so that clients may understand the offering.

Conformant cloud offerings may support a subset of the CDMI, as long as they expose the limitations in
the capabilities reported via the interface.

This international standard uses RESTful principles in the interface design where possible (see REST).

CDMI defines both a means to manage the data as well as a means to store and retrieve the data. The
means by which the storage and retrieval of data is achieved is termed a data path. The means by which
the data is managed is termed the control path. CDMI specifies both a data path and control path interface.

CDMI does not need to be used as the only data path and is able to manage cloud storage properties for
any data path interface (e.g., standardized or vendor specific).

Container metadata is used to configure the data requirements of the storage provided through the
exported protocol (e.g., block protocol or file protocol) that the container exposes. When an
implementation is based on an underlying file system to store data for a block protocol (e.g., iSCSI), the
CDMI container provides a useful abstraction for representing the data system metadata for the data and
the structures that govern the exported protocols.

A cloud offering may also support domains that allow administrative ownership to be associated with
stored objects. Domains allow the standard to (among other things):

• determine how user credentials are mapped to principals used in an Access Control List (ACL),

• allow granting of special cloud-related privileges, and

• allow delegation to external user authorization systems (e.g., LDAP or Active Directory).

Domains may also be hierarchical, allowing for corporate domains with multiple children domains for
departments or individuals. The domain concept is also used to aggregate usage data that is used to bill,
meter, and monitor cloud use.

Finally, capabilities allow a client to discover the capabilities of a CDMI implementation. Requirements
throughout this international standard shall be understood in the context of CDMI capabilities. Mandatory
requirements on functionality that is conditioned on a CDMI capability shall not be interpreted to require
implementation of that capability, but rather shall be interpreted to apply only to implementations that
support the functionality required by that capability.

For example, in 5.10, this international standard states, "Every cloud storage system shall allow object ID-
based access to stored objects". This requirement shall be understood in the context that access by object
ID is predicated on the presence of the cdmi_object_access_by_ID capability.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 29

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158
5.8 Object Model for CDMI

The model for CDMI is shown in Figure 4.

The five types of resources defined are shown in Table 3. The content type in any given operation is
specific to each type of resource.

For data storage operations, the client of the interface only needs to know about container objects and
data objects. All data path implementations are required to support at least one level of containers (see
5.5). Using the CDMI object model (see Figure 4), the client may send a PUT via CDMI (see 5.6) to the
new container URI and create a new container with the specified name. Container metadata are optional
and are expressed as a series of name-value pairs. After a container is created, a client may send a PUT
to create a data object within the newly created container. A subsequent GET will fetch the data object,
including the value field.

Queue objects are also defined (see Figure 4) and have special properties for in-order, first in, first-out
creation and fetching of queue values. More information on queues may be found in Clause 11.

CDMI defines two namespaces that can be used to access stored objects, a flat object ID namespace and
a hierarchical path-based namespace. Support for objects accessed by object ID is indicated by the
system-wide capability cdmi_object_access_by_ID, and support for objects accessed by hierarchical path
is indicated by the container capability cdmi_create_dataobject found on the root container (and any
subcontainers).

Objects are created by ID by performing an HTTP POST against a special URI, designated as 
/cdmi_objectid/ (see 9.8). Subsequent to creation, objects are modified by performing PUTs using the

Figure 4 - CDMI Object Model

Table 3 - Types of Resources in the Model

Resource Type Description Reference

Data objects Data objects are used to store values and provide functionality similar to
files in a file system.

See Clause 8.

Container objects Container objects have zero or more children, but do not store values. They
provide functionality similar to directories in a file system.

See Clause 9.

Domain objects Domain objects represent administrative groupings for user authentication
and accounting purposes.

See Clause 10.

Queue objects Queue objects store zero or move values and are accessed in a first-in-first-
out manner.

See Clause 11.

Capability objects Capability objects describe the functionality implemented by a CDMI server
and are used by a client to discover supported functionality.

See Clause 12.

Key/Vale Metadata
Children

Root Container

Key/Value Metadata
Children

Container

Key/Value Metadata
Values

Queue Object

Capability Entries
Children

Capability Objects

Summary
Membership
Children

Domain Objects

Key/Value Metadata
Value

Data Object

0..*
child

0..*
child

Child

capabilitiesURI

0..* 0..* 0..*

domainURI 1

1

capabilitiesURI

1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

30 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185
object ID assigned by the CDMI server, using the /cdmi_objectid/ URI (see 8.6). The same URI is used to
retrieve and delete objects by ID.

Objects are created by name by performing an HTTP PUT to the desired path URI (see 8.2). Subsequent
to creation, objects are modified by performing PUTs using the object path specified by the client (see 8.6).
The same URI is used to retrieve and delete objects by path.

CDMI defines mechanisms so that objects having only an object ID can be assigned a path location within
the hierarchical namespace, and so that objects having both an object ID and path can have their path
dropped, such that the object only has an object ID. This function is accomplished by using a move
modifier to a PUT or POST operation, as shown in Figure 5.

5.9 CDMI Metadata

CDMI uses many different types of metadata, including HTTP metadata, data system metadata, user
metadata, and storage system metadata.

HTTP metadata is metadata that is related to the use of the HTTP protocol (e.g., Content-Length, Content-
Type, etc.). HTTP metadata is not specifically related to this international standard but needs to be
discussed to explain how CDMI uses the HTTP standard.

CDMI data system metadata, user metadata, and storage system metadata is defined in the form of name-
value pairs. Vendor-defined data system metadata and storage system metadata names shall begin with
the reverse domain name of the vendor.

Data system metadata is metadata that is specified by a CDMI client and is a component of objects. Data
system metadata abstractly specifies the data requirements associated with data services that are
deployed in the cloud storage system.

User metadata consists of client-defined JSON strings, arrays, and objects that are stored in the metadata
field. The namespace used for user metadata names is self-administered (e.g., using the reverse domain
name), and user metadata names shall not begin with the prefix "cdmi_".

Storage system metadata is metadata that is generated by the storage services in the system (e.g.,
creation time, size) to provide useful information to a CDMI client.

The matrix of the creation and consumption of storage system metadata is shown in Table 4.

Figure 5 - Object Transitions between Named and ID-only

Table 4 - Creation/Consumption of Storage System Metadata

Created by User Created By System

Consumed by User User metadata Storage system metadata

Consumed by System Data system metadata N/A

Object with
Name and ID

Object with ID
only

PUT /name, {“move” : “/cdmi_objectid/<object ID>/"}

POST /cdmi_objectID/, {“move” : “/name"}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 31

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216
5.10 Object ID

Every object stored within a CDMI-compliant system shall have a globally unique object identifier (ID)
assigned at creation time. The CDMI object ID is a string with requirements for how it is generated and how
it obtains its uniqueness. Each offering that implements CDMI is able to produce these identifiers without
conflicting with other offerings.

Every cloud storage system shall allow object ID-based access to stored objects by allowing the object's ID
to be appended to the root container URI. If the data object "MyDataObject.txt" has an object ID of
"00006FFD001001CCE3B2B4F602032653", the following pair of URIs access the same data object:

http://cloud.example.com/root/MyDataObject.txt

http://cloud.example.com/root/cdmi_objectid/00006FFD001001CCE3B2B4F602032653

If containers are supported, they shall also be accessible by object ID. If the container "MyContainer" has
an object ID of "00006FFD0010AA33D8CEF9711E0835CA", the following pairs of URIs access the same
data object:

http://cloud.example.com/MyContainer/

http://cloud.example.com/cdmi_objectid/00006FFD0010AA33D8CEF9711E0835CA/

http://cloud.example.com/MyContainer/MyDataObject.txt

http://cloud.example.com/cdmi_objectid/00006FFD0010AA33D8CEF9711E0835CA/MyDataObject.txt

5.11 CDMI Object ID Format

The offering shall create the object ID, which identifies an object. The object ID shall be globally unique
and shall conform to the format defined in Figure 6. The native format of an object ID is a variable-length
byte sequence and shall be a maximum length of 40 bytes. An application should treat object IDs as
opaque byte strings. However, the object ID format is defined such that its integrity may be validated, and
independent offerings may assign unique object ID values independently.

The fields shown in Figure 6 are defined as follows:

• The reserved bytes shall be set to zero.

• The Enterprise Number field shall be the SNMP enterprise number of the offering organization that
created the object ID, in network byte order. See RFC 2578 and http://www.iana.org/assignments/
enterprise-numbers. 0 is a reserved value.

• The byte at offset 5 shall contain the full length of the object ID, in bytes.

• The CRC field shall contain a 2-byte (16-bit) CRC in network byte order. The CRC field enables
the object ID to be validated for integrity. The CRC field shall be generated by running the

0 1 2 3 4 5 6 7 8 9 10 ... 38 39

Reserved
(zero)

Enterprise Number Reserved
(zero)

Length CRC Opaque Data

Figure 6 - Object ID Format

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

32 ©ISO/IEC 2012 – All rights reserved

http://www.iana.org/assignments/enterprise-numbers
https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260
algorithm (see CRC) across all bytes of the object ID, as defined by the Length field, with the CRC
field set to zero. The CRC function shall have the following fields:

— Name : "CRC-16",

— Width : 16,

— Poly : 0x8005,

— Init : 0x0000,

— RefIn : True,

— RefOut : True,

— XorOut : 0x0000, and

— Check : 0xBB3D.

This function defines a 16-bit CRC with polynomial 0x8005, reflected input, and reflected output.
This CRC-16 is specified in CRC.

• Opaque data in each object ID shall be unique for a given Enterprise Number.

The native format for an object ID is binary. When necessary, such as when included in URIs and JSON
strings, the object ID textual representation shall be encoded using base 16 encoding rules described in
RFC 4648 and shall be case insensitive.

5.12 Security

Security, in the context of CDMI, refers to the protective measures employed in managing and accessing
data and storage. The specific objectives to be addressed by security include:

• provide a mechanism that assures that the communications between a CDMI client and server
may not be read or modified by a third party;

• provide a mechanism that allows CDMI clients and servers to provide an assurance of their
identity;

• provide a mechanism that allows control of the actions a CDMI client is permitted to perform on a
CDMI server;

• provide a mechanism for records to be generated for actions performed by a CDMI client on a
CDMI server;

• provide mechanisms to protect data at rest;

• provide a mechanism to eliminate data in a controlled manner; and

• provide mechanisms to discover the security capabilities of a particular implementation.

Security measures within CDMI may be summarized as

• transport security,

• user and entity authentication,

• authorization and access controls,

• data integrity,

• data and media sanitization,

• data retention,

• protections against malware,

• data at-rest encryption, and

• security capabilities.

With the exception of both the transport security and the security capabilities, which are mandatory to
implement, the security measures may vary significantly from implementation to implementation.

When security is a concern, the CDMI client should begin with a series of security capability lookups (see
12.1.1) to determine the exact nature of the security features that are available. Based on the values of

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 33

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301
these capabilities, a risk-based decision should be made as to whether the CDMI server should be used.
This is particularly true when the data to be stored in the cloud storage is sensitive or regulated in a way
that requires stored data to be protected (e.g., encrypted) or handled in a particular manner (e.g., full
accountability and traceability of management and access).

HTTP is the mandatory transport mechanism, and HTTP over TLS (i.e., HTTPS) is the mechanism used to
secure the communications between CDMI clients and servers. To ensure both security and
interoperability, all CDMI implementations shall implement the Transport Layer Security (TLS) protocol as
described in Annex A, but its use by CDMI clients and servers is optional.

5.13 Required HTTP Support

5.13.1 RFC 2616 Support Requirements

A conformant implementation of CDMI shall also be a conformant implementation of RFC2616 (see RFC
2616) (i.e., HTTP 1.1). The subclauses below list the sections of RFC 2616 that shall be supported;
however, this list is not comprehensive.

5.13.2 Content-Type Negotiation

For CDMI operations, media types for CDMI objects are used, as defined in RFC 6208.

A client may optionally supply an HTTP Accept header, as per section 14.1 of RFC 2616. If a client is
restricting the response to a specific CDMI media type, the corresponding media type shall be specified in
the Accept header. Otherwise, the Accept header may contain "*/*" or a list of media types, or it may be
omitted.

If a request message body is present, the client shall include a Content-Type header, as per section 14.17
of RFC 2616. If the client does not provide a Content-Type header when required or provides a media type
in the Content-Type header that does not match with the existing resource media type, the server shall
return an HTTP status code of 400 Bad Request.

If a response message body is present, the server shall provide a Content-Type header.

This international standard may further qualify content negotiation (e.g., in 9.3, the absence of a Content-
Type header has a specific meaning).

5.13.3 Range Support

The server shall support HTTP Range headers and partial content responses (see Section 14.16 of RFC
2616).

5.13.4 URI Escaping

Percent escaping of reserved characters specified in RFC 3986 shall be applied to all text strings used in
URIs. This includes user-supplied field names, metadata names, object names, container names and
domain names when used in URIs.

Field names and values shall not be escaped when stored and sent in request and response message
bodies.

EXAMPLE A client retrieving a metadata item named "@user" from a container object with the name of
"@MyContainer" would perform the following request:

GET /%40MyContainer/?objectName;metadata:%40user HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
X-CDMI-Specification-Version: 1.0.2

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

34 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332
The response shall be:

HTTP/1.1 200 OK
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0.2

{
 "objectName": "@MyContainer",
 "metadata": {
 "@user": "test"
 }
}

5.13.5 Use of URIs

The format and syntax of URIs are defined by RFC 3986.

Every CDMI client shall maintain one or more root URIs that each correspond to a root container on the
CDMI server. Since all URIs to CDMI containers end in a trailing slash, all root URIs will end in a trailing
slash.

All URIs in this international standard are relative to the root URI unless otherwise noted. As a
consequence, the algorithm used for calculating the resolved URI is as described in Section 5.2 of RFC
3986.

Table 5 shows how relative URIs are resolved against root URIs.

This international standard places no restrictions on root and relative URIs. All of the examples in Table 5
are valid, use a root URI of http://cloud.example.com/, and return absolute path references, as shown in
the second line of Table 5.

5.13.6 Reserved Characters

The name of CDMI data objects, container objects, queue objects, domain objects and capability objects
shall not contain the "/" or "?" characters, as these characters are reserved for delimiters.

5.14 Time Representations

Unless otherwise specified, all date/time values are in the ISO 8601:2004 extended representation (YYYY-
MM-DDThh:mm:ss.ssssssZ). The full precision shall be specified, the sub-second separator shall be a ".",
the Z UTC zone indicator shall be included, and all timestamps shall be in UTC time zone. The YYYY-MM-
DDT24:00:00.000000Z hour shall not be used, and instead, it shall be represented as YYYY-MM-
DDT00:00:00.000000Z.

Table 5 - Relative URIs Resolved Against Root URIs

Root URI + Relative URI => Resolved URI

http://cloud.example.com/ cdmi_object/testObject http://cloud.example.com/cdmi_object/testObject

http://cloud.example.com/ /cdmi_object/testObject http://cloud.example.com/cdmi_object/testObject

http://cloud.example.com/p1/ cdmi_object/testObject http://cloud.example.com/p1/cdmi_object/testObject

http://cloud.example.com/p1/ /cdmi_object/testObject http://cloud.example.com/cdmi_object/testObject

http://cloud.example.com/p1/p2/ cdmi_object/testObject http://cloud.example.com/p1/p2/cdmi_object/
testObject

http://cloud.example.com/p1/p2/ /cdmi_object/testObject http://cloud.example.com/cdmi_object/testObject

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 35

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355
Unless otherwise specified, all date/time intervals are in the ISO 8601:2004 start date/end date
representation (YYYY-MM-DDThh:mm:ss.ssssssZ/YYYY-MM-DDThh:mm:ss.ssssssZ). The end-date
shall be equal to or later than the start-date. The full precision shall be specified, the sub-second separator
shall be a ".", the Z UTC zone indicator shall be included, and all timestamps shall be in UTC time zone.
The YYYY-MM-DDT24:00:00.000000Z hour shall not be used, and instead, it shall be represented as
YYYY-MM-DDT00:00:00.000000Z.

5.15 Backwards Compatibility

5.15.1 Value Transfer Encoding

CDMI version 1.0.1 introduces the concept of value transfer encoding to enable the storage and retrieval of
arbitrary binary data via CDMI content-type operations. Data objects created by CDMI 1.0 clients through
CDMI content-type operations shall have a value transfer encoding of "utf-8", and data objects created
through non-CDMI content-type operations shall have a value transfer encoding of "base64".

Data objects with a value transfer encoding of base 64 shall not have their value field accessible to CDMI
1.0 clients through CDMI content-type operations. Attempts to read the value of these objects shall return
an empty value field ("") to these clients. CDMI 1.0 clients can detect this condition when the cdmi_size
metadata is not 0 and the value field is empty.

5.15.2 Container Export Capabilities

CDMI version 1.0.2 normalizes the names of capabilities used by a client to discover if a container can be
exported via various protocols and deprecates the following container export capability names:

• cdmi_cifs_export,

• cdmi_nfs_export,

• cdmi_iscsi_export, and

• cdmi_occi_export.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

36 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52
6 Common Operations

6.1 Overview

All examples included in this international standard are informative.

This clause includes examples for the following CDMI content-type operations:

• discovering the capabilities of a cloud storage provider (see 6.2),

• creating a new container (see 6.3),

• creating a new data object (see 6.4),

• listing the contents of a container (see 6.5),

• reading the contents of a data object (see 6.6),

• reading only the value of a data object (see 6.7), and

• deleting a data object (see 6.8).

6.2 Discover the Capabilities of a Cloud Storage Provider

EXAMPLE Perform a GET to the capabilities URI:

GET /cdmi_capabilities/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-capability
X-CDMI-Specification-Version: 1.0.2

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-capability
X-CDMI-Specification-Version: 1.0.2

{
 "objectType" : "application/cdmi-capability",
 "objectID" : "00007E7F0010CEC234AD9E3EBFE9531D",
 "objectName" : "cdmi_capabilities/",
 "parentURI" : "/",
 "parentID" : "00007E7F0010DCECC805FB6D195DDBCB",
 "capabilities" : {
 "cdmi_domains" : "true",
 "cdmi_export_nfs" : "true",
 "cdmi_export_webdav" : "true",
 "cdmi_export_iscsi" : "true",
 "cdmi_queues" : "true",
 "cdmi_notification" : "true",
 "cdmi_query" : "true",
 "cdmi_metadata_maxsize" : "4096",
 "cdmi_metadata_maxitems" : "1024",
 "cdmi_size" : "true",
 "cdmi_list_children" : "true",
 "cdmi_read_metadata" : "true",
 "cdmi_modify_metadata" : "true",
 "cdmi_create_container" : "true",
 "cdmi_delete_container" : "true"
 },
 "childrenrange" : "0-3",
 "children" : [
 "domain/",
 "container/",
 "dataobject/",
 "queue/"
]
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 37

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106
6.3 Create a New Container

EXAMPLE Perform a PUT to the new container URI:

PUT /MyContainer/HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0.2

{
 "metadata" : {

 }
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0.2

{
 "objectType" : "application/cdmi-container",
 "objectID" : "00007E7F00102E230ED82694DAA975D2",
 "objectName" : "MyContainer/",
 "parentURI" : "/",
 "parentID" : "00007E7F0010128E42D87EE34F5A6560",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/container/",
 "completionStatus" : "Complete",
 "metadata" : {
 "cdmi_size" : "0"
 },
 "childrenrange" : "",
 "children" : [

]
}

6.4 Create a Data Object in a Container

EXAMPLE Perform a PUT to the new data object URI:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "mimetype" : "text/plain",
 "metadata" : {

 },
 "value" : "Hello CDMI World!"
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "objectType" : "application/cdmi-object",
 "objectID" : "00007E7F0010BD1CB8FF1823CF05BEE4",

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

38 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159
 "objectName" : "MyDataObject.txt",
 "parentURI" : "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "17"
 }
}

6.5 List the Contents of a Container

EXAMPLE Perform a GET to the container URI:

GET /MyContainer/ HTTP/1.1
Host: cloud.example.com
Accept: */*
X-CDMI-Specification-Version: 1.0.2

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0.2

{
 "objectType" : "application/cdmi-container",
 "objectID" : "00007E7F00102E230ED82694DAA975D2",
 "objectName" : "MyContainer/",
 "parentURI" : "/",
 "parentID" : "00007E7F0010128E42D87EE34F5A6560",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/container/",
 "completionStatus" : "Complete",
 "metadata" : {
 "cdmi_size" : "83"
 },
 "childrenrange" : "0-0",
 "children" : [
 "MyDataObject.txt"
]
}

6.6 Read the Contents of a Data Object

EXAMPLE GET from the data object URI:

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "objectType": "application/cdmi-object",
 "objectID": "00007E7F0010BD1CB8FF1823CF05BEE4",
 "objectName": "MyDataObject.txt",
 "parentURI": "/MyContainer/",

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 39

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/dataobject/",
 "completionStatus": "Complete",
 "mimetype": "text/plain",
 "metadata": {
 "cdmi_size": "17"
 },
 "valuetransferencoding": "utf-8",
 "valuerange": "0-16",
 "value": "Hello CDMI World!"
}

6.7 Read Only the Value of a Data Object

EXAMPLE Perform a GET to the data object URI:

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com

The following shows the response.

HTTP/1.1 200 OK
Content-Type: text/plain

Hello CDMI World!

6.8 Delete a Data Object

EXAMPLE Perform a DELETE to the data object URI:

DELETE /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.0.2

The following shows the response.

HTTP/1.1 204 No Content

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

40 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
7 Interface Standard

7.1 HTTP Status Codes

HTTP status codes (see Table 6) are used to convey the results of the RESTful operations and to follow
the basic semantics of HTTP with minimal overloading. Other HTTP status codes are not part of this
international standard and retain their original semantics from HTTP 1.1.

7.2 Object References

Object references are URIs within the cloud storage namespace that redirect to another URI within the
same or another cloud storage namespace. References are similar to soft links in a file system. The cloud
does not guarantee that the referenced URI will be valid after the time of creation.

References are visible as children in a container and are distinguished from non-references by a trailing
"?" character added to the reference name. Performing an operation (with the exception of create or
delete) to a reference URI will result in a 302 Found HTTP redirect, with the Location HTTP header
containing the redirect destination URI that was specified at the time the reference was created. The
reference’s destination URI shall not be changed after a reference has been created.

To continue, when CDMI clients receive a 302 Found redirect, they should retry the operation using the
URI contained within the Location header.

A delete operation on a reference URI shall delete the reference. References cannot be updated. To
update the destination of a redirect, the client shall first delete the reference and then create a new
reference to the desired destination.

EXAMPLE 1 GET to a URI, where the URI is a reference:

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

Table 6 - HTTP Status Codes

Status Code HTTP Name Description

200 OK The request has succeeded.

201 Created The resource was created successfully.

202 Accepted The long-running operation was accepted for processing.

204 No Content The operation was successful; no data was returned.

302 Found The resource is a reference to another resource.

400 Bad Request The request contents are missing or invalid.

401 Unauthorized The authentication/authorization credentials are invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

406 Not Acceptable No content can be produced at this URI that matches the request.

409 Conflict The operation conflicts with a non-CDMI™ access protocol lock or may
cause a state transition error on the server.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 41

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

25

26

27

28

29

30

31

32

33

34

35

36

37
The following shows the response.

HTTP/1.1 302 Found
Location: http://cloud.example.com/MyContainer/MyOtherDataObject.txt

References by object ID shall always redirect to a URI that ends with the same object ID as the request
URI.

EXAMPLE 2 GET to an object ID URI, where the URI is a reference:

GET /cdmi_objectid/00006FFD0010AA33D8CEF9711E0835CA HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

The following shows the response.

HTTP/1.1 302 Found
Location: http://archive.example.com/cdmi_objectid/00006FFD0010AA33D8CEF9711E0835CA

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

42 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
8 Data Object Resource Operations

8.1 Overview

Data objects are the fundamental storage component within CDMI™ and are analogous to files within a file
system. Each data object has a set of well-defined fields that include:

• a single value; and

• optional metadata that is generated by the cloud storage system and specified by the cloud user.

Data objects are addressed in CDMI in two ways:

• by name (e.g., http://cloud.example.com/dataobject); and

• by object ID (e.g., http://cloud.example.com/cdmi_objectid/
0000706D0010B84FAD185C425D8B537E).

Every data object has a single, globally-unique object identifier (ID) that remains constant for the life of the
object. Each data object shall have one or more URI addresses that allow the object to be accessed.

Every data object has a parent object from which the data object inherits data system metadata that is not
explicitly specified in the data object itself. Thus, the "budget.xls" data object stored at the following URI
would inherit data system metadata from its parent container, "finance":

http://cloud.example.com/finance/budget.xls

Individual fields within a data object may be accessed by specifying the field name after a question mark
"?" that is appended to the end of the data object URI. Thus, the following URI returns the value field in the
response message body:

http://cloud.example.com/dataobject?value

The encoding of the data transported in the data object value field depends on the data object
valuetransferencoding field.

• If the value transfer encoding of the object is set to "utf-8", the data stored in the value of the data
object shall be a valid UTF-8 string and shall be transported as a UTF-8 string in the value field.

• If the value transfer encoding of the object is set to "base64", the data stored in the value of the
data object can contain arbitrary binary sequences, and it shall be transported as a base 64-
encoded string in the value field.

Specific ranges of the value of a data object may be accessed by specifying a byte range after the value
field name. Thus, the following URI returns the first thousand bytes in the value field:

http://cloud.example.com/dataobject?value:0-999

Because a byte range of a UTF-8 string is often not a valid UTF-8 string, the response to a range request
shall always be transported in the value field as a base 64-encoded string. Likewise, when updating a
range of bytes within the value of a data object, the contents of the value field shall be transported as a
base 64-encoded string.

Byte ranges are specified as single inclusive byte ranges as per Section 14.35.1 of RFC 2616.

A list of unique fields, separated by a semicolon ";" may be specified, allowing multiple fields to be
accessed in a single request. Thus, the following URI returns the value and metadata fields in the
response message body:

http://cloud.example.com/dataobject?value;metadata

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 43

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79
When a client provides fields that are not defined in this international standard or deserializes an object
containing fields that are not defined in this international standard, these fields shall be stored as part of
the object but shall not be interpreted.

8.1.1 Data Object Metadata

Data object metadata may also include arbitrary user-supplied metadata and data system metadata, as
specified in Clause 16. Metadata shall be stored as a valid UTF-8 string. Binary data stored in user
metadata shall be first encoded such that it can be contained in a UTF-8 string, with the use of base 64
encoding recommended.

8.1.2 Data Object Consistency

Writing to a data object is an atomic operation.

• If a client reads a data object simultaneously with a write to that same data object, the reading
client shall get either the old version or the new version, but not a mixture of both.

• If a write is terminated due to errors, the contents of the data object shall be as if the write never
occurred (i.e., writes are atomic in the face of errors).

The timestamp returned in the response to a write indicates whether the write is the newest (i.e., the write
whose data is returned to subsequent reads, until another write is processed). If the timestamp returned for
one write shows a more recent time than the timestamp for another write, then the write with the new
timestamp shall be the one whose data is currently stored in the data object wherever the two writes
overlap.

Range writes can result in a gap in an object value that have had no data written to them. Reading from a
gap in a data object value shall return zero for each byte read.

Implementations of this international standard shall provide the atomicity features described in this
subclause for data objects that are accessed via CDMI. The atomicity properties of data objects that are
accessed by protocols other than CDMI are outside the scope of this international standard.

8.1.3 Data Object Representations

The representations in this clause are shown using JSON notation. Both clients and servers shall support
UTF-8 JSON representation. The request and response message body JSON fields may be specified or
returned in any order, with the exception that, if present, for data objects, the valuerange and value fields
shall appear last and in that order.

8.2 Create a Data Object Using CDMI Content Type

8.2.1 Synopsis

To create a new data object, the following request shall be performed:

PUT <root URI>/<ContainerName>/<DataObjectName>

To create a new data object by ID, see 9.9.

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e.,
"/") between each pair of container names.

• <DataObjectName> is the name specified for the data object to be created.

After it is created, the data object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

44 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120
8.2.2 Delayed Completion of Create

In response to a create operation for a data object, the server may return 202 Accepted to indicate that the
object is in the process of being created. This response is useful for long-running operations (e.g., copying
a large data object from a source URI). Such a response has the following implications.

• The server shall return a Location header with a URI to the object to be created along with an
HTTP status code of 202 Accepted.

• With 202 Accepted, the server implies that the following checks have passed:

— user authorization for creating the object;

— user authorization for read access to any source object for move, copy, serialize, or
deserialize; and

— availability of space to create the object or at least enough space to create a URI to report an
error.

• A client might not be able to immediately access the created object, e.g., due to delays resulting
from the implementation’s use of eventual consistency.

The client performs GET operations to the URI to track the progress of the operation. In response, the
server returns two fields in its response message body to indicate progress.

• A mandatory completionStatus text field contains either "Processing", "Complete", or an error
string starting with the value "Error".

• An optional percentComplete field contains the percentage of the operation that has completed
(0 to 100).

GET shall not return any value for the data object when completionStatus is not "Complete". If the final
result of the create operation is an error, the URI is created with the completionStatus field set to the error
message. It is the client's responsibility to delete the URI after the error has been noted.

8.2.3 Capabilities

The following capabilities describe the supported operations that may be performed when creating a new
data object:

• Support for the ability to create a new data object is indicated by the presence of the
cdmi_create_dataobject capability in the parent container.

• If the object being created in the parent container is a reference, support for that ability is indicated
by the presence of the cdmi_create_reference capability in the parent container.

• If the new data object is a copy of an existing data object, support for the ability to copy is indicated
by the presence of the cdmi_copy_dataobject capability in the parent container.

• If the new data object is the destination of a move, support for the ability to move the data object is
indicated by the presence of the cdmi_move_dataobject capability in the parent container.

• If the new data object is the destination of a deserialize operation, support for the ability to
deserialize the source data object is indicated by the presence of the cdmi_deserialize_dataobject
capability in the parent container.

• If the new data object is the destination of a serialize operation, support for the ability to serialize
the source data object is indicated by the presence of the cdmi_serialize_dataobject,
cdmi_serialize_container, cdmi_serialize_domain, or cdmi_serialize_queue capability in the parent
container.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 45

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

121

122

123

124
8.2.4 Request Headers

The HTTP request headers for creating a CDMI data object using CDMI content type are shown in Table 7.

8.2.5 Request Message Body

The request message body fields for creating a data object using CDMI content type are shown in Table 8.

Table 7 - Request Headers for Creating a CDMI Data Object using CDMI Content Type

Header Type Description Requirement

Accept Header
String

"application/cdmi-object" or a consistent value as per
clause 5.13.2

Optional

Content-Type Header
String

"application/cdmi-object" Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions supported by the client,
e.g., "1.0.2, 1.5, 2.0"

Mandatory

X-CDMI-Partial Header
String

"true". Indicates that the newly created object is part of a
series of writes and the value has not yet been fully
populated. If X-CDMI-Partial is present, the
completionStatus field in the Response Body shall be set to
"Processing".

Optional

Table 8 - Request Message Body - Create a Data Object using CDMI Content Type (Sheet 1 of 3)

Field Name Type Description Requirement

mimetype JSON
String

MIME type of the data contained within the value field
of the data object

• This field may be included when creating by value or
when deserializing, serializing, copying, and moving
a data object.

• This field shall be stored as part of the object.

• If this field is not specified, the value of "text/
plain" shall be assigned as the field value.

• This field shall not be included when creating a
reference.

• This MIME type value shall be converted to lower
case before being stored.

Optional

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with a 400 Bad Request error
response.IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 17

82
6:2

01
2

46 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
metadata JSON
Object

Metadata for the data object

• If this field is included when deserializing, serializing,
copying, or moving a data object, the value provided
in this field shall replace the metadata from the
source URI.

• If this field is not included when deserializing,
serializing, copying, or moving a data object, the
metadata from the source URI shall be used.

• If this field is included when creating a new data
object by specifying a value, the value provided in
this field shall be used as the metadata.

• If this field is not included when creating a new data
object by specifying a value, an empty JSON object
(i.e., "{}") shall be assigned as the field value.

• This field shall not be included when referencing a
data object.

Optional

domainURI JSON
String

URI of the owning domain

• If different from the parent domain, the user shall
have the cross_domain privilege (see
cdmi_member_privileges in Table 64).

• If not specified, the domain of the parent container
shall be used.

Optional

deserialize JSON
String

URI of a serialized CDMI data object that shall be
deserialized to create the new data object

Optionala

serialize JSON
String

URI of a CDMI object that shall be serialized into the
new data object

Optionala

copy JSON
String

URI of a CDMI data object or queue that shall be
copied into the new data object

Optionala

move JSON
String

URI of an existing local or remote CDMI data object
(source URI) that shall be relocated to the URI
specified in the PUT. The contents of the object,
including the object ID, shall be preserved by a move,
and the data object at the source URI shall be
removed after the data object at the destination has
been successfully created.

If there are insufficient permissions to read the data
object at the source URI, write the data object at the
destination URI, or delete the data object at the source
URI, or if any of these operations fail, the move shall
return a 400 Bad Request result code, and the source
and destination are left unchanged.

Optionala

reference JSON
String

URI of a CDMI data object that shall be redirected to
by a reference. If any other fields are supplied when
creating a reference, the server shall respond with an
HTTP status code of 400 Bad Request.

Optionala

Table 8 - Request Message Body - Create a Data Object using CDMI Content Type (Sheet 2 of 3)

Field Name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with a 400 Bad Request error
response.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 47

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

125

126
8.2.6 Response Headers

The HTTP response headers for creating a data object using CDMI content type are shown in Table 9.

deserializevalue JSON
String

A data object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described
in RFC 4648.

Optionala

valuetransferencoding JSON
Array of
JSON
String

The value transfer encoding used for the data object
value. Two value transfer encodings are defined.

• "utf-8" indicates that the data object contains a valid
UTF-8 string, and it shall be transported as a UTF-8
string in the value field.

• "base64" indicates that the data object may contain
arbitrary binary sequences, and it shall be
transported as a base 64-encoded string in the
value field. Setting the contents of the data object
value field to any value other than a valid base 64
string shall result in error 400 Bad Request being
returned to the client.

This field shall only be included when creating a data
object by value. If not specified by the client, the server
shall set the valuetransferencoding field to "utf-8".

This field shall be stored as part of the object.

Optional

value JSON
String

The data object value

• If this field is not included, an empty JSON String
(i.e., "") shall be assigned as the field value.

• If the valuetransferencoding field indicates UTF-8
encoding, the value shall be a UTF-8 string escaped
using the JSON escaping rules described in RFC
4627.

• If the valuetransferencoding field indicates base 64
encoding, the value shall be first encoded using the
base 64 encoding rules described in RFC 4648.

Optionala

Table 9 - Response Headers - Create a Data Object using CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-object" Mandatory

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, e.g., "1.0.2".

If the server does not support any of the versions supported
by the client, the server shall return a 400 Bad Request
status code.

Mandatory

Table 8 - Request Message Body - Create a Data Object using CDMI Content Type (Sheet 3 of 3)

Field Name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with a 400 Bad Request error
response.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

48 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

127

128

129

130
8.2.7 Response Message Body

The response message body fields for creating a data object using CDMI content type are shown in
Table 10.

Table 10 - Response Message Body - Create a Data Object using CDMI Content Type

Field Name Type Description Requirement

objectType JSON
String

"application/cdmi-object" Mandatory

objectID JSON
String

Object ID of the object Mandatory

objectName JSON
String

Name of the object Mandatory

parentURI JSON
String

URI for the parent object

Appending the objectName to the parentURI shall always
produce a valid URI for the object.

Mandatory

parentID JSON
String

Object ID of the parent container object Mandatory

domainURI JSON
String

URI of the owning domain Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object Mandatory

completionStatus JSON
String

A string that shall indicate the status of the data object
creation operation using one of the following values

• "Processing" indicates that the data object is still in the
process of being created.

• "Completed" indicates that the data object has been
successfully created.

• A string that begins with "Error" indicates that an error
prevented creation of the data object.

Mandatory

percentComplete JSON
String

• When the value of completionStatus is "Processing", this
field, if provided, shall indicate the percentage of
completion as a numeric integer value from 0 through
100.

• When the value of completionStatus is "Complete", this
field, if provided, shall contain the value "100".

• When the value of completionStatus is "Error", this field, if
provided, may contain any integer value from 0 through
100.

Optional

mimetype JSON
String

MIME type of the value of the data object Mandatory

metadata JSON
Object

Metadata for the data object. This field includes any user
and data system metadata specified in the request
message body metadata field, along with storage system
metadata generated by the cloud storage system. See
Clause 16 for a further description of metadata.

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 49

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165
8.2.8 Response Status

The HTTP status codes that occur when creating a data object using CDMI content type are described in
Table 11.

8.2.9 Examples

EXAMPLE 1 PUT to the container URI the data object name and contents:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "mimetype" : "text/plain",
 "metadata" : {

 },
 "value" : "This is the Value of this Data Object"
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "objectType" : "application/cdmi-object",
 "objectID" : "0000706D0010B84FAD185C425D8B537E",
 "objectName" : "MyDataObject.txt",
 "parentURI" : "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "37"
 }
}

Table 11 - HTTP Status Codes - Create a Data Object using CDMI Content Type

HTTP Status Description

201 Created The new data object was created.

202 Accepted The data object is in the process of being created. The CDMI client should
monitor the completionStatus and percentComplete fields to determine the
current status of the operation.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a
state transition error on the server.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

50 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212
EXAMPLE 2 PUT to the container URI the data object name and binary contents:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "mimetype" : "text/plain",
 "metadata" : { },
 "valuetransferencoding" : "base64"
 "value" : "VGhpcyBpcyB0aGUgVmFsdWUgb2YgdGhpcyBEYXRhIE9iamVjdA=="
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "objectType": "application/cdmi-object",
 "objectID": "0000706D0010374085EF1A5C7018D774",
 "objectName": "MyDataObject.txt",
 "parentURI": "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/dataobject/",
 "completionStatus": "Complete",
 "mimetype": "text/plain",
 "metadata": {
 "cdmi_size": "37"
 }
}

8.3 Create a Data Object using a Non-CDMI Content Type

8.3.1 Synopsis

To create a new data object, the following request shall be performed:

PUT <root URI>/<ContainerName>/<DataObjectName>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e.,
"/") between each pair of container names.

• <DataObjectName> is the name specified for the data object to be created.

After it is created, the data object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

8.3.2 Capability

The following capability describes the supported operations that may be performed when creating a new
data object:

• Support for the ability to create a new data object is indicated by the presence of the
cdmi_create_dataobject capability in the parent container.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 51

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

213

214

215

216

217

218

219

220

221

222

223

224
8.3.3 Request Headers

The HTTP request headers for creating a CDMI data object using a non-CDMI content type are shown in
Table 12.

8.3.4 Request Message Body

The request message body contains the data to be stored in the value of the data object.

8.3.5 Response Headers

No response headers are specified.

8.3.6 Response Message Body

No response message body fields are specified.

8.3.7 Response Status

The HTTP status codes that occur when creating a data object using a non-CDMI content type are
described in Table 13.

Table 12 - Request Headers - Create a CDMI Data Object using a Non-CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

The content type of the data to be stored as a data object.
The value specified here shall be used as the mimetype
field of the CDMI data object. If the content type includes
the charset parameter as defined in RFC 2046 of "utf-8"
(e.g., ";charset=utf-8"), the valuetransferencoding field of
the CDMI data object shall be set to "utf-8". Otherwise, the
valuetransferencoding field of the CDMI data object shall be
set to "base64".

Mandatory

X-CDMI-Partial Header
String

"true". Indicates that the newly created object is part of a
series of writes and has not yet been fully created. When
set, the completionStatus field shall be set to "Processing".

Optional

Table 13 - HTTP Status Codes - Create a Data Object using a Non-CDMI Content Type

HTTP Status Description

201 Created The new data object was created.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a state
transition error on the server.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

52 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259
8.3.8 Example

EXAMPLE PUT to the container URI the data object name and contents:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Content-Type: text/plain;charset=utf-8
Content-Length: 37

This is the Value of this Data Object

The following shows the response.

HTTP/1.1 201 Created

8.4 Read a Data Object using CDMI Content Type

8.4.1 Synopsis

To read all fields from an existing data object, the following request shall be performed:

GET <root URI>/<ContainerName>/<DataObjectName>

To read one or more requested fields from an existing data object, one of the following requests shall be
performed:

GET <root URI>/<ContainerName>/<DataObjectName>?<fieldname>;<fieldname>;...
GET <root URI>/<ContainerName>/<DataObjectName>?value:<range>;...
GET <root URI>/<ContainerName>/<DataObjectName>?metadata:<prefix>;...

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <DataObjectName> is the name of the data object to be read from.

• <fieldname> is the name of a field.

• <range> is a byte range of the data object value to be returned in the value field.<prefix> is a
matching prefix that returns all metadata items that start with the prefix value.

The object shall also also be accessible at <root URI>/cdmi_objectid/<objectID>.

8.4.2 Capabilities

The following capabilities describe the supported operations that may be performed when reading an
existing data object:

• Support for the ability to read the metadata of an existing data object is indicated by the presence
of the cdmi_read_metadata capability in the specified object.

• Support for the ability to read the value of an existing data object is indicated by the presence of
the cdmi_read_value capability in the specified object.

• Support for the ability to read the value of an existing data object in specific byte ranges is
indicated by the presence of the cdmi_read_value_range capability in the specified object.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 53

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

260

261

262

263

264

265

266

267

268

269
8.4.3 Request Headers

The HTTP request headers for reading a CDMI data object using CDMI content type are shown in
Table 14.

8.4.4 Request Message Body

A request message body shall not be provided.

8.4.5 Response Headers

The HTTP response headers for reading a data object using CDMI content type are shown in Table 15.

8.4.6 Response Message Body

The response message body fields for reading a CDMI data object using CDMI content type are shown in
Table 16.

Table 14 - Request Headers - Read a CDMI Data Object using CDMI Content Type

Header Type Description Requirement

Accept Header
String

"application/cdmi-object" or a consistent value as per clause
5.13.2

Optional

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions supported by the client,
e.g., "1.0.2, 1.5, 2.0"

Mandatory

Table 15 - Response Headers - Read a CDMI Data Object using CDMI Content Type

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, e.g., "1.0.2".

If the server does not support any of the versions supported
by the client, the server shall return a 400 Bad Request
status code.

Mandatory

Content-Type Header
String

"application/cdmi-object" Mandatory

Location Header
String

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional

Table 16 - Response Message Body - Read a Data Object using CDMI Content Type (Sheet 1 of 3)

Field Name Type Description Requirement

objectType JSON
String

"application/cdmi-object" Mandatory

objectID JSON
String

Object ID of the object Mandatory

objectName JSON
String

Name of the object

• For objects in a container, the objectName field shall
be returned.

• For objects not in a container (objects that are only
accessible by ID), the objectName field does not exist
and shall not be returned.

Conditional

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

54 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
parentURI JSON
String

URI for the parent object

• For objects in a container, the parentURI field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the parentURI field does not exist
and shall not be returned.

Appending the objectName to the parentURI shall
always produce a valid URI for the object.

Conditional

parentID JSON
String

Object ID of the parent container object

• For objects in a container, the parentID field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the parentID field does not exist
and shall not be returned.

Conditional

domainURI JSON
String

URI of the owning domain Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object Mandatory

completionStatus JSON
String

A string indicating if the object is still in the process of
being created, and after the operation is complete, if it
was created successfully or an error occurred.

The value shall be the string "Processing", the string
"Complete", or an error string starting with the value
"Error".

Mandatory

percentComplete JSON
String

• When the value of completionStatus is "Processing",
this field, if provided, shall indicate the percentage of
completion as a numeric integer value from 0 through
100.

• When the value of completionStatus is "Complete",
this field, if provided, shall contain the value "100".

• When the value of completionStatus is "Error", this
field, if provided, may contain any integer value from 0
through 100.

Optional

mimetype JSON
String

MIME type of the value of the data object Mandatory

metadata JSON
Object

Metadata for the data object

This field includes any user and data system metadata
specified in the request message body metadata field,
along with storage system metadata generated by the
cloud storage system.

See Clause 16 for a further description of metadata.

Mandatory

Table 16 - Response Message Body - Read a Data Object using CDMI Content Type (Sheet 2 of 3)

Field Name Type Description Requirement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 55

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

270

271
If individual fields are specified in the GET request, only these fields are returned in the result body.
Optional fields that are requested but do not exist are omitted from the result body.

valuerange JSON
String

The range of bytes of the data object to be returned in
the value field

• If a specific value range has been requested, the
value range field shall correspond to the bytes
requested. If the request extends beyond the end of
the value, the value range field shall indicate the
smaller byte range returned.

• If the object value has gaps (due to PUTs with non-
contiguous value ranges), the value range will
indicate the range to the first gap in the object value.

• The cdmi_size storage system metadata of the data
object shall always indicate the complete size of the
object, including zero-filled gaps.

Mandatory

valuetransferencoding JSON
Array of
JSON
Strings

The value transfer encoding used for the data object
value. Two value transfer encodings are defined:

• "utf-8" indicates that the data object contains a valid
UTF-8 string, and it shall be transported as a UTF-8
string in the value field.

• "base64" indicates that the data object may contain
arbitrary binary sequences, and it shall be transported
as a base 64-encoded string in the value field.

Mandatory

value JSON
String

The data object value

• If the valuetransferencoding field indicates UTF-8
encoding, the value field shall contain a UTF-8 string
using JSON escaping rules described in RFC 4627.

• If the valuetransferencoding field indicates base 64
encoding, the value field shall contain a base 64-
encoded string as described in RFC 4648.

• The value field shall only be provided when the
completionStatus field contains "Complete".

• When reading a value, zeros shall be returned for any
gaps resulting from non-contiguous writes.

Conditional

Table 16 - Response Message Body - Read a Data Object using CDMI Content Type (Sheet 3 of 3)

Field Name Type Description Requirement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

56 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306
8.4.7 Response Status

The HTTP status codes that occur when reading a data object using CDMI content type are described in
Table 17.

8.4.8 Examples

EXAMPLE 1 GET to the data object URI to read all fields of the data object:

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

The following shows the response.

HTTP/1.1 200 OK
X-CDMI-Specification-Version: 1.0.2
Content-Type: application/cdmi-object

{
 "objectType" : "application/cdmi-object",
 "objectID" : "0000706D0010B84FAD185C425D8B537E",
 "objectName" : "MyDataObject.txt",
 "parentURI" : "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "37"
 },
 "valuerange" : "0-36",
 "valuetransferencoding" : "utf-8",
 "value" : "This is the Value of this Data Object"
}

EXAMPLE 2 GET to the data object URI by ID to read all fields of the data object:

GET /cdmi_objectid/0000706D0010B84FAD185C425D8B537E
HTTP/1.1 Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

Table 17 - HTTP Status Codes - Read a CDMI Data Object using CDMI Content Type

HTTP Status Description

200 OK The data object content was returned in the response.

202 Accepted The data object is in the process of being created. The CDMI client should
monitor the completionStatus and percentComplete fields to determine the
current status of the operation.

302 Found The URI is a reference to another URI.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

406 Not Acceptable The server is unable to provide the object in the content type specified in the
Accept header.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 57

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353
The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "objectType" : "application/cdmi-object",
 "objectID" : "0000706D0010B84FAD185C425D8B537E",
 "objectName" : "MyDataObject.txt",
 "parentURI" : "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "37"
 },
 "valuetransferencoding" : "utf-8",
 "valuerange" : "0-36",
 "value" : "This is the Value of this Data Object"
}

EXAMPLE 3 GET to the data object URI to read the value and mimetype fields of the data object:

GET /MyContainer/MyDataObject.txt?value;mimetype HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "value" : "This is the Value of this Data Object",
 "mimetype" : "text/plain"
}

EXAMPLE 4 GET to the data object URI to read the first 11 bytes of the value of the data object:

GET /MyContainer/MyDataObject.txt?valuerange;value:0-10 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "valuerange" : "0-10",
 "value" : "VGhpcyBpcyB0aGU="
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

58 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380
8.5 Read a Data Object using a Non-CDMI Content Type

8.5.1 Synopsis

To read the value of an existing data object, the following request shall be performed:

GET <root URI>/<ContainerName>/<DataObjectName>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <DataObjectName> is the name of the data object to be read from.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

8.5.2 Capabilities

The following capabilities describe the supported operations that may be performed when reading an
existing data object:

• Support for the ability to read the value of an existing data object is indicated by the presence of
the cdmi_read_value capability in the specified object. Any read from a specific byte location not
previously written to by a create or update operation shall return zero for the byte value.

• Support for the ability to read the value of an existing data object in specific byte ranges is
indicated by the presence of the cdmi_read_value_range capability in the specified object. Any
read from a specific byte location within the value range specified not previously written to by a
create or update operation shall return zero for the byte value.

8.5.3 Request Header

The HTTP request header for reading a CDMI data object using a non-CDMI content type is shown in
Table 18.

8.5.4 Request Message Body

A request message body shall not be provided.

8.5.5 Response Headers

The HTTP response headers for reading a data object using a non-CDMI content type are shown in
Table 19.

Table 18 - Request Header - Read a CDMI Data Object using a Non-CDMI Content Type

Header Type Description Requirement

Range Header
String

A valid ranges-specifier (see RFC 2616 Section 14.35.1) Optional

Table 19 - Response Headers - Read a CDMI Data Object using a Non-CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

The content type returned shall be the mimetype field in the
data object.

Mandatory

Location Header
String

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 59

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406
8.5.6 Response Message Body

When reading a data object using a non-CDMI content type, the following applies:

• The response message body shall be the contents of the data object's value field.

• When reading a value, zeros shall be returned for any gaps resulting from non-contiguous writes.

8.5.7 Response Status

The HTTP status codes that occur when reading a data object using a non-CDMI content type are
described in Table 20.

8.5.8 Examples

EXAMPLE 1 GET to the data object URI to read the value of the data object:

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com

The following shows the response.

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 37

This is the Value of this Data Object

EXAMPLE 2 GET to the data object URI to read the first 11 bytes of the value of the data object:

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Range: bytes=0-10

The following shows the response.

HTTP/1.1 206 Partial Content
Content-Type: text/plain
Content-Range: bytes 0-10/37
Content-Length: 11

This is the

Table 20 - HTTP Status Codes - Read a CDMI Data Object using a Non-CDMI Content Type

HTTP Status Description

200 OK The data object content was returned in the response.

206 Partial Content A requested range of the data object content was returned in the response.

302 Found The URI is a reference to another URI.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI, or a requested field within
the resource was not found.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

60 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431
8.6 Update a Data Object using CDMI Content Type

8.6.1 Synopsis

To update some or all fields in an existing data object, the following request shall be performed:

PUT <root URI>/<ContainerName>/<DataObjectName>

To update the value of an existing data object, the following request shall be performed:

PUT <root URI>/<ContainerName>/<DataObjectName>?value:<range>

To add, update, and remove specific metadata items of an existing data object, the following request shall
be performed:

PUT <root URI>/<ContainerName>/<DataObjectName>?metadata:<metadataname>;...

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <DataObjectName> is the name of the data object to be updated.

• <range> is a byte range within the data object value to be updated.

The data object shall also be accessible at <root URI>/cdmi_objectid/<objectID>, and an update shall not
result in a change to the object ID.

8.6.2 Capabilities

The following capabilities describe the supported operations that may be performed when updating an
existing data object:

• Support for the ability to modify the metadata of an existing data object is indicated by the
presence of the cdmi_modify_metadata capability in the specified object.

• Support for the ability to modify the value of an existing data object and/or MIME type is indicated
by the presence of the cdmi_modify_value capability in the specified object.

• Support for the ability to modify the value of an existing data object in specified byte ranges is
indicated by the presence of the cdmi_modify_value_range capability in the specified object.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 61

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

432

433

434

435

436

437
8.6.3 Request Headers

The HTTP request headers for updating a CDMI data object using CDMI content type are shown in
Table 21.

8.6.4 Request Message Body

The request message body fields for updating a data object using CDMI content type are shown in
Table 22.

Table 21 - Request Headers - Update a CDMI Data Object using CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-object" Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions supported by the client,
e.g., "1.0.2, 1.5, 2.0"

Mandatory

X-CDMI-Partial Header
String

"true". Indicates that the object is in the process of being
updated, and has not yet been fully updated. When set, the
completionStatus field shall be set to "Processing".

If the completionStatus field had previously been set to
"Processing" by including this header in a create or update,
the next update without this field shall change the
completionStatus field back to "Complete".

Optional

Table 22 - Request Message Body - Update a CDMI Data Object using CDMI Content Type

Field Name Type Description Requirement

mimetype JSON
String

MIME type of the data contained within the value field of
the data object. If present, this replaces the existing
MIME type.

• This field may be included when updating by value,
deserializing, and copying a data object.

• This field shall be stored as part of the object.

• If this field is not specified, the existing value of the
mimetype field shall be left unchanged.

• This field shall not be included when creating a
reference.

• This mimetype value shall be converted to lower case
before being stored.

Optional

metadata JSON
Object

Metadata for the data object. If present, the new
metadata specified replaces the existing object
metadata. If individual metadata items are specified in
the URI, only those items are replaced, with other items
being preserved.

See Clause 16 for a further description of metadata.

Optional

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with a 400 Bad Request error
response.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

62 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
domainURI JSON
String

URI of the owning domain

• If different from the parent domain, the user shall have
the cross_domain" privilege (see
cdmi_member_privileges in Table 64).

• If not specified, the existing domain shall be
preserved.

Optional

deserialize JSON
String

URI of a serialized CDMI data object that shall be
deserialized to update an existing data object. The
object ID of the serialized data object shall match the
object ID of the destination data object.

Optionala

copy JSON
String

URI of a CDMI data object or queue that shall be copied
into the existing data object.

Optionala

deserializevalue JSON
String

A data object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in
RFC 4648. The object ID of the serialized data object
shall match the object ID of the destination data object.

Optionala

valuetransferencoding JSON
Array of
JSON
Strings

The value transfer encoding used for the data object
value. Two value transfer encodings are defined:

• "utf-8" indicates that the data object contains a valid
UTF-8 string, and shall be transported as a UTF-8
string in the value field.

• "base64" indicates that the data object may contain
arbitrary binary sequences, and shall be transported
as a base 64 encoded string in the value field. Setting
the contents of the data object value field to any value
other than a valid base 64 string shall result in error
400 Bad Request being returned to the client.

This field shall only be included when updating a data
object by value. If this field is not specified, the existing
value of the valuetransferencoding field shall be left
unchanged.

This field shall be stored as part of the object.

Optional

Table 22 - Request Message Body - Update a CDMI Data Object using CDMI Content Type

Field Name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with a 400 Bad Request error
response.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 63

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

438

439

440

441

442

443

444
8.6.5 Response Header

The HTTP response header for updating a data object using CDMI content type is shown in Table 23.

8.6.6 Response Message Body

A response message body may be provided as per RFC 2616.

8.6.7 Response Status

The HTTP status codes that occur when updating a data object using CDMI content type are described in
Table 24.

value JSON
String

This is the new data for the object. If present, this
replaces the existing value.

• If the valuetransferencoding field indicates UTF-8
encoding, the value shall be a UTF-8 string escaped
using the JSON escaping rules described in RFC
4627.

• If the valuetransferencoding field indicates base 64
encoding, the value shall be first encoded using the
base 64 encoding rules described in RFC 4648.

• If a value range was specified in the request, the new
data shall be inserted at the location specified by the
range. Any resulting gaps between ranges shall be
treated as if zeros had been written and shall be
included when calculating the size of the value. When
storing a range, the value shall be encoded using
base 64, and the valuetransferencoding field shall be
set to "base64".

Optional

Table 23 - Response Header - Update a CDMI Data Object using CDMI Content Type

Header Type Description Requirement

Location Header
String

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional

Table 24 - HTTP Status Codes - Update a CDMI Data Object using CDMI Content Type (Sheet 1 of 2)

HTTP Status Description

204 No Content The operation was successful; no data was returned.

302 Found The URI is a reference to another URI.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

Table 22 - Request Message Body - Update a CDMI Data Object using CDMI Content Type

Field Name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with a 400 Bad Request error
response.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

64 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483
8.6.8 Examples

EXAMPLE 1 PUT to the data object URI to set new field values:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "mimetype" : "text/plain",
 "metadata" : {
 "colour" : "blue",
 "length" : "10"
 },
 "value" : "This is the Value of this Data Object"
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 2 PUT to the data object URI to set a new MIME type:

PUT /MyContainer/MyDataObject.txt?mimetype HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "mimetype" : "text/plain"
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 3 PUT to the data object URI to update a range of the value:

PUT /MyContainer/MyDataObject.txt?value:21-24 HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "value" : "dGhhdA=="
}

The following shows the response.

HTTP/1.1 204 No Content

When updating a value without specifying a value transfer encoding, the client must be aware of the
current value transfer encoding of the object. If a client sends a value containing a UTF-8 string to
update an existing object with a valuetransferencoding value of "base64", this shall result in an error

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a
state transition error on the server.

Table 24 - HTTP Status Codes - Update a CDMI Data Object using CDMI Content Type (Sheet 2 of 2)

HTTP Status Description

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 65

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528
being returned. If a client sends a value containing a base 64 string to update an existing object with a
valuetransferencoding value of "utf-8", this shall not generate an error, but results in the literal base 64
character sequence being stored in the data object instead of the expected data encoded in the base
64 string.

EXAMPLE 4 PUT to the data object URI to replace all metadata with new metadata:

PUT /MyContainer/MyDataObject.txt?metadata HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "metadata" : {
 "colour" : "red",
 "number" : "7"
 }
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 5 PUT to the data object URI to add a new metadata item while preserving existing metadata:

PUT /MyContainer/MyDataObject.txt?metadata:shape HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "metadata" : {
 "shape" : "round"
 }
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 6 PUT to the data object URI to replace just one metadata item with a new value:

PUT /MyContainer/MyDataObject.txt?metadata:colour HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "metadata" : {
 "colour" : "green"
 }
}

The following shows the response.

HTTP/1.1 204 No Content

8.7 Update a Data Object using a Non-CDMI Content Type

8.7.1 Synopsis

To update the value of an existing data object, the following request shall be performed:

PUT <root URI>/<ContainerName>/<DataObjectName>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

66 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549
Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <DataObjectName> is the name of the data object to be updated.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>. An update shall not result in a
change to the object ID.

8.7.2 Capabilities

The following capabilities describe the supported operations that may be performed when updating an
existing data object:

• Support for the ability to modify the value of an existing data object and/or MIME type is indicated
by the presence of the cdmi_modify_value capability in the specified object.

• Support for the ability to modify the value of an existing data object in specified byte ranges is
indicated by the presence of the cdmi_modify_value_range capability in the specified object.

8.7.3 Request Headers

The HTTP request headers for updating a CDMI data object using a non-CDMI content type are shown in
Table 25.

8.7.4 Request Message Body

The request message body contains the data to be stored in the value of the data object.

8.7.5 Response Header

The HTTP response header for updating a data object using a non-CDMI content type is shown in
Table 26.

Table 25 - Request Headers - Update a CDMI Data Object using a Non-CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

The content type of the data to be stored as a data object. The
value specified here shall be used in the mimetype field of the
CDMI data object.

Mandatory

Content-
Range

Header
String

A valid ranges-specifier (see RFC 2616 Section 14.35.1) Optional

X-CDMI-
Partial

Header
String

"true". Indicates that the object is in the process of being
updated and has not yet been fully updated. When set, the
completionStatus field shall be set to "Processing".

If the completionStatus field had previously been set to
"Processing" by including this header in a create or update, the
next update without this field shall change the completionStatus
field back to "Complete".

Optional

Table 26 - Response Header - Update a CDMI Data Object using a Non-CDMI Content Type

Header Type Description Requirement

Location Header
String

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 67

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572
8.7.6 Response Message Body

A response message body may be provided as per RFC 2616.

8.7.7 Response Status

the HTTP status codes that occur when updating a data object using a non-CDMI content type are
described in Table 27.

8.7.8 Examples

EXAMPLE 1 PUT to the data object URI to update the value of the data object:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Content-Type: text/plain
Content-Length: 37

This is the value of this data object

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 2 PUT to the data object URI to update four bytes within the value of the data object:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Content-Range: bytes 21-24/37
Content-Type: text/plain
Content-Length: 4

that

The following shows the response.

HTTP/1.1 204 No Content

Table 27 - HTTP Status Codes - Update a CDMI Data Object using a Non-CDMI Content Type

HTTP Status Description

204 No Content The operation was successful; no data was returned.

302 Found The URI is a reference to another URI.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a state
transition error on the server.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

68 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594
8.8 Delete a Data Object using CDMI Content Type

8.8.1 Synopsis

To delete an existing data object, the following request shall be performed:

DELETE <root URI>/<ContainerName>/<DataObjectName>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <DataObjectName> is the name of the data object to be deleted.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

8.8.2 Capability

The following capability describes the supported operations that may be performed when deleting an
existing data object:

• Support for the ability to delete an existing data object is indicated by the presence of the
cdmi_delete_dataobject capability in the specified object.

8.8.3 Request Header

The HTTP request header for deleting a CDMI data object using CDMI content type is shown in Table 28.

8.8.4 Request Message Body

A request message body may be provided as per RFC 2616.

8.8.5 Response Headers

Response headers may be provided as per RFC 2616.

8.8.6 Response Message Body

A response message body may be provided as per RFC 2616.

Table 28 - Request Header - Delete a CDMI Data Object using CDMI Content Type

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions supported by the client,
e.g., "1.0.2, 1.5, 2.0"

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 69

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620
8.8.7 Response Status

Table 29 describes the HTTP status codes that occur when deleting a data object using CDMI content
type.

8.8.8 Example

EXAMPLE DELETE to the data object URI:

DELETE /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.0.2

The following shows the response.

HTTP/1.1 204 No Content

8.9 Delete a Data Object using a Non-CDMI Content Type

8.9.1 Synopsis

To delete an existing data object, the following request shall be performed:

DELETE <root URI>/<ContainerName>/<DataObjectName>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <DataObjectName> is the name of the data object to be deleted.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

8.9.2 Capability

The following capability describes the supported operations that may be performed when deleting an
existing data object:

• Support for the ability to delete an existing data object is indicated by the presence of the
cdmi_delete_dataobject capability in the specified object.

8.9.3 Request Headers

Request headers may be provided as per RFC 2616.

Table 29 - HTTP Status Codes - Delete a CDMI Data Object using CDMI Content Type

HTTP Status Description

204 No Content The data object was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a state
transition error on the server or the data object may not be deleted.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

70 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635
8.9.4 Request Message Body

A request message body may be provided as per RFC 2616.

8.9.5 Response Headers

Response headers may be provided as per RFC 2616.

8.9.6 Response Message Body

A response message body may be provided as per RFC 2616.

8.9.7 Response Status

Table 30 describes the HTTP status codes that occur when deleting a data object using a non-CDMI
content type.

8.9.8 Example

EXAMPLE DELETE to the data object URI:

DELETE /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com

The following shows the response.

HTTP/1.1 204 No Content

Table 30 - HTTP Status Codes - Delete a CDMI Data Object using a Non-CDMI Content Type

HTTP Status Description

204 No Content The data object was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a state
transition error on the server or the data object may not be deleted.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 71

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

ISO/IEC 17826:2012(E)
9 Container Object Resource Operations

9.1 Overview

Container objects are the fundamental grouping of stored data within CDMI™ and are analogous to
directories within a file system. Each container object has zero or more child objects and a set of well-
defined fields that include standardized and optional metadata. The metadata is generated by the cloud
storage system and specified by the cloud user.

Containers are addressed in CDMI in two ways:

• by name (e.g., http://cloud.example.com/container/); and

• by object ID (e.g., http://cloud.example.com/cdmi_objectid/
0000706D0010B84FAD185C425D8B537E.

Every container object has a single, globally-unique object ID that remains constant for the life of the
object. Each container object may also have one or more URI addresses that allow the container object to
be accessed. Following the URI conventions for hierarchical paths, container URIs shall consist of one or
more container names that are separated by forward slashes ("/") and that end with a forward slash ("/").

If a request is performed against an existing container resource and the trailing slash at the end of the URI
is omitted, the server shall respond with an HTTP status code of 301 Moved Permanently, and a Location
header containing the URI with the trailing slash will be added.

If a CDMI request is performed to create a new container resource and the trailing slash at the end of the
URI is omitted, the server shall respond with an HTTP status code of 400 Bad Request.

Non-CDMI requests to create a container resource shall include the trailing slash at the end of the URI;
otherwise, the request shall be considered a request to create a data object.

Containers may also be nested.

EXAMPLE 1 The following URI represents a nested container:

http://cloud.example.com/container/subcontainer/

A nested container has a parent container object, shall be included in the children field of the parent
container object, and shall inherit data system metadata and ACLs from its parent container.

This model allows direct mapping between CDMI-managed cloud storage and file systems (e.g., NFSv4 or
WebDAV). If a CDMI container object is exported as a file system, then the file system may make the
CDMI metadata accessible via file system-specific mechanisms. As files and directories are created by the
file system, they become visible through the CDMI interface acting as a data path. The mapping between
file system constructs and CDMI data objects, container objects, and metadata is outside the scope of this
international standard.

Individual fields within a container object may be accessed by specifying the field name after a question
mark "?" appended to the end of the container object URI.

EXAMPLE 2 The following URI returns just the children field in the response message body:

http://cloud.example.com/container/?children

By specifying a range after the children field name, specific ranges of the children field may be accessed.

EXAMPLE 3 The following URI returns the first three children from the children field:

http://cloud.example.com/container/?children:0-2

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 72

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

ISO/IEC 17826:2012(E)
Children ranges are specified in a way that is similar to byte ranges as per Section 14.35.1 of RFC 2616. A
client can determine the number of children present by requesting the childrenrange field without
requesting a range of children.

A list of fields, separated by a semicolon ";" may be specified, allowing multiple fields to be accessed in a
single request.

EXAMPLE 4 The following URI would return the children and metadata fields in the response message body:

http://cloud.example.com/container/?children;metadata

When a client provides or includes deserialization fields that are not defined in this international standard,
these fields shall be stored as part of the object.

9.1.1 Container Metadata

The following optional data system metadata may be provided (see Table 31).

Container metadata may also include arbitrary user-supplied metadata and data system metadata as
described in Clause 16.

9.1.2 Reserved Container Names

This international standard defines reserved container names that shall not be used when creating new
containers. These container names are reserved for use by this international standard, and if an attempt is
made to create or delete them, an HTTP 400 Bad Request result code shall be returned to the client.

The reserved container names include:

• cdmi_objectid,

• cdmi_domains,

• cdmi_capabilities,

• cdmi_snapshots, and

• cdmi_versions.

As additional names may be added in future versions of this international standard, server
implementations shall prevent the creation of user-defined containers if the container name starts with
"cdmi_".

9.1.3 Container Object Addressing

Each container object is addressed via one or more unique URIs, and all operations may be performed
through any of these URIs. For example, a container object may be accessible via multiple virtual hosting
paths, where http://cloud.example.com/users/snia/cdmi/ is also accessible through http://
snia.example.com/cdmi/. Conflicting writes via different paths shall be managed the same way that
conflicting writes via one path are managed, via the principle of eventual consistency (see 9.2).

9.1.4 Container Object Representations

The representations in this clause are shown using JSON notation. Both clients and servers shall support
UTF-8 JSON representation. The request and response message body JSON fields may be specified or

Table 31 - Container Metadata

Metadata Name Type Description Requirement

cdmi_assignedsize JSON
String

The number of bytes that is reported via exported
protocols (e.g., the device may be thin provisioned). This
number may limit cdmi_size.

Optional

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

73 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

ISO/IEC 17826:2012(E)
returned in any order, with the exception that, if present, for container objects, the childrenrange and
children fields shall appear last and in that order.

9.2 Create a Container Object using CDMI Content Type

9.2.1 Synopsis

To create a new container object, the following request shall be performed:

PUT <root URI>/<ContainerName>/<NewContainerName>/

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects that already exist, with one slash
(i.e., "/") between each pair of container object names.

• <NewContainerName> is the name specified for the container object to be created.

After it is created, the container object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

9.2.2 Delayed Completion of Create

In response to a create operation for a container object, the server may return 202 Accepted to indicate
that the object is in the process of being created. This response is useful for long-running operations (e.g.,
deserializing a source data object to create a large container object hierarchy). Such a response has the
following implications.

• The server shall return a Location header with a URI to the object to be created along with an
HTTP status code of 202 Accepted.

• With 202 Accepted, the server implies that the following checks have passed:

— user authorization for creating the container object;

— user authorization for read access to any source object for move, copy, serialize, or
deserialize; and

— availability of space to create the container object or at least enough space to create a URI to
report an error.

• A client might not be able to immediately access the created object, e.g., due to delays resulting
from the implementation’s use of eventual consistency.

The client performs GET operations to the URI to track the progress of the operation. In response, the
server returns two fields in its response message body to indicate progress.

• A mandatory completionStatus text field contains either "Processing", "Complete", or an error
string starting with the value "Error".

• An optional percentComplete field contains the percentage that the accepted PUT has completed
(0 to 100). GET does not return any children for the container object when completionStatus is not
"Complete".

When the final result of the create operation is an error, the URI is created with the completionStatus field
set to the error message. It is the client's responsibility to delete the URI after the error has been noted.

9.2.3 Capabilities

The following capabilities describe the supported operations that may be performed when creating a new
container object:

• Support for the ability to create a new container object is indicated by the presence of the
cdmi_create_container capability in the parent container object.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 74

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

ISO/IEC 17826:2012(E)
• If the object being created in the parent container object is a reference, support for that ability is
indicated by the presence of the cdmi_create_reference capability in the parent container object.

• If the new container object is a copy of an existing container object, support for the ability to copy is
indicated by the presence of the cdmi_copy_container capability in the parent container object.

• If the new container object is the destination of a move, support for the ability to move the
container object is indicated by the presence of the cdmi_move_container capability in the parent
container object.

• If the new container object is the destination of a deserialize operation, support for the ability to
deserialize the source data object serialization of a container object is indicated by the presence of
the cdmi_deserialize_container capability in the parent container object.

9.2.4 Request Headers

The HTTP request headers for creating a CDMI container object using CDMI content type are shown in
Table 32.

9.2.5 Request Message Body

The request message body fields for creating a container object using CDMI content type are shown in
Table 33.

Table 32 - Request Headers - Create a Container Object using CDMI Content Type

Header Type Description Requirement

Accept Header
String

"application/cdmi-container" or a consistent value as per
clause 5.13.2

Optional

Content-Type Header
String

"application/cdmi-container" Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions supported by the
client, for example, "1.0.2, 1.5, 2.0"

Mandatory

Table 33 - Request Message Body - Create a Container Object using CDMI Content Type (Sheet 1 of 2)

Field Name Type Description Requirement

metadata JSON
Object

Metadata for the container object

• If this field is included when deserializing, serializing,
copying, or moving a container object, the value
provided in this field shall replace the metadata from the
source URI.

• If this field is not included when deserializing, serializing,
copying, or moving a container object, the metadata from
the source URI shall be used.

• If this field is included when creating a new container
object by specifying a value, the value provided in this
field shall be used as the metadata.

• If this field is not included when creating a new container
object by specifying a value, an empty JSON object (i.e.,
"{}") shall be assigned as the field value.

• This field shall not be included when referencing a
container object.

Optional

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with a 400 Bad Request error
response.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

75 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
domainURI JSON
String

URI of the owning domain

• If different from the parent domain, the user shall have
the cross_domain privilege (see
cdmi_member_privileges in Table 64).

• If not specified, the parent domain shall be used.

Optional

exports JSON
Object

A structure for each protocol enabled for this container
object (see Clause 13). This field shall not be included
when referencing a container object.

Optional

deserialize JSON
String

URI of a serialized CDMI data object that shall be
deserialized to create the new container object, including
all child objects inside the source serialized data object
(see Clause 15).

When deserializing a container object, any exported
protocols from the original serialized container object are
not applied to the newly created container object(s).

Optionala

copy JSON
String

URI of a CDMI container object that shall be copied into the
new container object, including all child objects under the
source container object. When copying a container object,
exported protocols are not preserved across the copy.

Optionala

move JSON
String

URI of an existing local or remote CDMI container object
(source URI) that shall be relocated, along with all child
objects, to the URI specified in the PUT. The contents of
the container object and all children, including the object
ID, shall be preserved by a move, and the container object
and all children of the source URI shall be removed after
the objects at the destination have been successfully
created.

If there are insufficient permissions to read the objects at
the source URI, write the objects at the destination URI, or
delete the objects at the source URI, or if any of these
operations fail, the move shall return a 400 Bad Request
result code, and the source and destination are left
unchanged.

Optionala

reference JSON
String

URI of a CDMI container object that shall be redirected to
by a reference. If other fields are supplied when creating a
reference, the server shall respond with an HTTP status
code of 400 Bad Request.

Optionala

deserializevalue JSON
String

A container object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in RFC
4648. The object ID of the serialized container object shall
match the object ID of the destination container object.

Optionala

Table 33 - Request Message Body - Create a Container Object using CDMI Content Type (Sheet 2 of 2)

Field Name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with a 400 Bad Request error
response.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 76

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

132

133

134

135

136

137

ISO/IEC 17826:2012(E)
9.2.6 Response Headers

The HTTP response headers for creating a CDMI container object using CDMI content type are shown in
Table 34.

9.2.7 Response Message Body

The response message body fields for creating a CDMI container object using CDMI content type are
shown in Table 35.

Table 34 - Response Headers - Create a Container Object using CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-container" Mandatory

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version
supported by both the client and the server, e.g., "1.0.2".

If the server does not support any of the versions
supported by the client, the server shall return a 400 Bad
Request status code.

Mandatory

Table 35 - Response Message Body - Create a Container Object using CDMI Content Type (Sheet 1 of 2)

Field Name Type Description Requirement

objectType JSON
String

"application/cdmi-container" Mandatory

objectID JSON
String

Object ID of the object Mandatory

objectName JSON
String

Name of the object Mandatory

parentURI JSON
String

URI for the parent object

Appending the objectName to the parentURI shall always
produce a valid URI for the object.

Mandatory

parentID JSON
String

Object ID of the parent container object Mandatory

domainURI JSON
String

URI of the owning domain Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object Mandatory

completionStatus JSON
String

A string indicating if the object is still in the process of being
created, and after the operation is complete, if it was
created successfully or an error occurred. The value shall
be the string "Processing", the string "Complete", or an
error string starting with the value "Error".

Mandatory

aReturned only if present.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

77 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

138

139

140

ISO/IEC 17826:2012(E)
9.2.8 Response Status

Table 36 describes the HTTP status codes that occur when creating a container object using CDMI
content type.

percentComplete JSON
String

• When the value of completionStatus is "Processing", this
field, if provided, shall indicate the percentage of
completion as a numeric integer value from 0 through
100.

• When the value of completionStatus is "Complete", this
field, if provided, shall contain the value "100".

• When the value of completionStatus is "Error", this field,
if provided, may contain any integer value from 0 through
100.

Optional

metadata JSON
Object

Metadata for the container object. This field includes any
user and data system metadata specified in the request
message body metadata field, along with storage system
metadata generated by the cloud storage system. See
Clause 16 for a further description of metadata.

Mandatory

exports JSON
Object

A structure for each protocol that is enabled for this
container object. See Clause 13.

Optionala

snapshots JSON
Array

URI(s) of the snapshot container objects. See Clause 14. Optionala

childrenrange JSON
String

The children of the container expressed as a range. If a
range of children is requested, this field indicates the
children returned as a range.

Mandatory

children JSON
Array

Names of the children objects in the container object. Child
container objects end with "/".

Mandatory

Table 36 - HTTP Status Codes - Create a CDMI Container Object using CDMI Content Type

HTTP Status Description

201 Created The new container object was created.

202 Accepted The container object is in the process of being created. The CDMI client should
monitor the completionStatus and percentComplete fields to determine the current
status of the operation.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The container object name already exists.

Table 35 - Response Message Body - Create a Container Object using CDMI Content Type (Sheet 2 of 2)

Field Name Type Description Requirement

aReturned only if present.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 78

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

ISO/IEC 17826:2012(E)
9.2.9 Example

EXAMPLE PUT to the URI the container object name and metadata:

PUT /MyContainer/HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0.2

{
 "metadata" : {

 },
 "exports" : {
 "OCCI/iSCSI": {
 "identifier": "00007E7F00104BE66AB53A9572F9F51E",
 "permissions": [
 "http://example.com/compute/0/",
 "http://example.com/compute/1/"
]
 },

 "Network/NFSv4" : {
 "identifier" : "/users",
 "permissions" : "domain"
 }
 }
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0.2

{
 "objectType" : "application/cdmi-container",
 "objectID" : "0000706D0010B84FAD185C425D8B537E",
 "objectName" : "MyContainer/",
 "parentURI" : "/",
 "parentID" : "00007E7F0010128E42D87EE34F5A6560",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/container/",
 "completionStatus" : "Complete",
 "metadata" : {

 },
 "exports" : {
 "OCCI/iSCSI" : {
 "identifier" : "0000706D0010B84FAD185C425D8B537E",
 "permissions" : "00007E7F00104EB781F900791C70106C"
 },
 "Network/NFSv4" : {
 "identifier" : "/users",
 "permissions" : "domain"
 }
 },
 "childrenrange" : "",
 "children" : [

]
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

79 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

ISO/IEC 17826:2012(E)
9.3 Create a Container Object using a Non-CDMI Content Type

9.3.1 Synopsis

To create a new container object, the following request shall be performed:

PUT <root URI>/<ContainerName>/<NewContainerName>/

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects that already exist, with one slash
(i.e., "/") between each pair of container object names.

• <NewContainerName> is the name specified for the container object to be created.

After it is created, the container object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

The presence of a trailing slash at the end of the HTTP PUT URI indicates that a container object is being
created and distinguishes it from a request to create a data object.

9.3.2 Capability

The following capability describes the supported operations that may be performed when creating a new
container object:

• Support for the ability to create a new container object is indicated by the presence of the
cdmi_create_container capability in the parent container object.

9.3.3 Request Headers

Request headers may be provided as per RFC 2616.

9.3.4 Request Message Body

A request message body shall not be provided.

9.3.5 Response Headers

Response headers may be provided as per RFC 2616.

9.3.6 Response Message Body

A response message body may be provided as per RFC 2616.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 80

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

ISO/IEC 17826:2012(E)
9.3.7 Response Status

Table 37 describes the HTTP status codes that occur when creating a container object using a non-CDMI
content type.

9.3.8 Example

EXAMPLE PUT to the URI the container object name:

PUT /MyContainer/ HTTP/1.1
Host: cloud.example.com

The following shows the response.

HTTP/1.1 201 Created

9.4 Read a Container Object using CDMI Content Type

9.4.1 Synopsis

To read all fields from an existing container object, the following request shall be performed:

GET <root URI>/<ContainerName>/<TheContainerName>/

To read one or more requested fields from an existing container object, one of the following requests shall
be performed:

GET <root URI>/<ContainerName>/<TheContainerName>/?<fieldname>;<fieldname>;...
GET <root URI>/<ContainerName>/<TheContainerName>/?children:<range>;...
GET <root URI>/<ContainerName>/<TheContainerName>/?metadata:<prefix>;...

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects.

• <TheContainerName> is the name specified for the container object to be read from.

• <fieldname> is the name of a field.

• <range> is a numeric range within the list of children.

• <prefix> is a matching prefix that returns all metadata items that start with the prefix value.

The container object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

9.4.2 Capabilities

The following capabilities describe the supported operations that may be performed when reading an
existing container object:

Table 37 - HTTP Status Codes - Create a Container Object using a Non-CDMI Content Type

HTTP Status Description

201 Created The new container object was created.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

409 Conflict The container object name already exists.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

81 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

251

252

253

254

255

256

257

258

259

260

261

262

263

264

ISO/IEC 17826:2012(E)
• Support for the ability to read the metadata of an existing container object is indicated by the
presence of the cdmi_read_metadata capability in the specified container object.

• Support for the ability to list the children of an existing container object is indicated by the presence
of the cdmi_list_children capability in the specified container object.

• Support for the ability to list ranges of the children of an existing container object is indicated by
the presence of the cdmi_list_children_range capability in the specified container object.

9.4.3 Request Headers

The HTTP request headers for reading a CDMI container object using CDMI content type are shown in
Table 38.

9.4.4 Request Message Body

A request message body shall not be provided.

9.4.5 Response Headers

The HTTP response headers for reading a CDMI container object using CDMI content type are shown in
Table 39.

Table 38 - Request Headers - Read a Container Object using CDMI Content Type

Header Type Description Requirement

Accept Header
String

"application/cdmi-container" or a consistent value as per
clause 5.13.2

Optional

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions supported by the client,
e.g., "1.0.2, 1.5, 2.0"

Mandatory

Table 39 - Response Headers - Read a Container Object using CDMI Content Type

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version
supported by both the client and the server, e.g., "1.0.2".

If the server does not support any of the versions
supported by the client, the server shall return a 400 Bad
Request status code.

Mandatory

Content-Type Header
String

"application/cdmi-container" Mandatory

Location Header
String

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 82

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

265

266

267

ISO/IEC 17826:2012(E)
9.4.6 Response Message Body

The response message body fields for reading a CDMI container object using CDMI content type are
shown in Table 40.

Table 40 - Response Message Body - Read a Container Object using CDMI Content Type (Sheet 1 of 2)

Field Name Type Description Requirement

objectType JSON
String

"application/cdmi-container" Mandatory

objectID JSON
String

Object ID of the object Mandatory

objectName JSON
String

Name of the object

• For objects in a container, the objectName field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the objectName field does not exist
and shall not be returned.

Conditional

parentURI JSON
String

URI for the parent object

• For objects in a container, the parentURI field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the parentURI field does not exist and
shall not be returned.

Appending the objectName to the parentURI shall always
produce a valid URI for the object.

Conditional

parentID JSON
String

Object ID of the parent container object

• For objects in a container, the parentID field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the parentID field does not exist and
shall not be returned.

Conditional

domainURI JSON
String

URI of the owning domain Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object Mandatory

completionStatus JSON
String

A string indicating if the object is still in the process of being
created, and after the operation is complete, if it was
created successfully or an error occurred. The value shall
be the string "Processing", the string "Complete", or an
error string starting with the value "Error".

Mandatory

percentComplete JSON
String

• When the value of completionStatus is "Processing", this
field, if provided, shall indicate the percentage of
completion as a numeric integer value from 0 through
100.

• When the value of completionStatus is "Complete", this
field, if provided, shall contain the value "100".

• When the value of completionStatus is "Error", this field,
if provided, may contain any integer value from 0 through
100.

Optional

aReturned only if present.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

83 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

268

269

270

271

272

ISO/IEC 17826:2012(E)
If individual fields are specified in the GET request, only these fields are returned in the result body.
Optional fields that are requested but do not exist are omitted from the result body.

9.4.7 Response Status

Table 41 describes the HTTP status codes that occur when reading a container object using CDMI content
type.

metadata JSON
Object

Metadata for the container object. This field includes any
user and data system metadata specified in the request
message body metadata field, along with storage system
metadata generated by the cloud storage system. See
Clause 16 for a further description of metadata.

Mandatory

exports JSON
Object

A structure for each protocol that is enabled for this
container object (see Clause 13)

Optionala

snapshots JSON
Array

URIs of the snapshot container objects Optionala

childrenrange JSON
String

The children of the container expressed as a range. If a
range of children is requested, this field indicates the
children returned as a range.

Mandatory

children JSON
Array

Names of the children objects in the container object. All
children names shall have reserved characters escaped
according to RFC 3986, e.g., the "%" character in a name
would be replaced with "%25".

• Children that are container objects shall have "/"
appended to the child name.

• Children that are references shall have "?" appended to
the child name.

Mandatory

Table 41 - HTTP Status Codes - Read a Container Object using CDMI Content Type

HTTP Status Description

200 OK The metadata for the container object is provided in the message body.

302 Found The URI is a reference to another URI.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

406 Not Acceptable The server is unable to provide the object in the content type specified in the
Accept header.

Table 40 - Response Message Body - Read a Container Object using CDMI Content Type (Sheet 2 of 2)

Field Name Type Description Requirement

aReturned only if present.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 84

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

ISO/IEC 17826:2012(E)
9.4.8 Examples

EXAMPLE 1 GET to the container object URI to read all the fields of the container object:

GET /MyContainer/HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
X-CDMI-Specification-Version: 1.0.2

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0.2

{
 "objectType" : "application/cdmi-container",
 "objectID" : "0000706D0010B84FAD185C425D8B537E",
 "objectName" : "MyContainer/",
 "parentURI" : "/",
 "parentID" : "00007E7F0010128E42D87EE34F5A6560",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/container/",
 "completionStatus" : "Complete",
 "metadata" : {

 },
 "exports" : {
 "OCCI/iSCSI": {
 "identifier": "00007E7F00104BE66AB53A9572F9F51E",
 "permissions": [
 "http://example.com/compute/0/",
 "http://example.com/compute/1/"
]
 },
 "Network/NFSv4" : {
 "identifier" : "/users",
 "permissions" : "domain"
 },
 "childrenrange" : "0-4",
 "children" : [
 "red",
 "green",
 "yellow",
 "orange/",
 "purple/"
]
 }
}

EXAMPLE 2 GET to the container object URI to read parentURI and children of the container object:

GET /MyContainer/?parentURI;children HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
X-CDMI-Specification-Version: 1.0.2

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

85 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

ISO/IEC 17826:2012(E)
The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0.2

{
 "parentURI" : "/",
 "children" : [
 "red",
 "green",
 "yellow",
 "orange/",
 "purple/"
]
}

EXAMPLE 3 GET to the container object URI to read children 0..2 and childrenrange of the container object:

GET /MyContainer/?childrenrange;children:0-2 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
X-CDMI-Specification-Version: 1.0.2

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0.2

{
 "childrenrange" : "0-2",
 "children" : [
 "red",
 "green",
 "yellow"
]
}

9.5 Update a Container Object using CDMI Content Type

9.5.1 Synopsis

To update some or all fields in an existing container object, the following request shall be performed:

PUT <root URI>/<ContainerName>/<TheContainerName>/

To add, update, and remove specific metadata items of an existing container object, the following request
shall be performed:

PUT <root URI>/<ContainerName>/<TheContainerName>/?metadata:<metadataname>;...

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects.

• <TheContainerName> is the name of the container object to be updated.

The container object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/. An update shall not
result in a change to the object ID.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 86

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

ISO/IEC 17826:2012(E)
9.5.2 Delayed Completion of Snapshot

If the creation of a snapshot (see Clause 14) is requested by including a snapshot field in the request
message body, the server may return an HTTP status code of 202 Accepted. Such a response has the
following implications:

• With 202 Accepted, the server implies that the following checks have passed:

— user authorization for creating the snapshot,

— user authorization for read access to the container object, and

— availability of space to create the snapshot or at least enough space to create a URI to report
an error.

• A client might not be able to immediately access the snapshot, e.g., due to delays resulting from
the implementation’s use of eventual consistency.

The client performs GET operations to the snapshot URI to track the progress of the operation. In
particular, the server returns two fields in its response message body to indicate progress:

• A completionStatus text field contains either "Processing", "Complete", or an error string starting
with the value "Error".

• An optional percentComplete field contains the percentage that the accepted PUT has completed
(0 to 100). GET does not return any value for the object when completionStatus is not "Complete".

When the final result of the snapshot operation is an error, the snapshot URI is created with the
completionStatus field set to the error message. It is the client's responsibility to delete the URI after the
error has been noted.

9.5.3 Capabilities

The following capabilities describe the supported operations that may be performed when updating an
existing container object:

• Support for the ability to modify the metadata of an existing container object is indicated by the
presence of the cdmi_modify_metadata capability in the specified container object.

• Support for the ability to snapshot the contents of an existing container object is indicated by the
presence of the cdmi_snapshot capability in the specified container object.

• Support for the ability to add an exported protocol to an existing container object is indicated by the
presence of the cdmi_export_<protocol> capabilities for the specified container object.

9.5.4 Request Headers

The HTTP request headers for updating a CDMI container object using CDMI content type are shown in
Table 42.

Table 42 - Request Headers - Update a Container Object using CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-container" Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions supported by the client,
e.g., "1.0.2, 1.5, 2.0"

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

87 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

398

399

400

ISO/IEC 17826:2012(E)
9.5.5 Request Message Body

The request message body fields for updating a container object using CDMI content type are shown in
Table 43.

Table 43 - Request Message Body - Update a Container Object using CDMI Content Type (Sheet 1 of 2)

Field Name Type Description Requirement

metadata JSON
Object

Metadata for the container object. If present, the new
metadata specified replaces the existing object metadata. If
individual metadata items are specified in the URI, only
those items are replaced, with other items being preserved.

See Clause 16 for a further description of metadata.

Optional

domainURI JSON
String

URI of the owning domain

• If different from the parent domain, the user shall have
the cross_domain privilege (see
cdmi_member_privileges in Table 64).

• If not specified, the parent domain shall be used.

Optional

snapshot JSON
String

Name of the snapshot to be taken. This is not a URL, but
rather the final component of the absolute URL where the
snapshot will exist when the snapshot operation
successfully completes. If a snapshot is added or changed,
the PUT operation only returns after the snapshot is added
to the snapshot list. After they are created, snapshots may
be accessed as children container objects under the
cdmi_snapshots child container object of the container
object receiving a snapshot.

When creating a snapshot with the same name as an
existing snapshot, the new snapshot will replace the
existing snapshot.

Optional

deserialize JSON
String

URI of a serialized CDMI container object that shall be
deserialized to update an existing container object. The
object ID of the serialized container object shall match the
object ID of the destination container object.

If the serialized container object does not contain children,
the update is applied only to the container object, and any
existing children are left as-is. If the serialized container
object does contain children, then creates, updates, and
deletes are recursively applied for each child, depending
on the differences between the provided serialized state
and the current state of the child.

Optionala

copy JSON
String

URI of a CDMI container object that shall be copied into the
existing container object. Only the contents of the container
object itself shall be copied, not any children of the
container object.

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 88

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

401

402

403

404

405

406

407

408

ISO/IEC 17826:2012(E)
9.5.6 Response Header

The HTTP response header for updating a CDMI container object using CDMI content type is shown in
Table 44.

9.5.7 Response Message Body

A response message body may be provided as per RFC 2616.

9.5.8 Response Status

Table 45 describes the HTTP status codes that occur when updating a container object using CDMI
content type.

deserializevalue JSON
Sting

A container object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in RFC
4648.

The object ID of the serialized container object shall match
the object ID of the destination container object. Otherwise,
the server shall return an HTTP status code of 400 Bad
Request.

• If the serialized container object does not contain
children, the update is applied only to the container
object, and any existing children are left as-is.

• If the serialized container object does contain children,
then creates, updates, and deletes are recursively
applied for each child, depending on the differences
between the provided serialized state and the current
state of the children.

Optionala

exports JSON
Object

A structure for each protocol that is enabled for this
container object (see Clause 13). If an exported protocol is
added or altered, the PUT operation only returns after the
export operation has completed.

Optional

Table 44 - Response Header - Update a Container Object using CDMI Content Type

Header Type Description Requirement

Location Header
String

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional

Table 45 - HTTP Status Codes - Update a Container Object using CDMI Content Type (Sheet 1 of 2)

HTTP Status Description

204 No Content The operation was successful; no data was returned.

202 Accepted The container or snapshot (subcontainer object) is in the process of being created.
The CDMI client should monitor the completionStatus and percentComplete fields
to determine the current status of the operation.

302 Found The URI is a reference to another URI.

400 Bad Request The request contains invalid parameters or field names.

Table 43 - Request Message Body - Update a Container Object using CDMI Content Type (Sheet 2 of 2)

Field Name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

89 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

ISO/IEC 17826:2012(E)
9.5.9 Examples

EXAMPLE 1 PUT to the container object URI to set new field values:

PUT /MyContainer/ HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0.2

{
 "metadata" : {

 } ,
 "exports" : {
 "OCCI/iSCSI": {
 "identifier": "00007E7F00104BE66AB53A9572F9F51E",
 "permissions": [
 "http://example.com/compute/0/",
 "http://example.com/compute/1/"
]
 },
 "Network/NFSv4" : {
 "identifier" : "/users",
 "permissions" : "domain"
 }
 }
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 2 PUT to the container object URI to set a new exported protocol value:

PUT /MyContainer/?exports HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0.2

{
 "exports" : {
 "OCCI/iSCSI" : {
 "identifier" : "0000706D0010B84FAD185C425D8B537E",
 "permissions" : "00007E7F00104EB781F900791C70106C"
 } ,
 "Network/NFSv4" : {
 "identifier" : "/users",
 "permissions" : "domain"
 }
 }
}

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a state
transition error on the server.

Table 45 - HTTP Status Codes - Update a Container Object using CDMI Content Type (Sheet 2 of 2)

HTTP Status Description

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 90

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

ISO/IEC 17826:2012(E)
The following shows the response.

HTTP/1.1 204 No Content

9.6 Delete a Container Object using CDMI Content Type

9.6.1 Synopsis

To delete an existing container object, including all contained children and snapshots, the following request
shall be performed:

DELETE <root URI>/<ContainerName>/<TheContainerName>/

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects.

• <TheContainerName> is the name of the container object to be deleted.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

9.6.2 Capability

The following capability describes the supported operations that may be performed when deleting an
existing container object:

• Support for the ability to delete an existing data object is indicated by the presence of the
cdmi_delete_container capability in the specified container object.

9.6.3 Request Header

The HTTP request header for deleting a CDMI container object using CDMI content type is shown in
Table 46.

9.6.4 Request Message Body

A request message body may be provided as per RFC 2616.

9.6.5 Response Headers

Response headers may be provided as per RFC 2616.

9.6.6 Response Message Body

A response message body may be provided as per RFC 2616.

Table 46 - Request Header - Delete a Container Object using CDMI Content Type

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions supported by the client,
e.g., "1.0.2, 1.5, 2.0"

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

91 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

ISO/IEC 17826:2012(E)
9.6.7 Response Status

Table 47 describes the HTTP status codes that occur when deleting a container object using CDMI
content type.

9.6.8 Example

EXAMPLE DELETE to the container object URI:

DELETE /MyContainer/ HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.0.2

The following shows the response.

HTTP/1.1 204 No Content

9.7 Delete a Container Object using a Non-CDMI Content Type

9.7.1 Synopsis

To delete an existing container object, including all contained children and snapshots, the following request
shall be performed:

DELETE <root URI>/<ContainerName>/<TheContainerName>/

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects.

• <TheContainerName> is the name of the container object to be deleted.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

9.7.2 Capability

The following capability describes the supported operations that may be performed when deleting an
existing container object:

• Support for the ability to delete an existing data object is indicated by the presence of the
cdmi_delete_container capability in the specified container object.

9.7.3 Request Headers

Request headers may be provided as per RFC 2616.

Table 47 - HTTP Status Codes - Delete a Container Object using CDMI Content Type

HTTP Status Description

204 No Content The container object was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The container object may not be deleted.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 92

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

ISO/IEC 17826:2012(E)
9.7.4 Request Message Body

A request message body may be provided as per RFC 2616.

9.7.5 Response Headers

Response headers may be provided as per RFC 2616.

9.7.6 Response Message Body

A response message body may be provided as per RFC 2616.

9.7.7 Response Status

Table 48 describes the HTTP status codes that occur when deleting a container object using a non-CDMI
content type.

9.7.8 Example

EXAMPLE DELETE to the container object URI:

DELETE /MyContainer/ HTTP/1.1
Host: cloud.example.com

The following shows the response.

HTTP/1.1 204 No Content

9.8 Create (POST) a New Data Object using CDMI Content Type

9.8.1 Synopsis

To create a new data object in a specified container where the name of the data object is a server-
assigned object identifier, the following request shall be performed:

POST <root URI>/<ContainerName>/

To create a new data object where the data object does not belong to a container and is only accessible by
ID (see 5.8), the following request shall be performed:

POST <root URI>/cdmi_objectid/

Table 48 - HTTP Status Codes - Delete a Container Object using a Non-CDMI Content Type

HTTP Status Description

204 No Content The container object was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The container object may not be deleted.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

93 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

ISO/IEC 17826:2012(E)
Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects that already exist, with one slash
(i.e., "/") between each pair of container object names.

If created in "/cdmi_objectid/", the data object shall be accessible at <root URI>/cdmi_objectid/<objectID>.

If created in a container, the data object shall be accessible as a child of the container with a server-
assigned name, and shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

9.8.2 Delayed Completion of Create

In response to a create operation for a data object, the server may return 202 Accepted to indicate that the
object is in the process of being created. This response is useful for long-running operations (e.g., copying
a large data object from a source URI). Such a response has the following implications.

• The server shall return a Location header with a URI to the object to be created along with an
HTTP status code of 202 Accepted.

• With 202 Accepted, the server implies that the following checks have passed:

— user authorization for creating the object;

— user authorization for read access to any source object for move, copy, serialize, or
deserialize; and

— availability of space to create the object or at least enough space to create a URI to report an
error.

• A client might not be able to immediately access the created object, e.g., due to delays resulting
from the implementation’s use of eventual consistency.

The client performs GET operations to the URI to track the progress of the operation. In response, the
server returns two fields in its response message body to indicate progress.

• A mandatory completionStatus text field contains either "Processing", "Complete", or an error
string starting with the value "Error".

• An optional percentComplete field contains the percentage that the Accepted POST has
completed (0 to 100).

GET does not return any value for the object when completionStatus is not "Complete". When the final
result of the create operation is an error, the URI is created with the completionStatus field set to the error
message. It is the client's responsibility to delete the URI after the error has been noted.

9.8.3 Capabilities

The following capabilities describe the supported operations that may be performed when creating a new
data object by ID in "/cdmi_objectid/":

• Support for the ability to create data objects through this operation is indicated by the presence of
the cdmi_post_dataobject_by_ID system capability.

• If the object being created in "/cdmi_objectid/" is a reference, support for that ability is indicated by
the presence of the cdmi_create_reference_by_ID system capability.

• If the new data object being created in "/cdmi_objectid/" is a copy of an existing data object,
support for the ability to copy is indicated by the presence of the cdmi_copy_dataobject_by_ID
system capability.

• If the new data object being created in "/cdmi_objectid/" is the destination of a move, support for
the ability to move the data object to "/cdmi_objectid/" is indicated by the presence of the
cdmi_object_move_to_ID system capability.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 94

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

ISO/IEC 17826:2012(E)
• If the new data object being created in "/cdmi_objectid/" is the destination of a deserialization
operation, support for the ability to deserialize the data object is indicated by the presence of the
cdmi_deserialize_dataobject_by_ID system capability.

• If the new data object being created in "/cdmi_objectid/" is the destination of a serialize operation,
support for the ability to serialize the data object is indicated by the presence of the following
system capabilities:

— cdmi_serialize_dataobject_to_ID,

— cdmi_serialize_container_to_ID,

— cdmi_serialize_domain_to_ID, or

— cdmi_serialize_queue_to_ID.

The following capabilities describe the supported operations that may be performed when creating a new
data object by ID in a container:

• Support for the ability to create data objects through this operation is indicated by both the
presence of the cdmi_post_dataobject and the presence of the cdmi_create_dataobject capability
in the specified container object.

• If the object being created in the parent container object is a reference, support for that ability is
indicated by the presence of the cdmi_create_reference capability in the parent container object.

• If the new data object is a copy of an existing data object, support for the ability to copy is indicated
by the presence of the cdmi_copy_dataobject capability in the parent container object.

• If the new data object is the destination of a move, support for the ability to move the data object is
indicated by the presence of the cdmi_move_dataobject capability in the parent container object.

• If the new data object is the destination of a deserialize operation, support for the ability to
deserialize the the data object is indicated by the presence of the cdmi_deserialize_dataobject
capability in the parent container object.

• If the new data object is the destination of a serialize operation, support for the ability to serialize
the source data object is indicated by the presence of the cdmi_serialize_dataobject",
"cdmi_serialize_container", "cdmi_serialize_domain", or "cdmi_serialize_queue" capabilities in the
parent container object.

9.8.4 Request Headers

The HTTP request headers for creating a new CDMI data object using CDMI content type are shown in
Table 49.

Table 49 - Request Headers - Create a New Data Object using CDMI Content Type

Header Type Description Requirement

Accept Header
String

"application/cdmi-object" or a consistent value as per
clause 5.13.2

Optional

Content-Type Header
String

"application/cdmi-object" Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions supported by the client,
e.g., "1.0.2, 1.5, 2.0"

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

95 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

602

603

604

ISO/IEC 17826:2012(E)
9.8.5 Request Message Body

The request message body fields for creating a new data object using CDMI content type are shown in
Table 50.

Table 50 - Request Message Body - Create a New Data Object using CDMI Content Type (Sheet 1 of 2)

Field Name Type Description Requirement

mimetype JSON
String

MIME type of the data contained within the value field of
the data object

• This field may be included when creating by value,
deserializing, serializing, copying, and moving a data
object.

• This field shall be stored as part of the object.

• If this field is not specified, the value of "text/
plain" shall be assigned as the field value.

• This field shall not be included when creating a
reference.

• This mimetype value shall be converted to lower case
before being stored.

Optional

metadata JSON
Object

Metadata for the data object

• If this field is included when deserializing, serializing,
copying, or moving a data object, the value provided
in this field shall replace the metadata from the
source URI.

• If this field is not included when deserializing,
serializing, copying, or moving a data object, the
metadata from the source URI shall be used.

• If this field is included when creating a new data
object by specifying a value, the value provided in this
field shall be used as the metadata.

• If this field is not included when creating a new data
object by specifying a value, an empty JSON object
(i.e., "{}") shall be assigned as the field value.

• This field shall not be included when referencing a
data object.

Optional

domainURI JSON
String

URI of the owning domain

• Any domain may be specified, and the cross_domain
privilege is not required (see cdmi_member_privileges
in Table 64).

• If not specified, the root domain "/cdmi_domains/"
shall be used.

Optional

deserialize JSON
String

URI of a serialized CDMI data object that shall be
deserialized to create the new data object

Optionala

serialize JSON
String

URI of a CDMI object that shall be serialized into the
new data object

Optionala

copy JSON
String

URI of a CDMI data object or queue that shall be copied
into the new data object

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with a 400 Bad Request error
response.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 96

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
move JSON
String

URI of a CDMI data object or queue object value that
shall be copied into the new data object. The data
object or queue object value at the source URI shall be
removed upon the successful completion of the copy.

Optionala

reference JSON
String

URI of a CDMI data object that shall be redirected to by
a reference. If other fields are supplied when creating a
reference, the server shall respond with an HTTP status
code of 400 Bad Request.

Optionala

deserializevalue JSON
String

A data object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in
RFC 4648.

Optionala

valuetransferencoding JSON
Array of
JSON
Strings

The value transfer encoding used for the container
object value. Two value transfer encodings are defined:

• "utf-8" indicates that the data object contains a valid
UTF-8 string, and it shall be transported as a UTF-8
string in the value field.

• "base64" indicates that the data object may contain
arbitrary binary sequences, and it shall be
transported as a base 64-encoded string in the value
field. Setting the contents of the data object value
field to any value other than a valid base 64 string
shall result in 400 Bad Request error being returned
to the client.

This field shall only be included when updating a data
object by value. If this field is not specified, the existing
value of valuetransferencoding shall be left unchanged.

This field shall be stored as part of the object.

Optional

value JSON
String

JSON-encoded data

• If this field is not included, an empty JSON String (i.e.,
"") shall be assigned as the field value.

• If the valuetransferencoding field indicates UTF-8
encoding, the value shall be a UTF-8 string escaped
using the JSON escaping rules described in RFC
4627.

• If the valuetransferencoding field indicates base 64
encoding, the value shall be first encoded using the
base 64 encoding rules described in RFC 4648.

Optionala

Table 50 - Request Message Body - Create a New Data Object using CDMI Content Type (Sheet 2 of 2)

Field Name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with a 400 Bad Request error
response. IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 17

82
6:2

01
2

97 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

605

606

607

608

609

610

ISO/IEC 17826:2012(E)
9.8.6 Response Headers

The HTTP response headers for creating a new CDMI data object using CDMI content type are shown in
Table 51.

9.8.7 Response Message Body

The response message body fields for creating a new CDMI data object using CDMI content type are
shown in Table 52.

Table 51 - Response Headers - Create a New Data Object using CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-object" Mandatory

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, e.g., "1.0.2".

If the server does not support any of the versions supported
by the client, the server shall return a 400 Bad Request
status code.

Mandatory

Location Header
String

The unique URI for the new data object as assigned by the
system. In the absence of file name information from the
client the system shall assign the URI in the form: <root
URI>/<ContainerName>/<ObjectID>.

Mandatory

Table 52 - Response Message Body - Create a New Data Object using CDMI Content Type (Sheet 1 of 2)

Field Name Type Description Requirement

objectType JSON
String

"application/cdmi-object" Mandatory

objectID JSON
String

Object ID of the object Mandatory

objectName JSON
String

Name of the object

• For objects in a container, the objectName field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the objectName field does not exist
and shall not be returned.

Conditional

parentURI JSON
String

URI for the parent object

• For objects in a container, the parentURI field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the parentURI field does not exist and
shall not be returned.

Appending the objectName to the parentURI shall always
produce a valid URI for the object.

Conditional

parentID JSON
String

Object ID of the parent container object

• For objects in a container, the parentID field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the parentID field does not exist and
shall not be returned.

Conditional

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 98

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

611

612

613

ISO/IEC 17826:2012(E)
9.8.8 Response Status

Table 53 describes the HTTP status codes that occur when creating a new data object using CDMI content
type.

domainURI JSON
String

URI of the owning domain Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object Mandatory

completionStatus JSON
String

A string indicating if the object is still in the process of being
created, and after the operation is complete, if it was
created successfully or an error occurred

The value shall be the string "Processing", the string
"Complete", or an error string starting with the value "Error".

Mandatory

percentComplete JSON
String

• When the value of completionStatus is "Processing", this
field, if provided, shall indicate the percentage of
completion as a numeric integer value from 0 through
100.

• When the value of completionStatus is "Complete", this
field, if provided, shall contain the value "100".

• When the value of completionStatus is "Error", this field, if
provided, may contain any integer value from 0 through
100.

Optional

mimetype JSON
String

MIME type of the value of the data object Mandatory

metadata JSON
Object

Metadata for the data object. This field includes any user
and data system metadata specified in the request
message body metadata field, along with storage system
metadata generated by the cloud storage system.

See Clause 16 for a further description of metadata.

Mandatory

Table 53 - HTTP Status Codes - Create a New Data Object using CDMI Content Type

HTTP Status Description

201 Created The new data object was created.

202 Accepted The data object is in the process of being created. The CDMI client should monitor
the completionStatus and percentComplete fields to determine the current status of
the operation.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a state
transition error on the server.

Table 52 - Response Message Body - Create a New Data Object using CDMI Content Type (Sheet 2 of 2)

Field Name Type Description Requirement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

99 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

ISO/IEC 17826:2012(E)
9.8.9 Examples

EXAMPLE 1 POST to the container object URI the data object contents:

POST /MyContainer/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "mimetype" : "text/plain",
 "metadata" : {

 },
 "value" : "This is the Value of this Data Object"
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2
Location: http://cloud.example.com/MyContainer/0000706D0010B84FAD185C425D8B537E

{
 "objectType" : "application/cdmi-object",
 "objectID" : "0000706D0010B84FAD185C425D8B537E",
 "objectName" : "0000706D0010B84FAD185C425D8B537E",
 "parentURI" : "/MyContainer/",
 "parentID" : "0000706D0010B84FAD185C425D8B537E",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {

 }
}

EXAMPLE 2 POST to the object ID URI the data object contents:

POST /cdmi_objectid/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "mimetype": "text/plain",
 "domainURI": "/cdmi_domains/MyDomain/",
 "value": "This is the Value of this Data Object"
}

The following shows the response.

HTTP/1.1 201 Created
Location: http://cloud.example.com/cdmi_objectid/0000706D0010B84FAD185C425D8B537E
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "objectType": "application/cdmi-object",
 "objectID": "0000706D0010B84FAD185C425D8B537E",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/dataobject/",
 "completionStatus": "Complete",
 "mimetype": "text/plain",
 "metadata": {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 100

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

ISO/IEC 17826:2012(E)
 "cdmi_acl": [
 {
 "acetype": "ALLOW",
 "identifier": "OWNER@",
 "aceflags": "NO_FLAGS",
 "acemask": "ALL_PERMS"
 }
]
 }
}

9.9 Create (POST) a New Data Object using a Non-CDMI Content Type

9.9.1 Synopsis

To create a new data object in a specified container where the name of the data object is a server-assigned
object identifier, the following request shall be performed:

POST <root URI>/<ContainerName>/

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects that already exist, with one slash
(i.e., "/") between each pair of container object names.

The data object shall be accessible as a child of the container with a server-assigned name and shall also
be accessible at <root URI>/cdmi_objectid/<objectID>.

9.9.2 Capability

The following capability describes the supported operations that may be performed when creating a new
data object:

• Support for the ability to create data objects through this operation is indicated by both the
presence of the cdmi_post_dataobject" and the presence of the cdmi_create_dataobject capability
in the specified container object.

9.9.3 Request Header

The HTTP request header for creating a new CDMI data object using a non-CDMI content type is shown in
Table 54.

9.9.4 Request Message Body

The message body shall contain the contents (value) of the data object to be created.

Table 54 - Request Header - Create a New Data Object using a Non-CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

The content type of the data to be stored as a data object.
The value specified here shall be converted to lower case
and stored in the mimetype field of the CDMI data object. If
the content type includes the charset parameter as defined
in RFC 2246 of "utf-8" (e.g., ";charset=utf-8"), the
valuetransferencoding field of the CDMI data object shall be
set to "utf-8". Otherwise, the valuetransferencoding field of
the CDMI data object shall be set to "base64".

MandatoryIECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

101 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

ISO/IEC 17826:2012(E)
9.9.5 Response Header

The HTTP response header for creating a new CDMI data object using a non-CDMI content type is shown
in Table 55.

9.9.6 Response Message Body

A response message body may be provided as per RFC 2616.

9.9.7 Response Status

Table 56 describes the HTTP status codes that occur when creating a new data object using a non-CDMI
content type.

9.9.8 Examples

EXAMPLE 1 POST to the container object URI the data object contents:

POST /MyContainer/ HTTP/1.1
Host: cloud.example.com
Content-Type: text/plain;charset=utf-8

<object contents>

The following shows the response.

HTTP/1.1 201 Created
Location: http://cloud.example.com/MyContainer/0000706D0010B84FAD185C425D8B537E

EXAMPLE 2 POST to the object ID URI the data object contents:

POST /cdmi_objectid/ HTTP/1.1
Host: cloud.example.com
Content-Type: text/plain;charset=utf-8

<object contents>

The following shows the response.

HTTP/1.1 201 Created
Location: http://cloud.example.com/cdmi_objectid/0000706D0010B84FAD185C425D8B537E

Table 55 - Response Header - Create a New Data Object using a Non-CDMI Content Type

Header Type Description Requirement

Location Header
String

The unique URI for the new data object as assigned by the
system. In the absence of file name information from the
client the system shall assign the URI in the form: <root
URI>/<ContainerName>/<ObjectID>.

Mandatory

Table 56 - HTTP Status Codes - Create a New Data Object using a Non-CDMI Content Type

HTTP Status Description

201 Created The new data object was created.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 102

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

ISO/IEC 17826:2012(E)
9.10 Create (POST) a New Queue Object using CDMI Content Type

9.10.1 Synopsis

To create a new queue object (see Clause 11) in a specified container where the name of the queue object
is a server-assigned object identifier, the following request shall be performed:

POST <root URI>/<ContainerName>/

To create a new queue object where the queue object does not belong to a container and is only
accessible by ID (see 5.8), the following request shall be performed:

POST <root URI>/cdmi_objectid/

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects that already exist, with one slash
(i.e., "/") between each pair of container object names.

If created in "/cdmi_objectid/", the queue object shall be accessible at <root URI>/cdmi_objectid/
<objectID>.

If created in a container, the queue object shall be accessible as a child of the container with a server-
assigned name, and shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

9.10.2 Delayed Completion of Create

On a create operation for a queue object, the server may return a response of 202 Accepted. In this case,
the object is in the process of being created. This response is particularly useful for long-running
operations, for instance, copying a large number of queue items from a source URI. Such a response has
the following implications:

• The server shall return a Location header with a URI to the object to be created along with an
HTTP status code of 202 Accepted.

• With 202 Accepted, the server implies that the following checks have passed:

— user authorization for creating the object;

— user authorization for read access to any source object for move, copy, serialize, or
deserialize; and

— availability of space to create the object or at least enough space to create a URI to report an
error.

• A client might not be able to immediately access the created object, e.g., due to delays resulting
from the implementation’s use of eventual consistency.

The client performs GET operations to the URI to track the progress of the operation. In response, the
server returns two fields in its response message body to indicate progress.

• A mandatory completionStatus text field contains either "Processing", "Complete", or an error
string starting with the value "Error".

• An optional percentComplete field contains the percentage that the accepted POST has
completed (0 to 100).

GET does not return any value for the object when completionStatus is not "Complete". When the final
result of the create operation is an error, the URI is created with the completionStatus field set to the error
message. It is the client's responsibility to delete the URI after the error has been noted.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

103 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

ISO/IEC 17826:2012(E)
9.10.3 Capabilities

The following capabilities describe the supported operations that may be performed when creating a new
queue object by ID in "/cdmi_objectid/":

• Support for the ability to create queue objects through this operation is indicated by the presence
of the cdmi_post_queue_by_ID" system capability.

• If the object being created in "/cdmi_objectid/" is a reference, support for that ability is indicated by
the presence of the cdmi_create_reference_by_ID" system capability.

• If the new queue object being created in "/cdmi_objectid/" is a copy of an existing queue object,
support for the ability to copy is indicated by the presence of the cdmi_copy_queue_by_ID" system
capability.

• If the new queue object being created in "/cdmi_objectid/" is the destination of a move, support for
the ability to move the data object to "/cdmi_objectid/" is indicated by the presence of the
cdmi_object_move_to_ID" system capability.

• If the new queue object being created in "/cdmi_objectid/" is the destination of a deserialization
operation, support for the ability to deserialize the data object is indicated by the presence of the
cdmi_deserialize_queue_by_ID" system capability.

The following capabilities describe the supported operations that may be performed when creating a new
queue object by ID in a container:

• Support for the ability to create queue objects through this operation is indicated by both the
presence of the cdmi_post_queue" and the presence of the cdmi_create_queue capability in the
specified container object.

• If the object being created in the parent container object is a reference, support for that ability is
indicated by the presence of the cdmi_create_reference capability in the parent container object.

• If the new queue object is a copy of an existing queue object, support for the ability to copy is
indicated by the presence of the cdmi_copy_queue capability in the parent container object.

• If the new queue object is the destination of a move, support for the ability to move the queue
object is indicated by the presence of the cdmi_move_queue capability in the parent container
object.

• If the new queue object is the destination of a deserialize operation, support for the ability to
deserialize the the queue object is indicated by the presence of the cdmi_deserialize_queue
capability in the parent container object.

9.10.4 Request Headers

The HTTP request headers for creating a new CDMI queue object using CDMI content type are shown in
Table 57.

Table 57 - Request Headers - Create a New Queue Object using CDMI Content Type

Header Type Description Requirement

Accept Header
String

"application/cdmi-queue" or a consistent value as per
clause 5.13.2

Optional

Content-Type Header
String

"application/cdmi-queue" Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions supported by the client,
e.g., "1.0.2, 1.5, 2.0"

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 104

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

802

803

804

ISO/IEC 17826:2012(E)
9.10.5 Request Message Body

The request message body fields for creating a new queue object using CDMI content type are shown in
Table 58.

Table 58 - Request Message Body - Create a New Queue Object using CDMI Content Type

Field Name Type Description Requirement

metadata JSON
Object

Metadata for the queue object

• If this field is included when deserializing, serializing,
copying, or moving a queue object, the value provided in
this field shall replace the metadata from the source URI.

• If this field is not included when deserializing, serializing,
copying, or moving a queue object, the metadata from
the source URI shall be used.

• If this field is included when creating a new queue object
by specifying a value, the value provided in this field shall
be used as the metadata.

• If this field is not included when creating a new queue
object by specifying a value, an empty JSON object (i.e.,
"{}") will be assigned as the field value.

• This field shall not be included when referencing a queue
object.

Optional

domainURI JSON
String

URI of the owning domain

• Any domain may be specified, and the cross_domain
privilege is not required (see cdmi_member_privileges in
Table 64).

• If not specified, the root domain "/cdmi_domains/" shall
be used.

Optional

deserialize JSON
String

URI of a serialized CDMI data object that will be
deserialized to create the new queue object

Optionala

copy JSON
String

URI of a CDMI queue object that will be copied into the new
queue object

Optionala

move JSON
String

URI of a CDMI queue object that will be copied into the new
queue object. When the copy is successfully completed, the
queue object at the source URI is removed.

Optionala

reference JSON
String

URI of a CDMI queue object that shall be redirected to by a
reference. If other fields are supplied when creating a
reference, the server shall respond with an HTTP status
code of 400 Bad Request.

Optionala

deserializevalue JSON
String

A queue object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in RFC
4648.

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with a 400 Bad Request error
response.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

105 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

805

806

807

808

809

810

ISO/IEC 17826:2012(E)
9.10.6 Response Headers

The response headers for creating a new CDMI queue object using CDMI content type are shown in
Table 59.

9.10.7 Response Message Body

The response message body fields for creating a new CDMI queue object using CDMI content type are
shown in Table 60.

Table 59 - Response Headers - Create a New CDMI Queue Object using CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-queue" Mandatory

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, e.g., "1.0.2".

If the server does not support any of the versions supported
by the client, the server shall return a 400 Bad Request
status code.

Mandatory

Location Header
String

The unique URI for the new queue object as assigned by
the system. In the absence of file name information from
the client, the system shall assign the URI in the form: <root
URI>/<ContainerName>/<ObjectID>.

Mandatory

Table 60 - Response Message Body - Create a New Queue Object with CDMI Content (Sheet 1 of 2)

Field Name Type Description Requirement

objectType JSON
String

"application/cdmi-queue" Mandatory

objectID JSON
String

Object ID of the object Mandatory

objectName JSON
String

Name of the object

• For objects in a container, the objectName field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the objectName field does not exist
and shall not be returned.

Conditional

parentURI JSON
String

URI for the parent object

• For objects in a container, the parentURI field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the parentURI field does not exist and
shall not be returned.

Appending the objectName to the parentURI shall always
produce a valid URI for the object.

Conditional

parentID JSON
String

Object ID of the parent container object

• For objects in a container, the parentID field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the parentID field does not exist and
shall not be returned.

Conditional

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 106

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

811

812

813

ISO/IEC 17826:2012(E)
9.10.8 Response Status

Table 61 describes the HTTP status codes that occur when creating a new queue object using CDMI
content type.

domainURI JSON
String

URI of the owning domain Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object Mandatory

completionStatus JSON
String

A string indicating if the object is still in the process of being
created, and after the operation is complete, if it was
created successfully or an error occurred. The value shall
be the string "Processing", the string "Complete", or an
error string starting with the value "Error".

Mandatory

percentComplete JSON
String

• When the value of completionStatus is "Processing", this
field, if provided, shall indicate the percentage of
completion as a numeric integer value from 0 through
100.

• When the value of completionStatus is "Complete", this
field, if provided, shall contain the value "100".

• When the value of completionStatus is "Error", this field,
if provided, may contain any integer value from 0 through
100.

Optional

metadata JSON
Object

Metadata for the queue object. This field includes any user
and data system metadata specified in the request
message body metadata field, along with storage system
metadata generated by the cloud storage system. See
Clause 16 for a further description of metadata.

Mandatory

queueValues JSON
String

The range of designators for enqueued values. Every
enqueued value shall be assigned a unique, monotonically-
incrementing positive integer designator, starting from 0. If
no values are enqueued, an empty string shall be returned.
If values are enqueued, the lowest designator, followed by
a hyphen ("-"), followed by the highest designator shall be
returned.

Mandatory

Table 61 - HTTP Status Codes - Create a New CDMI Queue Object using CDMI Content Type

HTTP Status Description

201 Created The new queue object was created.

202 Accepted The queue object is in the process of being created. The CDMI client should monitor
the completionStatus and percentComplete fields to determine the current status of
the operation.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or could cause a state
transition error on the server.

Table 60 - Response Message Body - Create a New Queue Object with CDMI Content (Sheet 2 of 2)

Field Name Type Description Requirement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

107 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

ISO/IEC 17826:2012(E)
9.10.9 Example

EXAMPLE POST to the container object URI the queue object contents:

POST /MyContainer/ HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-queue
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.0.2

{
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.0.2
Location: http://cloud.example.com/MyContainer/0000706D0010B84FAD185C425D8B537E

{
 "objectType" : "application/cdmi-queue",
 "objectID" : "0000706D0010B84FAD185C425D8B537E",
 "objectName" : "0000706D0010B84FAD185C425D8B537E",
 "parentURI" : "/MyContainer/",
 "parentID" : "0000706D0010B84FAD185C425D8B537E",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/queue/",
 "completionStatus" : "Complete",
 "metadata" : {
 },
 "queueValues" : ""
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 108

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
10 Domain Object Resource Operations

10.1 Overview

Domain objects represent the concept of administrative ownership of stored data within a CDMI™ storage
system. A CDMI offering may include a hierarchy of domains that provide access to domain-related
information within a CDMI context. This domain hierarchy is a series of CDMI objects that correspond to
parent and child domains, with each domain corresponding to logical groupings of objects that are to be
managed together. Domain measurement information about objects that are associated with each domain
flow up to parent domains, facilitating billing and management operations that are typical for a cloud
storage environment.

A CDMI URI may optionally include domains using the following form:

http://example.com/cdmi_domains/parent_domain/child_domain/

Domain objects are created in the cdmi_domains container found in the root URI for the cloud storage
system. If the cdmi_create_domain capability is present for the URI of a given domain, then the cloud
storage system supports the ability to create child domains under the URI. If a cloud storage system
supports domains, the cdmi_domains container shall be present.

When a client provides or includes deserialization fields that are not defined in this international standard,
these fields shall be stored as part of the object.

10.1.1 Domain Object Metadata

The following domain-specific field shall be present for each domain (see Table 62).

10.1.2 Domain Object Summaries

Domain object summaries provide summary measurement information about domain usage and billing. If
supported, a domain summary container named "cdmi_domain_summary" shall be present under each
domain container. Like any container, the domain summary subcontainer may have an Access Control List
(ACL) (see 16.1) that restricts access to this information.

Table 62 - Required Metadata for a Domain Object

Metadata Name Type Description Requirement

cdmi_domain_enabled JSON
String

Indicates if the domain is enabled and specified at
the time of creation. Values shall be "true" or
"false".

• If a domain is disabled, the cloud storage system
shall not permit any operations to be performed
against any URI managed by that domain.

• If this metadata item is not present at the time of
domain creation, the value is set to "false".

Mandatory

cdmi_domain_delete_reassign JSON
String

If the domain is deleted, indicates to which domain
the objects that belong to the domain shall be
reassigned. To delete a domain that contains
objects, this metadata item shall be present. If this
metadata item is not present or does not contain
the URI of a valid domain that is different from the
the URI of the domain being deleted, an attempt to
delete a domain that has objects shall result in an
HTTP status code of 409 Conflict.

Conditional

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 109

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59
Within each domain summary container are a series of domain summary data objects that are generated
by the cloud storage system. The "yearly", "monthly", and "daily" containers of these data objects contain
domain summary data objects corresponding to each year, month, and day, respectively. These
containers are organized into the following structures:

http://example.com/cdmi_domains/domain/

http://example.com/cdmi_domains/domain/cdmi_domain_summary/

http://example.com/cdmi_domains/domain/cdmi_domain_summary/cumulative

http://example.com/cdmi_domains/domain/cdmi_domain_summary/daily/

http://example.com/cdmi_domains/domain/cdmi_domain_summary/daily/2009-07-01

http://example.com/cdmi_domains/domain/cdmi_domain_summary/daily/2009-07-02

http://example.com/cdmi_domains/domain/cdmi_domain_summary/daily/2009-07-03

http://example.com/cdmi_domains/domain/cdmi_domain_summary/monthly/

http://example.com/cdmi_domains/domain/cdmi_domain_summary/monthly/2009-07

http://example.com/cdmi_domains/domain/cdmi_domain_summary/monthly/2009-08

http://example.com/cdmi_domains/domain/cdmi_domain_summary/monthly/2009-10

http://example.com/cdmi_domains/domain/cdmi_domain_summary/yearly/

http://example.com/cdmi_domains/domain/cdmi_domain_summary/yearly/2009

http://example.com/cdmi_domains/domain/cdmi_domain_summary/yearly/2010

The "cumulative" summary data object covers the entire time period, from the time the domain is created to
the time it is accessed. Each data object at the daily, monthly, and yearly level contains domain summary
information for the time period specified, bounded by domain creation time and access time.

If a time period extends earlier than the domain creation time, the summary information includes the time
from when the domain was created until the end of the time period.

EXAMPLE 1 If a domain were created on July 4, 2009, at noon, the daily summary "2009-07-04" would contain
information from noon until midnight, the monthly summary "2009-07" would contain information
from noon on July 4 until midnight on July 31, and the yearly summary "2009" would contain
information from noon on July 4 until midnight on December 31.

If a time period starts after the time when the domain was created and ends earlier than the time of access,
the summary data object contains complete information for that time period.

EXAMPLE 2 If a domain were created on July 4, 2009, and on July 10, the "2009-07-06" daily summary data
object was accessed, it would contain information for the complete day.

If a time period ends after the current access time, the domain summary data object contains partial
information from the start of the time period (or the time the domain was created) until the time of access.

EXAMPLE 3 If a domain were created on July 4, 2009, and at noon on July 10, the "2009-07-10" daily summary
data object was accessed, it would contain information from the beginning of the day until noon.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

110 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

60

61
The information in Table 63 shall be present within the contents of each domain summary object, which is
in JSON representation.

Table 63 - Contents of Domain Summary Objects (Sheet 1 of 2)

Metadata Name Type Description Requirement

cdmi_domainURI JSON
String

Domain name corresponding to the domain that is
summarized

Mandatory

cdmi_summary_start JSON
String

An ISO-8601 time indicating the start of the time
range that the summary information is presenting

Mandatory

cdmi_summary_end JSON
String

An ISO-8601 time indicating the end of the time
range that the summary information is presenting

Mandatory

cdmi_summary_objecthours JSON
String

The sum of the time each object belonging to the
domain existed during the summary time period

Optional

cdmi_summary_objectsmin JSON
String

The minimum number of objects belonging to the
domain during the summary time period

Optional

cdmi_summary_objectsmax JSON
String

The maximum number of objects belonging to the
domain during the summary time period

Optional

cdmi_summary_objectsaverage JSON
String

The average number of objects belonging to the
domain during the summary time period

Optional

cdmi_summary_puts JSON
String

The number of objects written to the domain Optional

cdmi_summary_gets JSON
String

The number of objects read from the domain Optional

cdmi_summary_bytehours JSON
String

The sum of the time each byte belonging to the
domain existed during the summary time period

Optional

cdmi_summary_bytesmin JSON
String

The minimum number of bytes belonging to the
domain during the summary time period

Optional

cdmi_summary_bytesmax JSON
String

The maximum number of bytes belonging to the
domain during the summary time period

Optional

cdmi_summary_bytesaverage JSON
String

The average number of bytes belonging to the
domain during the summary time period

Optional

cdmi_summary_writes JSON
String

The number of bytes written to the domain Optional

cdmi_summary_reads JSON
String

The number of bytes read from the domain Optional

cdmi_summary_charge JSON
String

An ISO 4217 currency code (see ISO 4217:2008)
that is followed or preceded by a numeric value
and separated by a space, where the numeric
value represents the closing charge in the
indicated currency for the use of the service
associated with the domain over the summary
time period

Optional

cdmi_summary_kwhours JSON
String

The sum of energy consumed (in kilowatt hours)
by the domain during the summary time period

Optional

cdmi_summary_kwmin JSON
String

The minimum rate at which energy is consumed
(in kilowatt hours per hour) by the domain during
the summary time period

Optional

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 111

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100
An example of a daily domain summary object is as follows:

{
 "cdmi_domainURI" : "/cdmi_domains/MyDomain/",
 "cdmi_summary_start" : "2009-12-10T00:00:00",
 "cdmi_summary_end" : "2009-12-10T23:59:59",
 "cdmi_summary_objecthours" : "382239734",
 "cdmi_summary_puts" : "234234",
 "cdmi_summary_gets" : "489432",
 "cdmi_summary_bytehours" : "334895798347",
 "cdmi_summary_writes" : "7218368343",
 "cdmi_summary_reads" : "11283974933",
 "cdmi_summary_charge" : "4289.23 USD"
}

If the charge value is provided, the value is for the operational cost (excluding fixed fees) of service already
performed and storage and bandwidth already consumed. Pricing of services is handled separately.

Domain summary information may be extended by vendors to include additional metadata or domain
reports beyond the metadata items specified by this international standard, as long as the field names for
those metadata items do not begin with "cdmi_".

10.1.3 Domain Object Membership

In cloud storage environments, in the same way that domains are often created programmatically, domain
user membership and credential mapping also shall be populated using such interfaces. By providing
access to user membership, this capability enables self-enrollment, automatic provisioning, and other
advanced self-service capabilities, either directly using CDMI or through software systems that interface
using CDMI.

The domain membership capability provides information about, and allows the specification of, end users
and groups of users that are allowed to access the domain via CDMI and other access protocols. The
concept of domain membership is not intended to replace or supplant ACLs (see 16.1), but rather to
provide a single, unified place to map identities and credentials to principals used by ACLs within the
context of a domain (see model described in 10.1.4). It also provides a place for authentication mappings
to external authentication providers, such as LDAP and AD, to be specified.

If supported, a domain membership container named "cdmi_domain_members" shall be present under
each domain. Like any container, the domain membership container such as an Access Control List (see
16.1) that restricts access to this information.

Within each domain membership container are a series of user objects that are specified through CDMI to
define each user known to the domain. These objects are formatted into the following structure:

http://example.com/cdmi_domains/domain/

http://example.com/cdmi_domains/domain/cdmi_domain_members/

http://example.com/cdmi_domains/domain/cdmi_domain_members/john_doe

http://example.com/cdmi_domains/domain/cdmi_domain_members/john_smith

cdmi_summary_kwmax JSON
String

The maximum rate at which energy is consumed
(in kilowatt hours per hour) by the domain during
the summary time period

Optional

cdmi_summary_kwaverage JSON
String

The average rate at which energy is consumed
(in kilowatt hours per hour) by the domain during
the summary time period

Optional

Table 63 - Contents of Domain Summary Objects (Sheet 2 of 2)

Metadata Name Type Description Requirement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

112 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

101

102

103

104

105
The domain membership container may also contain subcontainers with data objects. Data objects in
these subcontainers are treated the same as data objects in the domain membership container, and no
meaning is inferred from the subcontainer name. This is allowed to create different access security
relationships for groups of user objects and to allow delegation to common set of members.

Table 64 lists the domain settings that shall be present within each domain member user object.

Table 64 - Required Settings for Domain Member User Objects

Metadata Name Type Description Requirement

cdmi_member_enabled JSON
String

If true, this field indicates that requests associated with
this domain member are allowed. If false, all requests
performed by this domain member shall result in an
HTTP status code of 403 Forbidden.

Mandatory

cdmi_member_type JSON
String

This field indicates the type of member record. Values
include "user", "group", and "delegation".

Mandatory

cdmi_member_name JSON
String

This field contains the user or group name as presented
by the client. This will normally be the standard full name
of the principal.

Mandatory

cdmi_member_credentials JSON
String

This field contains credentials to be matched against the
credentials as presented by the client. If this field is not
present, one or more delegations shall be present and
shall be used to resolve user credentials. As one cannot
log in as a group, but only as a member of a group,
"group" type member records shall not have credentials.

Optional

cdmi_member_principal JSON
String

This field indicates to which principal name (used in
ACLs) the user or group is mapped. If this field is not
present, one or more delegations shall be present and
shall be used to resolve the principal.

Optional

cdmi_member_privileges JSON
Array of
JSON
Strings

This field contains a JSON list of special privileges
associated with the user or "group".

The following privileges are defined:

• "administrator". All ACL access checks are always
successful.

• "backup_operator". All read ACL access checks are
always successful.

• "cross_domain". Operations specifying a domain
other than the domain of the parent object are
permitted. Unless this privilege is conferred by the
user record or a group (possibly nested) to which the
user or group belongs, all attempts to change the
domain of objects to a domain other than the parent
domain shall fail.

Mandatory

cdmi_member_groups JSON
Array of
JSON
Strings

This field contains a JSON array of group names to
which the user or group belongs.

Optional
IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 17

82
6:2

01
2

©ISO/IEC 2012 – All rights reserved 113

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139
Table 65 lists the domain settings that shall be present within each domain member delegation object.

EXAMPLE 1 An example of a domain membership object for a user is as follows:

{
 "cdmi_member_enabled" : "true",
 "cdmi_member_type" : "user",
 "cdmi_member_name" : "John Doe",
 "cdmi_member_credentials" : "p+5/oX1cmExfOIrUxhX1lw==",
 "cdmi_member_groups" : [
 "users"
],
 "cdmi_member_principal" : "jdoe",
 "cdmi_privileges" : [
 "administrator",
 "cross_domain"
]
}

EXAMPLE 2 An example of a domain membership object for a delegation is as follows:

{
 "cdmi_member_enabled" : "true",
 "cdmi_member_type" : "delegation",
 "cdmi_delegation_URI" : "/cdmi_accounts/MyAccount/",

}

10.1.4 Domain Usage in Access Control

When a transaction is performed against a CDMI object, the associated domain object (i.e., the domain
object indicated by the domainURI) specifies the authentication context. The user identity and credentials
presented as part of the transaction are compared to the domain membership list to determine if the user is
authorized within the domain and to resolve the user's principal. If resolved, the user’s principal is
evaluated against the object's ACL to determine if the transaction is permitted.

When evaluating members within a domain, delegations are evaluated first, in any order, followed by user
records, in any order. If there is at least one matching record and none of the matching records indicate
that the user is disabled, the user is considered to be a member of the domain.

When a sub-domain is initially created, the membership container contains one member record that is a
delegation in which the delegation URI is set to the URI of the parent domain.

Table 65 - Required Settings for Domain Member Delegation Objects

Metadata Name Type Description Requirement

cdmi_member_enabled JSON
String

If true, this field indicates that requests associated with
this domain member are allowed. If false, all requests
performed by this domain member shall result in an
HTTP status code of 403 Forbidden.

Mandatory

cdmi_member_type JSON
String

This field indicates the type of member record. Values
include "user" and "delegation".

Mandatory

cdmi_delegation_URI JSON
String

This field contains the URI of an external identity
resolution provider (such as LDAP or Active Directory) or
the URI of a Domain Membership Container.

External delegations are expressed in the form of ldap://
or ad://.

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

114 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166
10.1.5 Domain Object Representations

The representations in this clause are shown using JSON notation. Both clients and servers shall support
UTF-8 JSON representation. The request and response message body JSON fields may be specified or
returned in any order, with the exception that, if present, for domain objects, the childrenrange and children
fields shall appear last and in that order.

10.2 Create a Domain Object using CDMI Content Type

10.2.1 Synopsis

To create a new domain object, the following request shall be performed:

PUT <root URI>/cdmi_domains/<DomainName>/<NewDomainName>/

Where:

• <root URI> is the path to the CDMI cloud.

• <DomainName> is zero or more intermediate domains that already exist.

• <NewDomainName> is the name specified for the domain to be created.

After it is created, the domain shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

10.2.2 Capabilities

The following capabilities describe the supported operations that may be performed when creating a new
domain:

• Support for the ability to create a new domain object is indicated by the presence of the
cdmi_create_domain capability in the parent domain.

• If the new domain object is a copy of an existing domain object, support for the ability to copy is
indicated by the presence of the cdmi_copy_domain capability in the source domain.

• If the new domain is the destination of a deserialize operation, support for the ability to deserialize
the source data object serialization of a domain is indicated by the presence of the
cdmi_deserialize_domain capability in the parent domain.

10.2.3 Request Headers

The HTTP request headers for creating a CDMI domain object using CDMI content type are shown in
Table 66.

Table 66 - Request Headers - Create a Domain Object using CDMI Content Type

Header Type Description Requirement

Accept Header
String

"application/cdmi-domain" or a consistent value as per
clause 5.13.2

Optional

Content-Type Header
String

"application/cdmi-domain" Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions supported by the client,
for example, "1.0.2, 1.5, 2.0"

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 115

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

167

168

169
10.2.4 Request Message Body

The request message body fields for creating a domain object using CDMI content type are shown in
Table 67.

Table 67 - Request Message Body - Create a Domain Object using CDMI Content Type

Field Name Type Description Requirement

metadata JSON
Object

Metadata for the domain object

• If this field is included when deserializing, serializing,
copying, or moving a domain object, the value provided
in this field shall replace the metadata from the source
URI.

• If this field is not included when deserializing, serializing,
copying, or moving a domain object, the metadata from
the source URI shall be used.

• If this field is included when creating a new domain
object by specifying a value, the value provided in this
field shall be used as the metadata.

• If this field is not included when creating a new domain
object by specifying a value, an empty JSON object
("{}")(i.e., "{}") shall be assigned as the field value.

Optional

copy JSON
String

URI of a CDMI domain that shall be copied into the new
domain, including all child domains and membership from
the source domain

Optionala

move JSON
String

URI of an existing local CDMI domain object (source URI)
that shall be relocated, along with all child domains, to the
URI specified in the PUT. The contents of the domain and
all sub-domains, including the object ID, shall be
preserved by a move, and the domain and sub-domains of
the source URI shall be removed after the objects at the
destination have been successfully created.

If there are insufficient permissions to read the objects at
the source URI, write the objects at the destination URI, or
delete the objects at the source URI, or if any of these
operations fail, the move shall return a 400 Bad Request
error code, and the source and destination are left
unchanged.

Optionala

deserialize JSON
String

URI of a serialized CDMI data object that shall be
deserialized to create the new domain, including all child
objects inside the source serialized data object

Optionala

deserializevalue JSON
String

A domain object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in RFC
4648.

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with a 400 Bad Request error
response.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

116 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

170

171

172

173

174
10.2.5 Response Headers

The HTTP response headers for creating a domain object using CDMI content type are shown in Table 68.

10.2.6 Response Message Body

The response message body fields for creating a domain object using CDMI content type is shown in
Table 69.

Table 68 - Response Headers - Create a Domain Object using CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-domain" Mandatory

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version
supported by both the client and the server, e.g., "1.0.2".

If the server does not support any of the versions
supported by the client, the server shall return a 400 Bad
Request status code.

Mandatory

Table 69 - Response Message Body - Create a Domain Object using CDMI Content Type

Field Name Type Description Requirement

objectType JSON
String

"application/cdmi-domain" Mandatory

objectID JSON
String

Object ID of the domain Mandatory

objectName JSON
String

Name of the object Mandatory

parentURI JSON
String

URI for the parent object. Appending the objectName to
the parentURI shall always produce a valid URI for the
object.

Mandatory

parentID JSON
String

Object ID of the parent container object Mandatory

domainURI JSON
String

URI of the owning domain. A domain object is always
owned by itself.

Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object Mandatory

metadata JSON
Object

Metadata for the domain. This field includes any user and
data system metadata specified in the request message
body metadata field, along with storage system metadata
generated by the cloud storage system. See Clause 16 for
a further description of metadata.

Mandatory

childrenrange JSON
String

The sub-domains of the domain expressed as a range. If a
range of sub-domains is requested, this field indicates the
children returned as a range.

Mandatory

children JSON
Array

Names of the children domains in the domain. Child
containers end with "/".

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 117

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210
10.2.7 Response Status

Table 70 describes the HTTP status codes that occur when creating a domain object using CDMI content
type.

10.2.8 Example

EXAMPLE PUT to the domain URI the domain name and metadata:

PUT /cdmi_domains/MyDomain/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-domain
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.0.2

{
 "metadata" : {

 }
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.0.2

{
 "objectType" : "application/cdmi-domain",
 "objectID" : "00007E7F00104BE66AB53A9572F9F51E",
 "objectName" : "MyDomain/",
 "parentURI" : "/cdmi_domains/",
 "parentID" : "00007E7F0010C058374D08B0AC7B3550",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/domain/",
 "metadata" : {

 },
 "childrenrange" : "0-1",
 "children" : [
 "cdmi_domain_summary/",
 "cdmi_domain_members/"
]
}

Table 70 - HTTP Status Codes - Create a Domain Object using CDMI Content Type

HTTP Status Description

201 Created The new domain object was created.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The domain name already exists.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

118 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240
10.3 Read a Domain Object using CDMI Content Type

10.3.1 Synopsis

To read all fields from an existing domain object, the following request shall be performed:

GET <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/

To read one or more requested fields from an existing domain object, one of the following requests shall be
performed:

GET <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/
?<fieldname>;<fieldname>;...

GET <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/?children:<range>;...
GET <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/?metadata:<prefix>;...

Where:

• <root URI> is the path to the CDMI cloud.

• <DomainName> is zero or more parent domains.

• <TheDomainName> is the name specified for the domain to be read from.

• <fieldname> is the name of a field.

• <range> is a numeric range within the list of children.

• <prefix> is a matching prefix that returns all metadata items that start with the prefix value.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

10.3.2 Capabilities

The following capabilities describe the supported operations that may be performed when reading an
existing domain:

• Support for the ability to read the metadata of an existing domain object is indicated by the
presence of the cdmi_read_metadata capability in the specified domain.

• Support for the ability to list the children of an existing domain object is indicated by the presence
of the cdmi_list_children capability in the specified domain.

10.3.3 Request Headers

The HTTP request headers for reading a CDMI domain object using CDMI content type are shown in
Table 71.

10.3.4 Request Message Body

A request message body shall not be provided.

Table 71 - Request Headers - Read a Domain Object using CDMI Content Type

Header Type Description Requirement

Accept Header
String

"application/cdmi-domain" or a consistent value as per clause
5.13.2

Optional

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions supported by the client,
e.g., "1.0.2, 1.5, 2.0"

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 119

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

241

242

243

244

245

246

247

248
10.3.5 Response Headers

The HTTP response headers for reading a CDMI domain object using CDMI content type are shown in
Table 72.

10.3.6 Response Message Body

The response message body fields for reading a CDMI domain object using CDMI content type are shown
in Table 73.

If individual fields are specified in the GET request, only these fields are returned in the result body.
Optional fields that are requested but do not exist are omitted from the result body.

Table 72 - Response Headers - Read a Domain Object using CDMI Content Type

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, e.g., "1.0.2".

If the server does not support any of the versions supported
by the client, the server shall return a 400 Bad Request
status code.

Mandatory

Content-Type Header
String

"application/cdmi-domain" Mandatory

Location Header
String

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional

Table 73 - Response Message Body - Read a Domain Object using CDMI Content Type

Field Name Type Description Requirement

objectType JSON
String

"application/cdmi-domain" Mandatory

objectID JSON
String

Object ID of the domain Mandatory

objectName JSON
String

Name of the object Mandatory

parentURI JSON
String

URI for the parent object Mandatory

parentID JSON
String

Object ID of the parent container object Mandatory

domainURI JSON
String

URI of the owning domain. A domain object is always owned
by itself.

Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object Mandatory

metadata JSON
Object

Metadata for the domain. This field includes any user and
data system metadata specified in the request message
body metadata field, along with storage system metadata
generated by the cloud storage system. See Clause 16 for a
further description of metadata.

Mandatory

childrenrange JSON
String

The sub-domains of the domain expressed as a range. If a
range of sub-domains is requested, this field indicates the
children returned as a range.

Mandatory

children JSON
Array

The children of the domain. Sub-domains end with "/". Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

120 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283
10.3.7 Response Status

Table 74 describes the HTTP status codes that occur when reading a domain object using CDMI content
type.

10.3.8 Examples

EXAMPLE 1 GET to the domain URI to read all the fields of the domain:

GET /cdmi_domains/MyDomain/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-domain
X-CDMI-Specification-Version: 1.0.2

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.0.2

{
 "objectType" : "application/cdmi-domain",
 "objectID" : "00007E7F00104BE66AB53A9572F9F51E",
 "objectName" : "MyDomain/",
 "parentURI" : "/cdmi_domains/",
 "parentID" : "00007E7F0010C058374D08B0AC7B3550",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/domain/",
 "metadata" : {

 },
 "childrenrange" : "0-1",
 "children" : [
 "cdmi_domain_summary/",
 "cdmi_domain_members/"
]
}

EXAMPLE 2 GET to the domain URI to read all the parentURI and children of the domain:

GET /MyDomain/?parentURI;children HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-domain
X-CDMI-Specification-Version: 1.0.2

Table 74 - HTTP Status Codes - Read a Domain Object using CDMI Content Type

HTTP Status Description

200 OK The domain object content was returned in the reponse.

302 Found The URI is a reference to another URI.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

406 Not Acceptable The server is unable to provide the object in the content type specified in the
Accept header.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 121

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324
The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.0.2

{
 "parentURI" : "/cdmi_domains/",
 "children" : [
 "cdmi_domain_summary/",
 "cdmi_domain_members/"
]
}

EXAMPLE 3 GET to the domain URI to read the first two children of the domain:

GET /MyDomain/?childrenrange;children:0-1 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-domain
X-CDMI-Specification-Version: 1.0.2

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.0.2

{
 "childrenrange" : "0-1",
 "children" : [
 "cdmi_domain_summary/",
 "cdmi_domain_members/"
]
}

10.4 Update a Domain Object using CDMI Content Type

10.4.1 Synopsis

To update some or all fields in an existing domain object, the following request shall be performed:

PUT <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/

To add, update, and remove specific metadata items of an existing domain object, the following request
shall be performed:

PUT <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/
?metadata:<metadataname>;...

Where:

• <root URI> is the path to the CDMI cloud.

• <DomainName> is zero or more parent domains.

• <TheDomainName> is the name specified for the domain to be updated.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/. An update shall not result in
a change to the object ID.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

122 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

325

326

327

328

329

330

331

332

333

334

335
10.4.2 Capability

The following capability describes the supported operations that may be performed when updating an
existing domain:

• Support for the ability to modify the metadata of an existing domain object is indicated by the
presence of the cdmi_modify_metadata capability in the specified domain.

10.4.3 Request Headers

The HTTP request headers for updating a CDMI domain object using CDMI content type are shown in
Table 75.

10.4.4 Request Message Body

The request message body fields for updating a domain object using CDMI content type are shown in
Table 76.

Table 75 - Request Headers - Update a Domain Object using CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-domain" Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions supported by the client,
e.g., "1.0.2, 1.5, 2.0"

Mandatory

Table 76 - Request Message Body - Update a Domain Object using CDMI Content Type (Sheet 1 of 2)

Field Name Type Description Requirement

metadata JSON
Object

Metadata for the domain object. If present, the new
metadata specified replaces the existing object metadata. If
individual metadata items are specified in the URI, only
those items are replaced, with other items being preserved.

See Clause 16 for a further description of metadata.

Optional

copy JSON
String

URI of a CDMI domain object that shall be copied into the
existing domain object. Only the metadata and membership
of the domain shall be copied, not any sub-domains of the
domain.

Optionala

deserialize JSON
String

URI of a serialized CDMI domain object that shall be
deserialized to update an existing domain object. The object
ID of the serialized domain object shall match the object ID
of the destination domain object.

If the serialized domain does not contain children, the
update is applied only to the domain object, and any
existing children are left as-is. If the serialized domain object
does contain children, then creates, updates, and deletes
are recursively applied for each child, depending on the
differences between the provided serialized state and the
current state of the children.

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 123

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

336

337

338

339

340

341

342

343
10.4.5 Response Header

The HTTP response header for updating a CDMI domain object using CDMI content type is shown in
Table 77.

10.4.6 Response Message Body

A response message body may be provided as per RFC 2616.

10.4.7 Response Status

Table 78 describes the HTTP status codes that occur when updating a domain object using CDMI content
type.

deserializevalue JSON
String

A domain object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in RFC
4648. The object ID of the serialized domain object shall
match the object ID of the destination domain object.

If the serialized domain does not contain children, the
update is applied only to the domain object, and any
existing children are left as-is. If the serialized domain object
does contain children, then creates, updates, and deletes
are recursively applied for each child, depending on the
differences between the provided serialized state and the
current state of the children.

Optionala

Table 77 - Response Header - Update a Domain Object using CDMI Content Type

Header Type Description Requirement

Location Header
String

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional

Table 78 - HTTP Status Codes - Update a Domain Object using CDMI Content Type

HTTP Status Description

204 No Content The operation was successful; no data was returned.

302 Found The URI is a reference to another URI.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a
state transition error on the server.

Table 76 - Request Message Body - Update a Domain Object using CDMI Content Type (Sheet 2 of 2)

Field Name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

124 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376
10.4.8 Example

EXAMPLE PUT to the domain URI to set new field values:

PUT /cdmi_domains/myDomain/ HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.0.2

{
 "metadata" : {
 "test" : "value"
 }
}

The following shows the response.

HTTP/1.1 204 No Content

10.5 Delete a Domain Object using CDMI Content Type

10.5.1 Synopsis

To delete an existing domain object and transfer all objects associated with that domain to another domain
(to preserve access), the following request shall be performed:

DELETE <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/

Where:

• <root URI> is the path to the CDMI cloud.

• <DomainName> is zero or more parent domains.

• <TheDomainName> is the name specified for the domain to be deleted.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

10.5.2 Capability

The following capability describes the supported operations that may be performed when deleting an
existing container:

• Support for the ability to delete an existing data object is indicated by the presence of the
cdmi_delete_domain capability in the specified domain.

10.5.3 Request Headers

The HTTP request headers for deleting a CDMI domain object using CDMI content type are shown in
Table 79.

10.5.4 Request Message Body

A request message body may be provided as per RFC 2616.

Table 79 - Request Headers - Delete a Domain Object using CDMI Content Type

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions supported by the client,
e.g., "1.0.2, 1.5, 2.0"

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 125

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

377

378

379

380

381

382

383

384

385

386

387

388

389

390
10.5.5 Response Headers

Response headers may be provided as per RFC 2616.

10.5.6 Response Message Body

A response message body may be provided as per RFC 2616.

10.5.7 Response Status

Table 80 describes the HTTP status codes that occur when deleting a domain object using CDMI content
type.

10.5.8 Example

EXAMPLE DELETE to the domain URI:

DELETE /cdmi_domains/MyDomain/ HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.0.2

The following shows the response.

HTTP/1.1 204 No Content

Table 80 - HTTP Status Codes - Delete a Domain Object using CDMI Content Type

HTTP Status Description

204 No Content The domain was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The domain cannot be deleted because there are objects belonging to the
domain, and cdmi_domain_delete_reassign is missing, invalid, or unusable.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

126 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40
11 Queue Object Resource Operations

11.1 Overview

Queue objects provide first-in, first-out access when storing and retrieving data. A queue object writer
POSTs data into a queue object, and a queue object reader GETs value(s) from the queue object and
subsequently deletes the value(s) to acknowledge receipt of the value(s) that it received. Queuing provides
a simple mechanism for one or more writers to send data to a single reader in a reliable way. If supported
by the cloud storage system, cloud clients create the queue objects by using the mechanism described in
9.10 and this clause.

Queue objects are addressed in CDMI™ in two ways:

• by name (e.g., http://cloud.example.com/queueobject); and

• by object ID (e.g, http://cloud.example.com/cdmi_objectid/
0000706D0010B84FAD185C425D8B537E).

Every queue object has a single, globally-unique object identifier (ID) that remains constant for the life of
the object. Each queue object shall have one or more URI addresses that allow the object to be accessed.

A queue object may have a parent object. In this case, the queue object inherits data system metadata that
is not explicitly specified in the queue object itself.

EXAMPLE 1 The "receipts.queue" queue object stored at the following URI would inherit data system
metadata from its parent container, "finance":

http://cloud.example.com/finance/receipts.queue

Individual fields within a queue object may be accessed by specifying the field name after a question mark
"?" that is appended to the end of the data object URI.

EXAMPLE 2 The following URI returns the value field containing the oldest queue object value in the response
message body:

http://cloud.example.com/queueobject?value

The encoding of the data transported in the queue object value field depends on the queue object
valuetransferencoding field:

• If the value transfer encoding of the object is set to "utf-8", the data stored in the value of the
queue object shall be a valid UTF-8 string, and it shall be transported as a UTF-8 string in the
value field.

• If the value transfer encoding of the object is set to "base64", the data stored in the value of the
queue object can contain arbitrary binary sequences, and it shall be transported as a base 64-
encoded string in the value field.

Specific ranges of the value of a queue object may be accessed by specifying a byte range after the value
field name. Thus, the following URI returns the first thousand bytes of the oldest value enqueued:

http://cloud.example.com/queueobject?value:0-999

Because a byte range of a UTF-8 string is often not a valid UTF-8 string, the response to a range request
shall always be transported in the value field as a base 64-encoded string.

Byte ranges are specified as single, inclusive byte ranges as per Section 14.35.1 of RFC 2616.

When a client provides or includes deserialization fields that are not defined in this international standard,
these fields shall be stored as part of the object.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 127

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79
11.1.1 Queue Object Metadata

Queue object metadata may also include arbitrary user-supplied metadata and data system metadata, as
specified in Clause 16.

11.1.2 Queue Object Addressing

Each queue object is addressed via one or more unique URIs, and all operations may be performed
through any of these URIs.

11.1.3 Queue Object Representations

The representations in this clause are shown using JSON notation. Both clients and servers shall support
UTF-8 JSON representation. The request and response message body JSON fields may be specified or
returned in any order, with the exception that, if present, for queue objects, the valuerange and value fields
shall appear last and in that order.

11.2 Create a Queue Object using CDMI Content Type

11.2.1 Synopsis

To create a new queue object, the following request shall be performed:

PUT <root URI>/<ContainerName>/<QueueName>

To create a new queue object by ID, see 9.10.

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e.,
"/") between each pair of container names.

• <QueueName> is the name specified for the queue object to be created.

After it is created, the object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

The newly created queue shall have no values unless the queue is created as a result of copying or
moving a source queue that has values or as a result of deserializing a serialized queue that has values.

11.2.2 Delayed Completion of Create:

In response to a create operation for a queue object, the server may return a response of 202 Accepted. In
this case, the queue object is in the process of being created. This response is particularly useful for long-
running operations, (e.g., for copying a queue object with a large number of enqueued values from a
source URI). Such a response has the following implications:

• The server shall return a Location header with a URI to the object to be created along with an
HTTP status code of 202 Accepted.

• With 202 Accepted, the server implies that the following checks have passed:

— user authorization for creating the queue object;

— user authorization for read access to any source object for move, copy, serialize, or
deserialize; and

— availability of space to create the queue object or at least enough space to create a URI to
report an error.

• A client might not be able to immediately access the created object, e.g., due to delays resulting
from the implementation’s use of eventual consistency.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

128 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105
The client performs GET operations to the URI to track the progress of the operation. In response, the
server returns two fields in its response message body to indicate progress.

• A completionStatus text field contains either "Processing", "Complete", or an error string starting
with the value "Error".

• An optional percentComplete field contains the percentage that the accepted PUT has completed
(0 to 100).

GET does not return any value for the object when completionStatus is not "Complete". When the final
result of the create operation is an error, the URI is created with the completionStatus field set to the error
message. It is the client's responsibility to delete the URI after the error has been noted.

11.2.3 Capabilities

The following capabilities describe the supported operations that may be performed when creating a new
queue object:

• Support for the ability to create a new queue object is indicated by the presence of the
cdmi_create_queue capability in the parent container.

• If the object being created in the parent container is a reference, support for that ability is indicated
by the presence of the cdmi_create_reference capability in the parent container.

• If the new queue object is a copy of an existing queue object, support for the ability to copy is
indicated by the presence of the cdmi_copy_queue capability in the parent container.

• If the new queue object is the destination of a move, support for the ability to move the queue
object is indicated by the presence of the cdmi_move_queue capability in the parent container.

• If the new queue object is the destination of a deserialize operation, support for the ability to
deserialize the source data object is indicated by the presence of the cdmi_deserialize_queue
capability in the parent container.

11.2.4 Request Headers

The HTTP request headers for creating a CDMI queue object using CDMI content type are shown in
Table 81.

Table 81 - Request Headers - Create a Queue Object using CDMI Content Type

Header Type Description Requirement

Accept Header
String

"application/cdmi-queue" Mandatory

Content-Type Header
String

"application/cdmi-queue" Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions supported by the client,
e.g., "1.0.2, 1.5, 2.0"

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 129

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

106

107

108
11.2.5 Request Message Body

The request message body fields for creating a queue object using CDMI content type are shown in
Table 82.

Table 82 - Request Message Body - Create a Queue Object using CDMI Content Type

Field Name Type Description Requirement

metadata JSON
Object

Metadata for the queue object

• If this field is included when deserializing, serializing,
copying, or moving a queue object, the value provided in
this field shall replace the metadata from the source URI.

• If this field is not included when deserializing, serializing,
copying, or moving a queue object, the metadata from the
source URI shall be used.

• If this field is included when creating a new queue object
by specifying a value, the value provided in this field shall
be used as the metadata.

• If this field is not included when creating a new queue
object by specifying a value, an empty JSON object (i.e.,
"{}") shall be assigned as the field value.

• This field shall not be included when referencing a queue
object.

Optional

domainURI JSON
String

URI of the owning domain

• If different from the parent domain, the user shall have
the "cross_domain" privilege (see
cdmi_member_privileges in Table 64).

• If not specified, the parent domain shall be used.

Optional

deserialize JSON
String

URI of a serialized CDMI data object that shall be
deserialized to create the new queue object

Optionala

copy JSON
String

URI of a CDMI queue object that shall be copied into the
new queue object

Optionala

move JSON
String

URI of an existing local or remote CDMI queue object
(source URI) that shall be relocated to the URI specified in
the PUT. The contents of the queue object, including the
object ID, shall be preserved by a move, and the queue
object at the source URI shall be removed after the queue
object at the destination has been successfully created.

If there are insufficient permissions to read the queue object
at the source URI, write the queue object at the destination
URI, or delete the queue object at the source URI, or if any
of these operations fail, the move shall return a 400 Bad
Request result code, and the source and destination are left
unchanged.

Optionala

reference JSON
String

URI of a CDMI queue object that shall be redirected to by a
reference. If other fields are supplied when creating a
reference, the server shall respond with an HTTP status
code of 400 Bad Request.

Optionala

deserializevalue JSON
String

A queue object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in RFC
4648.

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with a 400 Bad Request error
response.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

130 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

109

110

111

112

113

114
11.2.6 Response Headers

The HTTP response headers for creating a CDMI queue object using CDMI content type are shown in
Table 83.

11.2.7 Response Message Body

The response message body fields for creating a CDMI queue object using CDMI content type are shown
in Table 84.

Table 83 - Response Headers - Create a Queue Object using CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-queue" Mandatory

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, e.g., "1.0.2".

If the server does not support any of the versions supported
by the client, the server shall return a 400 Bad Request
status code.

Mandatory

Table 84 - Response Message Body - Create a Queue Object using CDMI Content Type (Sheet 1 of 2)

Field Name Type Description Requirement

objectType JSON
String

"application/cdmi-queue" Mandatory

objectID JSON
String

Object ID of the object Mandatory

objectName JSON
String

Name of the object Mandatory

parentURI JSON
String

URI for the parent object

Appending the objectName to the parentURI shall always
produce a valid URI for the object.

Mandatory

parentID JSON
String

Object ID of the parent container object Mandatory

domainURI JSON
String

URI of the owning domain. Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object Mandatory

completionStatus JSON

String

A string indicating if the object is still in the process of being
created, and after the operation is complete, if it was
created successfully or an error occurred. The value shall
be the string "Processing", the string "Complete", or an error
string starting with the value "Error".

Mandatory

percentComplete JSON
String

• When the value of completionStatus is "Processing", this
field, if provided, shall indicate the percentage of
completion as a numeric integer value from 0 through
100.

• When the value of completionStatus is "Complete", this
field, if provided, shall contain the value "100".

• When the value of completionStatus is "Error", this field, if
provided, may contain any integer value from 0 through
100.

Optional

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 131

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129
11.2.8 Response Status

Table 85 describes the HTTP status codes that occur when creating a queue object using CDMI content
type.

11.2.9 Example

EXAMPLE PUT to the container URI the queue object name and contents:

PUT /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-queue
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.0.2

{
 "metadata" : {

 }
}

metadata JSON
Object

Metadata for the queue object. This field includes any user
and data system metadata specified in the request message
body metadata field, along with storage system metadata
generated by the cloud storage system. See Clause 16 for a
further description of metadata.

Mandatory

queueValues JSON
String

The range of designators for enqueued values. Every
enqueued value shall be assigned a unique, monotonically-
incrementing positive integer designator, starting from 0. If
no values are enqueued, an empty string shall be returned.
If values are enqueued, the lowest designator, followed by a
hyphen ("-"), followed by the highest designator shall be
returned.

Mandatory

Table 85 - HTTP Status Codes - Create a Queue Object using CDMI Content Type

HTTP Status Description

201 Created The new queue object was created.

202 Accepted The queue object is in the process of being created. The CDMI client should
monitor the completionStatus and percentComplete fields to determine the
current status of the operation.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a
state transition error on the server.

Table 84 - Response Message Body - Create a Queue Object using CDMI Content Type (Sheet 2 of 2)

Field Name Type Description Requirement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

132 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172
The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.0.2

{
 "objectType" : "application/cdmi-queue",
 "objectID" : "00007E7F00104BE66AB53A9572F9F51E",
 "objectName" : "MyQueue",
 "parentURI " : "/MyContainer/",
 "parentID" : "0000706D0010B84FAD185C425D8B537E",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/queue/",
 "completionStatus" : "Complete",
 "metadata" : {

 },
 "queueValues" : ""
}

11.3 Read a Queue Object using CDMI Content Type

11.3.1 Synopsis

To read all fields from an existing queue object, the following request shall be performed:

GET <root URI>/<ContainerName>/<QueueName>

To read one or more requested fields from an existing queue object, one of the following requests shall be
performed:

GET <root URI>/<ContainerName>/<QueueName>?<fieldname>;<fieldname>;...
GET <root URI>/<ContainerName>/<QueueName>?value:<range>;...
GET <root URI>/<ContainerName>/<QueueName>?metadata:<prefix>;...

To read one or more queue values from an existing queue object, the following request shall be performed:

GET <root URI>/<ContainerName>/<QueueName>?values:<count>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <QueueName> is the name of the queue object to be read from.

• <fieldname> is the name of a field.

• <range> is a byte range of the queue object value to be returned in the value field. If a byte range
is requested, the range returned shall be from the oldest queue object value.

• <prefix> is a matching prefix that returns all metadata items that start with the prefix value.

• <count> is the number of values to be retrieved from the queue object. If more queue object
entries are requested to be retrieved than exist in the queue object, the count is processed as if it
is equal to the number of entries in the queue object.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

Reading a queue object shall, by default, return the complete value of the oldest item in the queue, unless
the queueValues range is empty.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 133

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187
11.3.2 Capabilities

The following capabilities describe the supported operations that may be performed when reading an
existing queue object:

• Support for the ability to read the metadata of an existing queue object is indicated by the
presence of the cdmi_read_metadata capability in the specified queue object.

• Support for the ability to read the value of an existing queue object is indicated by the presence of
the cdmi_read_value capability in the specified queue object.

11.3.3 Request Headers

The HTTP request headers for reading a CDMI queue object using CDMI content type are shown in
Table 86.

11.3.4 Request Message Body

A request message body shall not be provided.

11.3.5 Response Headers

The HTTP response headers for reading a CDMI queue object using CDMI content type are shown in
Table 87.

Table 86 - Request Headers - Read a Queue Object using CDMI Content Type

Header Type Description Requirement

Accept Header
String

"application/cdmi-queue" or a consistent value as per
clause 5.13.2

Optional

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions supported by the client,
e.g., "1.0.2, 1.5, 2.0"

Mandatory

Table 87 - Response Headers - Read a Queue Object using CDMI Content Type

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, e.g., "1.0.2".

If the server does not support any of the versions supported
by the client, the server shall return a 400 Bad Request
status code.

Mandatory

Content-Type Header
String

"application/cdmi-queue" Mandatory

Location Header
String

The server shall respond with the URI that the reference
redirects to if the object is a reference.

ConditionalIECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

134 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

188

189

190
11.3.6 Response Message Body

The response message body fields for reading a CDMI queue object using CDMI content type are shown
in Table 88.

Table 88 - Response Message Body - Read a Queue Object using CDMI Content Type (Sheet 1 of 3)

Field Name Type Description Requirement

objectType JSON
String

"application/cdmi-queue" Mandatory

objectID JSON
String

Object ID of the object Mandatory

objectName JSON
String

Name of the object

• For objects in a container, the objectName field shall
be returned.

• For objects not in a container (objects that are only
accessible by ID), the objectName field does not
exist and shall not be returned.

Conditional

parentURI JSON
String

URI for the parent object

• For objects in a container, the parentURI field shall
be returned.

• For objects not in a container (objects that are only
accessible by ID), the parentURI field does not exist
and shall not be returned.

Appending the objectName to the parentURI shall
always produce a valid URI for the object.

Conditional

parentID JSON
String

Object ID of the parent container object

• For objects in a container, the parentID field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the parentID field does not exist
and shall not be returned.

Conditional

domainURI JSON
String

URI of the owning domain Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object Mandatory

completionStatus JSON

String

A string indicating if the object is still in the process of
being created, and after the operation is complete, if it
was created successfully or an error occurred. The
value shall be the string "Processing", the string
"Complete", or an error string starting with the value
"Error".

Mandatory

percentComplete JSON
String

• When the value of completionStatus is "Processing",
this field, if provided, shall indicate the percentage of
completion as a numeric integer value from 0
through 100.

• When the value of completionStatus is "Complete",
this field, if provided, shall contain the value "100".

• When the value of completionStatus is "Error", this
field, if provided, may contain any integer value from
0 through 100.

Optional

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 135

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
metadata JSON
Object

Metadata for the queue object. This field includes any
user and data system metadata specified in the request
message body metadata field, along with storage
system metadata generated by the cloud storage
system. See Clause 16 for a further description of
metadata.

Mandatory

queueValues JSON
String

The range of designators for enqueued values. Every
enqueued value shall be assigned a unique,
monotonically-incrementing positive integer designator,
starting from 0. If no values are enqueued, an empty
string shall be returned. If values are enqueued, the
lowest designator, followed by a hyphen ("-"), followed
by the highest designator shall be returned.

Mandatory

mimetype JSON
Array of
JSON
Strings

MIME types for each queue object value

• The MIME types of the values are returned, each
corresponding to the value in the same position in
the JSON array.

• This field shall only be provided when
completionStatus is "Complete" and when one or
more values are enqueued.

Optional

valuerange JSON
Array of
JSON
Strings

The range of bytes of the queue object values to be
returned in the value field

• The value ranges of the values are returned, each
corresponding to the value in the same position in
the JSON array.

• If a specific value range has been requested, the
entry in the value range field shall correspond to the
bytes requested. If the request extends beyond the
end of the value, the value range field shall indicate
the smaller byte range returned.

• The valuerange field shall only be provided when the
"completionStatus field contains "Complete".

Optional

valuetransferencoding JSON
Array of
JSON
String

The value transfer encoding used for each queue
object value. Two value transfer encodings are defined:

• "utf-8" indicates that the queue object value contains
a valid UTF-8 string, and itshall be transported as a
UTF-8 string in the value field.

• "base64" indicates that the queue object value may
contain arbitrary binary sequences, and it shall be
transported as a base 64-encoded string in the value
field.

The value transfer encodings are returned, each
corresponding to the value in the same position in the
JSON array.

The valuetransferencoding field shall only be provided
when the completionStatus field contains "Complete".

Optional

Table 88 - Response Message Body - Read a Queue Object using CDMI Content Type (Sheet 2 of 3)

Field Name Type Description Requirement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

136 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209
If individual fields are specified in the GET request, only these fields are returned in the result body.
Optional fields that are requested but do not exist are omitted from the result body.

11.3.7 Response Status

Table 89 describes the HTTP status codes that occur when reading a queue object using CDMI content
type.

11.3.8 Examples

EXAMPLE 1 GET to the queue object URI to read all fields of the queue object:

GET /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.0.2

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.0.2

{
 "objectType": "application/cdmi-queue",
 "objectID": "00007E7F00104BE66AB53A9572F9F51E",
 "objectName": "MyQueue",

value JSON
Array of
JSON
Strings

The oldest enqueued queue object values

• The values in the JSON array are returned in order
from oldest to newest.

• If the valuetransferencoding field indicates UTF-8
encoding, the corresponding value field shall contain
a UTF-8 string using JSON escaping rules described
in RFC 4627.

• If the valuetransferencoding field indicates base 64
encoding, the corresponding value field shall contain
a base 64-encoded string as described in RFC RFC
4648.

• The value field shall only be provided when the
"completionStatus field contains "Complete".

Conditional

Table 89 - HTTP Status Codes - Read a Queue Object using CDMI Content Type

HTTP Status Description

200 OK The queue object content was returned in the reponse.

302 Found The URI is a reference to another URI.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

406 Not Acceptable The server is unable to provide the object in the content type specified in the
Accept header.

Table 88 - Response Message Body - Read a Queue Object using CDMI Content Type (Sheet 3 of 3)

Field Name Type Description Requirement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 137

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263
 "parentURI": "/MyContainer/",
 "parentID" : "0000706D0010B84FAD185C425D8B537E",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/queue/",
 "completionStatus": "Complete",
 "metadata": {},
 "queueValues": "1-2",
 "mimetype": [
 "text/plain"
],
 "valuerange": [
 "0-19"
],
 "valuetransferencoding": [
 "utf-8"
],
 "value": [
 "First Enqueued Value"
]
}

EXAMPLE 2 GET to the queue object URI to read the value and queue items of the queue object:

GET /MyContainer/MyQueue?value;queueValues HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.0.2

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.0.2

{
 "queueValues" : "1-2",
 "value" : [
 "First Enqueued Value"
]
}

EXAMPLE 3 GET to the queue object URI to read the first five bytes of the value of the queue object:

GET /MyContainer/MyQueue?value:0-5 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.0.2

The following shows the response:

HTTP/1.1 200 OK
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.0.2

{
 "value" : [
 "First"
]
}

EXAMPLE 4 GET to the queue object URI to read two values of the queue object:

GET /MyContainer/MyQueue?mimetype;valuerange;values:2 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.0.2

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

138 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300
The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.0.2

{
 "mimetype" : [
 "text/plain",
 "text/plain"
],
 "valuerange" : [
 "0-19",
 "0-20"
],
 "value" : [
 "First Enqueued Value",
 "Second Enqueued Value"
]
}

11.4 Update a Queue Object using CDMI Content Type

11.4.1 Synopsis

To update some or all fields in an existing queue object (excluding the enqueueing of values), the following
request shall be performed:

PUT <root URI>/<ContainerName>/<QueueName>

To add, update, and remove specific metadata items of an existing queue object, the following request
shall be performed:

PUT <root URI>/<ContainerName>/<QueueName>?metadata:<metadataname>;...

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <QueueName> is the name of the queue object to be updated.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>. An update shall not result in a
change to the object ID.

11.4.2 Capability

The following capability describes the supported operations that may be performed when updating an
existing queue object:

• Support for the ability to modify the metadata of an existing queue object is indicated by the
presence of the cdmi_modify_metadata capability in the specified queue object.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 139

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

301

302

303

304

305

306
11.4.3 Request Headers

The HTTP request headers for updating a CDMI queue object using CDMI content type are shown in
Table 90.

11.4.4 Request Message Body

The request message body fields for updating a queue object using CDMI content type are shown in
Table 91.

Table 90 - Request Headers - Update a Queue Object using CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-queue " Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions supported by the client,
e.g., "1.0.2, 1.5, 2.0"

Mandatory

Table 91 - Request Message Body - Update a Queue Object using CDMI Content Type

Field Name Type Description Requirement

metadata JSON
Object

Metadata for the queue object. If present, the new metadata
specified replaces the existing object metadata. If individual
metadata items are specified in the URI, only those items
are replaced, with other items being preserved.

See Clause 16 for a further description of metadata.

Optional

domainURI JSON
String

URI of the owning domain. If different from the parent
domain, the user shall have the "cross_domain" privilege
(see cdmi_member_privileges in Table 64). If not specified,
the parent domain shall be used.

Optional

deserialize JSON
String

URI of a serialized CDMI queue object that shall be
deserialized to update an existing queue object. The object
ID of the serialized queue object shall match the object ID of
the destination queue object.

All enqueued items in the serialized queue object shall be
added to the destination queue object.

Optionala

copy JSON
String

URI of a CDMI queue object that shall be copied into the
existing queue object. Queue Object copy does not copy
enqueued items. See 11.6 to copy enqueued items.

Optionala

deserializevalue JSON
String

A data object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in RFC
4648. The object ID of the serialized data object shall match
the object ID of the destination data object.

All enqueued items in the serialized queue object shall be
added to the destination queue object.

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

140 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327
11.4.5 Response Header

The HTTP response header for updating a CDMI queue object using CDMI content type is shown in
Table 92.

11.4.6 Response Message Body

A response message body may be provided as per RFC 2616.

11.4.7 Response Status

Table 93 describes the HTTP status codes that occur when updating a queue object using CDMI content
type.

11.4.8 Example

EXAMPLE PUT to the queue object URI to set new metadata:

PUT /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.0.2

{
 "metadata" : {

 }
}

The following shows the response.

HTTP/1.1 204 No Content

Table 92 - Response Header - Update a Queue Object using CDMI Content Type

Header Type Description Requirement

Location Header
String

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional

Table 93 - HTTP Status Codes - Update a Queue Object using CDMI Content Type

HTTP Status Description

204 No Content The operation was successful; no data was returned.

302 Found The URI is a reference to another URI.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a
state transition error on the server.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 141

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351
11.5 Delete a Queue Object using CDMI Content Type

11.5.1 Synopsis

To delete an existing queue object, along with all enqueued values, the following request shall be
performed:

DELETE <root URI>/<ContainerName>/<QueueName>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <QueueName> is the name of the queue object to be deleted.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

11.5.2 Capability

The following capability describes the supported operations that may be performed when deleting an
existing data object:

• Support for the ability to delete an existing queue object is indicated by the presence of the
cdmi_delete_queue capability in the specified queue object.

11.5.3 Request Header

The HTTP request header for deleting a CDMI queue object using CDMI content type is shown in
Table 94.

11.5.4 Request Message Body

A request message body may be provided as per RFC 2616.

11.5.5 Response Headers

Response headers may be provided as per RFC 2616.

11.5.6 Response Message Body

A response message body may be provided as per RFC 2616.

Table 94 - Request Header - Delete a Queue Object using CDMI Content Type

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions supported by the client,
e.g., "1.0.2, 1.5, 2.0"

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

142 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376
11.5.7 Response Status

Table 95 describes the HTTP status codes that occur when deleting a queue object using CDMI content
type.

11.5.8 Example

EXAMPLE DELETE to the queue object URI:

DELETE /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.0.2

The following shows the response.

HTTP/1.1 204 No Content

11.6 Enqueue a New Queue Value using CDMI Content Type

11.6.1 Synopsis

To enqueue one or more values into an existing queue object, the following request shall be performed:

POST <root URI>/<ContainerName>/<QueueName>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e.,
"/") between each pair of container names.

• <QueueName> is the name of the queue object to be enqueued into.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

11.6.2 Capability

The following capability describes the supported operations that may be performed when enqueuing a new
value into an existing queue object:

• Support for the ability to modify the value of an existing queue object is indicated by the presence
of the cdmi_modify_value capability in the specified queue object.

Table 95 - HTTP Status Codes - Delete a Queue Object using CDMI Content Type

HTTP Status Description

204 No Content The queue object was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The queue object may not be deleted (may be immutable).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 143

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

377

378

379

380

381

382
11.6.3 Request Headers

The HTTP request headers for enqueuing a new CDMI queue object value using CDMI content type are
shown in Table 96.

11.6.4 Request Message Body

The request message body fields for enqueuing a new queue object value using CDMI content type are
shown in Table 97.

Table 96 - Request Headers - Enqueue a New Queue Object Value using CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-queue" Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions supported by the client,
e.g., "1.0.2, 1.5, 2.0"

Mandatory

Table 97 - Request Message Body - Enqueue a New Queue Value using CDMI Content Type (Sheet 1 of 2)

Field Name Type Description Requirement

mimetype JSON
Array of
JSON
Strings

MIME type(s) of the data value(s) to be enqueued into
the queue object.

• This field shall be stored as part of the object.

• If this field is not specified, the value of "text/plain"
shall be assigned as the field value.

• The same number of array elements shall be
present as is present in the value field, and the
mimetype field shall be associated with the value in
the corresponding position.

• This mimetype field value shall be converted to
lower case before being stored.

Optional

copy JSON
String

URI of a CDMI data object or queue object from which
the value shall be moved and enqueued

• If a URI to a data object is provided, the value,
mimetype, and valuetransferencoding field values
from the data object are used to enqueue the new
item into the queue object, and the data object is
atomically deleted.

• If a URI to a queue object is provided, the
corresponding value, mimetype, and
valuetransferencoding field values of the specified
number of enqueued items are transferred to the
queue object and atomically removed from the
source queue object.

Optionala

move JSON
String

URI of a CDMI data object or queue object from which
the value shall be enqueued, and removed the data
object or queue object value at the source URI upon
the successful completion of the enqueue

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with a 400 Bad Request error
response.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

144 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

383

384

385

386
11.6.5 Response Headers

Response headers may be provided as per RFC 2616.

11.6.6 Response Message Body

A response message body may be provided as per RFC 2616.

valuetransferencoding JSON
Array of
JSON
Strings

The value transfer encoding(s) used for the queue
object value(s). Two value transfer encodings are
defined:

• "utf-8" indicates that the queue object value contains
a valid UTF-8 string, and shall be transported as a
UTF-8 string in the value field.

• "base64" indicates that the queue object value may
contain arbitrary binary sequences, and shall be
transported as a base 64-encoded string in the
value field. Setting the contents of the queue object
value field to any value other than a valid base 64
string shall result in error 400 Bad Request being
returned to the client.

If this field is not specified, the value of "utf-8" shall be
assigned as the field value.

This field shall be stored as part of the object.

Optional

value JSON
Array of
JSON
Strings

Data value(s) to be enqueued into the queue object.

• If the corresponding value transfer encoding field
indicates UTF-8 encoding, the value shall be a UTF-
8 string escaped using the JSON escaping rules
described in RFC 4627.

• If the corresponding value transfer encoding field
indicates base 64 encoding, the value shall be first
encoded using the base 64 encoding rules as
described in RFC 4648.

Optionala

Table 97 - Request Message Body - Enqueue a New Queue Value using CDMI Content Type (Sheet 2 of 2)

Field Name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with a 400 Bad Request error
response.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 145

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415
11.6.7 Response Status

Table 98 describes the HTTP status codes that occur when enqueuing a new queue object using CDMI
content type.

11.6.8 Examples

EXAMPLE 1 POST to the queue object URI a new value:

POST /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.0.2

{
 "mimetype" : [
 "text/plain"
],
 "value" : [
 "Value to Enqueue"
]
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 2 POST to the queue object URI to copy an existing value:

POST /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "copy" : "/MyContainer/MyDataObject"
}

The following shows the response.

HTTP/1.1 204 No Content

Table 98 - HTTP Status Codes - Enqueue a New Queue Object Value using CDMI Content Type

HTTP Status Description

204 No Content The new queue values were enqueued.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause
a state transition error on the server.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

146 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465
EXAMPLE 3 POST to the queue object URI to transfer twenty values from another queue object:

POST /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "move" : "/MyContainer/FirstQueue?values:20"
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 4 POST to the queue object URI two new values:

POST /MyContainer/MyQueue
HTTP/1.1 Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "mimetype" : [
 "text/plain",
 "text/plain"
],
 "value" : [
 "First",
 "Second"
]
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 5 POST to the queue object URI two new values, one with base 64 transfer encoding and
one with utf-8 transfer encoding:

POST /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.2

{
 "mimetype": [
 "text/plain",
 "text/plain"
],
 "valuetransferencoding": [
 "utf-8",
 "base64"
],
 "value": [
 "First",
 "U2Vjb25k"
]
}

The following shows the response.

HTTP/1.1 204 No Content

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 147

http://cloud.example.com/
https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496
11.7 Delete a Queue Object Value using CDMI Content Type

11.7.1 Synopsis

To delete one or more of the oldest enqueued values in an existing queue, the following request shall be
performed:

DELETE <root URI>/<ContainerName>/<QueueName>?value
DELETE <root URI>/<ContainerName>/<QueueName>?values:<count>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <QueueName> is the name of the queue object to be deleted.

• <count> is the number of values, starting from the oldest, to be removed from the queue object. If
more queue object entries are requested to be deleted than exist in the queue object, the count
shall be considered equal to the number of entries in the queue object.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

The "?value" suffix at the end of the queue resource URI shall be included to distinguish the deletion of the
oldest value from the deletion of the queue object itself, as described in 11.5 (which deletes all enqueued
values).

11.7.2 Capability

The following capability describes the supported operations that may be performed when deleting an
existing data object:

• Support for the ability to modify the value of an existing queue object is indicated by the presence
of the cdmi_modify_value capability in the specified queue object.

11.7.3 Request Header

The HTTP request header for deleting a CDMI queue object value using CDMI content type is shown in
Table 99.

11.7.4 Request Message Body

A request message body may be provided as per RFC 2616.

11.7.5 Response Headers

Response headers may be provided as per RFC 2616.

11.7.6 Response Message Body

A response message body may be provided as per RFC 2616.

Table 99 - Request Header - Delete a Queue Object Value using CDMI Content Type

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions supported by the client,
e.g., "1.0.2, 1.5, 2.0"

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

148 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

497

498

499

500

501

502

503

504

505

506
11.7.7 Response Status

Table 100 describes the HTTP status codes that occur when deleting a queue object using CDMI content
type.

11.7.8 Example

EXAMPLE DELETE to the queue object URI value to access the next enqueued value:

DELETE /MyContainer/MyQueue?value HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.0.2

The following shows the response.

HTTP/1.1 204 No Content

Table 100 - HTTP Status Codes - Delete a Queue Object Value using CDMI Content Type

HTTP Status Description

204 No Content The queue object value was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The queue object may not be deleted (may be immutable).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 149

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

ISO/IEC 17826:2012(E)
12 Capability Object Resource Operations

12.1 Overview

Capability objects allow a CDMI™ client to discover what subset of this international standard is
implemented by a CDMI provider.

For each URI in a cloud storage system, the set of interactions that the system is capable of performing for
that URI are described by the presence of named "capabilities". Each capability present for a given URI
indicates what functionality the cloud storage system will allow against that URI. Capabilities are always
static.

Capabilities may differ from the operations permitted by an Access Control List (ACL) (see 16.1)
associated with a given URI‚ e.g., a read-only cloud may not permit write access to a container or object,
despite the presence of an ACL allowing write access.

Cloud clients may use capabilities to discover what operations are supported. If an operation is attempted
on a CDMI object that does not have a corresponding capability, an HTTP 400 status code shall be
returned to the client. All CDMI-compliant cloud storage systems shall implement the ability to read
capabilities, but support for the functionality indicated by each capability is optional.

Every CDMI data object, container object, domain object, and queue object shall have a capabilitiesURI
field that contains a valid URI of a capabilities object. Within the capabilities object, the name of each
capability confers a specific meaning that has been agreed to between the cloud storage provider and the
cloud storage consumer.

The capabilities defined as part of this international standard are described starting in 12.1.1 "Cloud
Storage System-Wide Capabilities". Vendor-defined capabilities not specified in this international standard
shall not start with "cdmi_".

Figure 7 shows the hierarchy of capabilities in an offering and how the capabilitiesURI links data objects
and container objects into the capabilities tree.

The capabilities container within the capabilities tree to which an object is linked is based on the type of the
object and the data system metadata fields present in the object.

Figure 7 - Hierarchy of Capabilities

domain/mydomain/

capabilitiesURI

gold_container/

container/

Immutable/

dataobject/

mycontainer/ capabilitiesURI

mygoldcontainer/

capabilitiesURI

capabilitiesURI

mydataobject capabilitiesURI

myimmutabledataobject
capabilitiesURI

queue/

myqueue
capabilitiesURI

“/” Root URI cdmi_capabilities/

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 150

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

27

28

29

30

31

32

33

34

35

36

ISO/IEC 17826:2012(E)
EXAMPLE A container with no data system metadata fields specified may map to the "container" capabilities
entry.

As an option, a CDMI implementation may map a container to a "gold_container" capabilities entry, if a
data system metadata field is present and set to a given value, such as if the cdmi_data_redundancy field
was set to the value of "4". This permits a cloud provider to create profiles of data system metadata fields
and values.

Capabilities do not have a CDMI metadata field.

12.1.1 Cloud Storage System-Wide Capabilities

Table 101 defines the system-wide capabilities in a cloud storage system. These capabilities, which are
found in the capabilities object, are referred to by the root URI (root capabilities).

Table 101 - System-Wide Capabilities (Sheet 1 of 3)

Capability Name Type Definition

cdmi_domains JSON
String

If present and "true", indicates that the cloud storage system
supports domains. If not present, the domainURI field shall not
be present in response message bodies and the cdmi_domains
URI shall not be present.

cdmi_export_cifs JSON
String

If present and "true", this capability indicates that the cloud
storage system supports CIFS exports.

cdmi_dataobjects JSON
String

If present and "true", this capability indicates that the cloud
storage system supports data objects.

cdmi_export_iscsi JSON
String

If present and "true", this capability indicates that the cloud
storage system supports iSCSI exports.

cdmi_export_nfs JSON
String

If present and "true", this capability indicates that the cloud
storage system supports NFS protocol exports.

cdmi_export_occi_iscsi JSON
String

If present and "true", this capability indicates that the cloud
storage system supports OCCI/iSCSI exports.

cdmi_export_webdav JSON
String

If present and "true", this capability indicates that the cloud
storage system supports WebDAV exports.

cdmi_metadata_maxitems JSON
String

If present, this capability indicates the maximum number of user-
defined metadata items supported per object. If absent, there is
no limit placed on the number of user-defined metadata items.

cdmi_metadata_maxsize JSON
String

If present, this capability indicates the maximum size, in bytes,
of each user-defined metadata item supported per object. If
absent, there is no limit placed on the size of user-defined
metadata items.

cdmi_metadata_maxtotalsize JSON
String

If present, this capability indicates the maximum size, in bytes,
of user-defined metadata supported by the cloud storage
system. If absent, there is no limit placed on the size of user-
defined metadata.

cdmi_notification JSON
String

If present and "true", this capability indicates that the cloud
storage system supports notification queues.

cdmi_logging JSON
String

If present and "true", this capability indicates that the cloud
storage system supports logging queues.

cdmi_query JSON
String

If present and "true", this capability indicates that the cloud
storage system supports query queues.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

151 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
cdmi_query_regex JSON
String

If present and "true", this capability indicates that the cloud
storage system supports query with regular expressions.

cdmi_query_contains JSON
String

If present and "true", this capability indicates that the cloud
storage system supports query with "contains" expressions.

cdmi_query_tags JSON
String

If present and "true", this capability indicates that the cloud
storage system supports query with tag-matching expressions.

cdmi_query_value JSON
String

If present and "true", this capability indicates that the cloud
storage system supports query of value fields.

cdmi_queues JSON
String

If present and "true", this capability indicates that the cloud
storage system supports queue objects.

cdmi_security_access_control JSON
String

If present and "true", this capability indicates that the cloud
storage system supports ACLs. See 12.1.3 for additional
information.

cdmi_security_audit JSON
String

If present and "true", this capability indicates that the cloud
storage system supports audit logging. See 20.3 for additional
information.

cdmi_security_data_integrity JSON
String

If present and "true", this capability indicates that the cloud
storage system supports data integrity/authenticity. See 12.1.3
for additional information.

cdmi_security_encryption JSON
String

If present and "true", this capability indicates that the cloud
storage system supports data at-rest encryption. See 12.1.3 for
additional information.

cdmi_security_immutability JSON
String

If present and "true", this capability indicates that the cloud
storage system supports data immutability/retentions. See
12.1.3 for additional information.

cdmi_security_sanitization JSON
String

If present and "true", this capability indicates that the cloud
storage system supports data/media sanitization. See 12.1.3 for
additional information.

cdmi_serialization_json JSON
String

If present and "true", this capability indicates that the cloud
storage system supports JSON as a serialization format.

cdmi_snapshots JSON
String

If present and "true", this capability indicates that the cloud
storage system supports snapshots.

cdmi_references JSON
String

If present and "true", this capability indicates that the cloud
storage system supports references.

cdmi_object_move_from_local JSON
String

If present and "true", this capability indicates that the cloud
storage system supports moving CDMI objects from URIs within
the same storage system.

cdmi_object_move_from_remote JSON
String

If present and "true", this capability indicates that the cloud
storage system supports moving CDMI objects from URIs within
other CDMI storage systems.

cdmi_object_move_from_ID JSON
String

If present and "true", this capability indicates that the cloud
storage system supports moving CDMI objects without a path
from a /cdmi_objectid/ URI within the same storage system. This
effectively adds a path, allowing the object to be accessed by ID
and by path.

Table 101 - System-Wide Capabilities (Sheet 2 of 3)

Capability Name Type Definition

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 152

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
cdmi_object_move_to_ID JSON
String

If present and "true", this capability indicates that the cloud
storage system supports moving CDMI objects with a path to a 
/cdmi_objectid/ URI within the same storage system. This
effectively removes the path, leaving the object only accessible
by ID.

cdmi_object_copy_from_local JSON
String

If present and "true", this capability indicates that the cloud
storage system supports copying CDMI objects from URIs within
the same storage system.

cdmi_object_copy_from_remote JSON
String

If present and "true", this capability indicates that the cloud
storage system supports copying CDMI objects from URIs within
other CDMI storage systems.

cdmi_object_access_by_ID JSON
String

If present and "true", this capability indicates that objects can be
accessed, updated, and deleted through "/cdmi_objectid/".

cdmi_post_dataobject_by_ID JSON
String

If present and "true", this capability indicates that the system
allows a new data object by ID to be added via POST to 
"/cdmi_objectid/".

cdmi_post_queue_by_ID JSON
String

If present and "true", this capability indicates that the system
allows a new queue object by ID to be added via POST to 
"/cdmi_objectid/".

cdmi_deserialize_dataobject_by_ID JSON
String

If present and "true", this capability indicates that the system
allows the deserialization of serialized data objects when
creating a new data object by ID via POST to "/cdmi_objectid/".

cdmi_deserialize_queue_by_ID JSON
String

If present and "true", this capability indicates that the system
allows the deserialization of serialized queue objects when
creating a new queue object by ID via POST to "/cdmi_objectid/
".

cdmi_serialize_dataobject_to_ID JSON
String

If present and "true", this capability indicates that the system
allows the serialization of data objects when creating a new data
object by ID via POST to "/cdmi_objectid/".

cdmi_serialize_domain_to_ID JSON
String

If present and "true", this capability indicates that the system
allows the serialization of domain objects when creating a new
data object by ID via POST to "/cdmi_objectid/".

cdmi_serialize_container_to_ID JSON
String

If present and "true", this capability indicates that the system
allows the serialization of container objects when creating a new
data object by ID via POST to "/cdmi_objectid/".

cdmi_serialize_queue_to_ID JSON
String

If present and "true", this capability indicates that the system
allows the serialization of queue objects when creating a new
data object by ID via POST to "/cdmi_objectid/".

cdmi_copy_dataobject_by_ID JSON
String

If present and "true", this capability indicates that the system
allows the copying of an existing data object when creating a
new data object by ID via POST to "/cdmi_objectid/".

cdmi_copy_queue_by_ID JSON
String

If present and "true", this capability indicates that the system
allows the copying of an existing queue object when creating a
new queue object by ID via POST to "/cdmi_objectid/".

cdmi_create_reference_by_ID JSON
String

If present and "true", this capability indicates that the system
allows the creation of a new reference by IDa new child
reference to be created via POST to "/cdmi_objectid/".

Table 101 - System-Wide Capabilities (Sheet 3 of 3)

Capability Name Type Definition

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

153 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

37

38

39

40

41

42

43

44

45

ISO/IEC 17826:2012(E)
12.1.2 Storage System Metadata Capabilities

Table 102 defines the capabilities for storage system metadata in a cloud storage system. These
capabilities are found in the capabilities objects for domains, data objects, containers, and queues. See
16.3 for a description of these storage system metadata items.

12.1.3 Data System Metadata Capabilities

Table 103 defines the capabilities that indicate which data system metadata items are supported for
objects stored in a cloud storage system. These capabilities are found in the capabilities objects for
domains, data objects, containers, and queues. See 16.4 (Table 117) for a description of the meaning of
the corresponding data system metadata items.

Table 102 - Capabilities for Storage System Metadata

Capability Name Type Definition

cdmi_acl JSON
String

If present and "true", this capability indicates that the cloud
storage system supports ACLs. When a CDMI implementation
supports ACLs for the purpose of access control, the system-wide
capability of cdmi_security_access_control specified in Table 102
of 12.1.1 shall be set to "true". Otherwise, it shall not be present,
indicating that there is no support for access control.

cdmi_size JSON
String

If present and "true", this capability indicates that the cloud
storage system shall generate a cdmi_size storage system
metadata for each stored object.

cdmi_ctime JSON
String

If present and "true", this capability indicates that the cloud
storage system shall generate a cdmi_ctime storage system
metadata for each stored object.

cdmi_atime JSON
String

If present and "true", this capability indicates that the cloud
storage system shall generate a cdmi_atime storage system
metadata for each stored object.

cdmi_mtime JSON
String

If present and "true", this capability indicates that the cloud
storage system shall generate a cdmi_mtime storage system
metadata for each stored object.

cdmi_acount JSON
String

If present and "true", this capability indicates that the cloud
storage system shall generate a cdmi_acount storage system
metadata for each stored object.

cdmi_mcount JSON
String

If present and "true", this capability indicates that the cloud
storage system shall generate a cdmi_mcount storage system
metadata for each stored object.

Table 103 - Capabilities for Data System Metadata (Sheet 1 of 4)

Capability Name Type Definition

cdmi_assignedsize JSON
String

When the cloud storage system supports the cdmi_assignedsize
data system metadata as defined in 16.4, the cdmi_assignedsize
capability shall be present and set to the string value "true". When
this capability is absent, or present and set to the string value
"false", cdmi_assignedsize data system metadata shall not be
used.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 154

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
cdmi_data_redundancy JSON
String

When the cloud storage system supports the
cdmi_data_redundancy data system metadata as defined in 16.4,
the cdmi_data_redundancy capability shall be present and set to a
positive numeric string representing the maximum value that the
server supports. When this capability is absent, or present and set
to an empty string value "", cdmi_data_redundancy data system
metadata shall not be used.

cdmi_data_dispersion JSON
String

When the cloud storage system supports the
cdmi_data_dispersion data system metadata as defined in 16.4,
the cdmi_data_dispersion capability shall be present and set to
the string value "true". When this capability is absent, or present
and set to the string value "false", cdmi_data_dispersion data
system metadata shall not be used.

cdmi_data_retention JSON
String

When the cloud storage system supports both the
cdmi_retention_id and cdmi_retention_period data system
metadata as defined in 16.4, the cdmi_data_retention capability
shall be present and set to the string value "true". When this
capability is absent, or present and set to the string value "false",
cdmi_retention_id and cdmi_retention_period data system
metadata shall not be used.

cdmi_data_autodelete JSON
String

When the cloud storage system supports the
cdmi_data_autodelete data system metadata as defined in 16.4,
the cdmi_data_autodelete capability shall be present and set to
the string value "true". When this capability is absent, or present
and set to the string value "false", cdmi_data_autodelete data
system metadata shall not be used.

cdmi_data_holds JSON
String

When the cloud storage system supports the cdmi_hold_id data
system metadata as defined in 16.4, the cdmi_data_holds
capability shall be present and set to the string value "true". When
this capability is absent, or present and set to the string value
"false", cdmi_data_holds data system metadata shall not be used.

When a cloud storage system supports holds for the purpose of
making data immutable, the system-wide capability of
cdmi_security_immutability specified in Table 101 of 12.1.1 shall
be present and set to "true".

cdmi_encryption JSON
Array

When the cloud storage system supports the cdmi_encryption
data system metadata as defined in 16.4, the cdmi_encryption
capability shall be present and set to one or more values
described in the cdmi_encryption data system metadata section in
16.4. When this capability is absent, or present and is an empty
JSON array, cdmi_encryption data system metadata shall not be
used.

When a cloud storage system supports at-rest encryption, the
system-wide capability of cdmi_security_encryption specified in
Table 101 of 12.1.1 shall be present and set to "true".

cdmi_geographic_placement JSON
String

When the cloud storage system supports the
cdmi_geographic_placement data system metadata as defined in
16.4, the cdmi_geographic_placement capability shall be present
and set to the string value "true". When this capability is absent, or
present and set to the string value "false",
cdmi_geographic_placement data system metadata shall not be
used.

Table 103 - Capabilities for Data System Metadata (Sheet 2 of 4)

Capability Name Type Definition

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

155 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
cdmi_immediate_redundancy JSON
String

When the cloud storage system supports the
cdmi_immediate_redundancy data system metadata as defined in
16.4, the cdmi_immediate_redundancy capability shall be present
and set to a positive numeric string representing the maximum
value that the server supports. When this capability is absent, or
present and set to an empty string value "",
cdmi_immediate_redundancy data system metadata shall not be
used.

cdmi_infrastructure_redundancy JSON
String

When the cloud storage system supports the
cdmi_infrastructure_redundancy data system metadata as
defined in 16.4, the cdmi_infrastructure_redundancy capability
shall be present and set to a positive numeric string representing
the maximum value that the server supports. When this capability
is absent, or present and set to an empty string value "",
cdmi_infrastructure_redundancy data system metadata shall not
be used.

cdmi_latency JSON
String

When the cloud storage system supports the cdmi_latency data
system metadata as defined in 16.4, the cdmi_latency capability
shall be present and set to the string value "true". When this
capability is absent, or present and set to the string value "false",
cdmi_latency data system metadata shall not be used..

cdmi_RPO JSON
String

When the cloud storage system supports the cdmi_RPO data
system metadata as defined in 16.4, the cdmi_RPO capability
shall be present and set to the string value "true". When this
capability is absent, or present and set to the string value "false",
cdmi_RPO data system metadata shall not be used.

cdmi_RTO JSON
String

When the cloud storage system supports the cdmi_RTO data
system metadata as defined in 16.4, the cdmi_RTO capability
shall be present and set to the string value "true". When this
capability is absent, or present and set to the string value "false",
cdmi_RTO data system metadata shall not be used.

cdmi_sanitization_method JSON
Array

When the cloud storage system supports the
cdmi_sanitization_method data system metadata as defined in
16.4, the cdmi_sanitization_method capability shall be present
and set to one or more values described in the
cdmi_sanitization_method data system metadata section in 16.4.
When this capability is absent, or present and is an empty JSON
array, cdmi_sanitization_method data system metadata shall not
be used.

When a cloud storage system supports sanitization, the system-
wide capability of cdmi_security_sanitization specified in
Table 101 of 12.1.1 shall be present and set to "true".

cdmi_throughput JSON
String

When the cloud storage system supports the cdmi_throughput
data system metadata as defined in 16.4, the cdmi_throughput
capability shall be present and set to the string value "true". When
this capability is absent, or present and set to the string value
"false", cdmi_throughput data system metadata shall not be used.

Table 103 - Capabilities for Data System Metadata (Sheet 3 of 4)

Capability Name Type Definition

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 156

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

46

47

48

49

ISO/IEC 17826:2012(E)
12.1.4 Data Object Capabilities

Table 104 defines the capabilities for data objects in a cloud storage system.

12.1.5 Container Capabilities

Table 105 defines the capabilities for containers in a cloud storage system.

cdmi_value_hash JSON
Array

When the cloud storage system supports the cdmi_value_hash
data system metadata as defined in 16.4, the cdmi_value_hash
capability shall be present and set to one or more values
described in the cdmi_value_hash data system metadata section
in 16.4. When this capability is absent, or present and is an empty
JSON array, cdmi_value_hash data system metadata shall not be
used.

When a cloud storage system supports value hashing, the
system-wide capability of cdmi_security_data_integrity specified
in Table 101 of 12.1.1 shall be present and set to "true".

Table 104 - Capabilities for Data Objects

Capability Name Type Definition

cdmi_read_value JSON
String

If present and "true", this capability indicates that the object’s
value may be read.

cdmi_read_value_range JSON
String

If present and "true", this capability indicates that the object’s
value may be read with byte ranges.

cdmi_read_metadata JSON
String

If present and "true", this capability indicates that the object’s
metadata may be read.

cdmi_modify_value JSON
String

If present and "true", this capability indicates that the object’s
value may be modified.

cdmi_modify_value_range JSON
String

If present and "true", this capability indicates that the object’s
value may be modified with byte ranges.

cdmi_modify_metadata JSON
String

If present and "true", this capability indicates that the object’s
metadata may be modified.

cdmi_modify_deserialize_dataobject JSON
String

If present and "true", this capability indicates that the data object
permits the deserialization of a serialized data object into the
data object as an update.

cdmi_delete_dataobject JSON
String

If present and "true", this capability indicates that the object may
be deleted.

Table 105 - Capabilities for Containers (Sheet 1 of 3)

Capability Name Type Definition

cdmi_list_children JSON
String

If present and "true", this capability indicates that the container’s
children may be listed.

cdmi_list_children_range JSON
String

If present and "true", this capability indicates that the container’s
children may be listed with ranges.

cdmi_read_metadata JSON
String

If present and "true", this capability indicates that the container’s
metadata may be read.

Table 103 - Capabilities for Data System Metadata (Sheet 4 of 4)

Capability Name Type Definition

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

157 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)
cdmi_modify_metadata JSON
String

If present and "true", this capability indicates that the container’s
metadata may be modified.

cdmi_modify_deserialize_container JSON
String

If present and "true", this capability indicates that the container
object permits the deserialization of a serialized container object
into the container object as an update.

cdmi_snapshot JSON
String

If present and "true", this capability indicates that the container
allows a new snapshot to be created.

cdmi_serialize_dataobject JSON
String

If present and "true", this capability indicates that the object may
be serialized.

cdmi_serialize_container JSON
String

If present and "true", this capability indicates that the container
and all children’s contents may be serialized.

cdmi_serialize_queue JSON
String

If present and "true", this capability indicates that the queue may
be serialized.

cdmi_serialize_domain JSON
String

If present and "true", this capability indicates that the domain and
all child domains may be serialized.

cdmi_deserialize_container JSON
String

If present and "true", this capability indicates that the container
permits the deserialization of serialized containers and associated
serialized children into the container

cdmi_deserialize_queue JSON
String

If present and "true", this capability indicates that the container
permits the deserialization of serialized queues into the container.

cdmi_deserialize_dataobject JSON
String

If present and "true", this capability indicates that the container
permits the deserialization of serialized data objects into the
container.

cdmi_create_dataobject JSON
String

If present and "true", this capability indicates that the container
allows a new object to be added.

cdmi_post_dataobject JSON
String

If present and "true", this capability indicates that the container
allows a new object to be added via POST.

cdmi_post_queue JSON
String

If present and "true", this capability indicates that the container
allows a new queue to be added via POST.

cdmi_create_container JSON
String

If present and "true", this capability indicates that the container
allows a new container to be created via PUT.

cdmi_create_queue JSON
String

If present and "true", this capability indicates that the container
allows queues to be created.

cdmi_create_reference JSON
String

If present and "true", this capability indicates that the container
allows a new child reference to be created via PUT.

cdmi_export_container_cifs JSON
String

If present and "true", the container can be exported as a file
system via CIFS.

cdmi_export_container_nfs JSON
String

If present and "true", the container can be exported as a file
system via NFS.

cdmi_export_container_iscsi JSON
String

If present and "true", the container can be exported as a file
system via iSCSI.

cdmi_export_container_occi JSON
String

If present and "true", the container can be exported as a file
system via OCCI.

cdmi_export_container_webdav JSON
String

If present and "true", the container can be exported as a file
system via WebDAV.

Table 105 - Capabilities for Containers (Sheet 2 of 3)

Capability Name Type Definition

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 158

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

50

51

52

ISO/IEC 17826:2012(E)
12.1.6 Domain Object Capabilities

Table 106 defines the capabilities for domains in a cloud storage system. (All capabilities refer to what may
be done via CDMI content-type operations.)

cdmi_delete_container JSON
String

If present and "true", this capability indicates that the container
may be deleted.

cdmi_move_container JSON
String

If present and "true", this capability indicates that a container
object may be moved into the container.

cdmi_copy_container JSON
String

If present and "true", this capability indicates that a container
object may be copied into the container.

cdmi_move_dataobject JSON
String

If present and "true", this capability indicates that a data object
may be moved into the container.

cdmi_copy_dataobject JSON
String

If present and "true", this capability indicates that a data object
may be copied into the container.

Table 106 - Capabilities for Domain Objects

Capability Name Type Definition

cdmi_create_domain JSON
String

If present and "true", this capability indicates that the domain
allows a new subdomain to be added.

cdmi_delete_domain JSON
String

If present and "true", this capability indicates that the domain may
be deleted.

cdmi_domain_summary JSON
String

If present and "true", this capability indicates that the domain
supports domain summaries.

cdmi_domain_members JSON
String

If present and "true", this capability indicates that the domain
supports domain user management.

cdmi_list_children JSON
String

If present and "true", this capability indicates that the domain's
children may be listed.

cdmi_read_metadata JSON
String

If present and "true", this capability indicates that the domain's
metadata may be read.

cdmi_modify_metadata JSON
String

If present and "true", this capability indicates that the domain's
metadata may be modified.

cdmi_modify_deserialize_domain JSON
String

If present and "true", this capability indicates that the domain
object permits the deserialization of a serialized domain object
into the domain object as an update.

cdmi_copy_domain JSON
String

If present and "true", this capability indicates that the domain may
be copied (via PUT) to another URI.

cdmi_deserialize_domain JSON
String

If present and "true", this capability indicates that the domain
permits the deserialization of serialized domains and associated
serialized children into the domain.

Table 105 - Capabilities for Containers (Sheet 3 of 3)

Capability Name Type Definition

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

159 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

ISO/IEC 17826:2012(E)
12.1.7 Queue Object Capabilities

Table 107 defines the capabilities for queue objects in a cloud storage system.

12.1.8 Capability Object Representations

The representations in this clause are shown using JSON notation. Both clients and servers shall support
UTF-8 JSON representation. The request and response message body JSON fields may be specified or
returned in any order, with the exception that, if present, for capability objects, the childrenrange and
children fields shall appear last and in that order.

12.2 Read a Capabilities Object using CDMI Content Type

12.2.1 Synopsis

To read all fields from an existing capability object, the following request shall be performed:

GET <root URI>/cdmi_capabilities/<Capability>/<TheCapability>/

To read one or more requested fields from an existing capability object, one of the following requests shall
be performed:

GET <root URI>/cdmi_capabilities/<Capability>/<TheCapability>/
?<fieldname>;<fieldname>

GET <root URI>/cdmi_capabilities/<Capability>/<TheCapability>/?children:<range>

Where:

• <root URI> is the path to the CDMI cloud.

• <Capability> is zero or more intermediate capabilities containers.

• <TheCapability> is the name specified for the capabilities to be read from.

Table 107 - Capabilities for Queue Objects

Capability Name Type Definition

cdmi_read_value JSON
String

If present and "true", this capability indicates that the queue's
value may be read.

cdmi_read_metadata JSON
String

If present and "true", this capability indicates that the queue's
metadata may be read.

cdmi_modify_value JSON
String

If present and "true", this capability indicates that the queue's
value may be modified.

cdmi_modify_metadata JSON
String

If present and "true", this capability indicates that the queue's
metadata may be modified.

cdmi_modify_deserialize_queue JSON
String

If present and "true", this capability indicates that the queue
permits the deserialization of a serialized queue into the queue as
an update.

cdmi_delete_queue JSON
String

If present and "true", this capability indicates that the queue may
be deleted.

cdmi_move_queue JSON
String

If present and "true", this capability indicates that the queue may
be moved to another URI.

cdmi_copy_queue JSON
String

If present and "true", this capability indicates that the queue may
be copied to another URI.

cdmi_reference_queue JSON
String

If present and "true", this capability indicates that the queue may
be referenced from another queue.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 160

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

ISO/IEC 17826:2012(E)
• <fieldname> is the name of a field.

• <range> is a numeric range within the list of children.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

12.2.2 Capability

The following capability describes the supported operations that may be performed when reading an
existing capabilities object:

• All CDMI implementations shall permit clients to read all fields of all capabilities objects.

12.2.3 Request Headers

The HTTP request headers for reading a CDMI capabilities object using CDMI content type are shown in
Table 108.

12.2.4 Request Message Body

A request message body shall not be provided.

12.2.5 Response Headers

 The HTTP response headers for reading a CDMI capabilities object using CDMI content type are shown in
Table 109.

Table 108 - Request Headers - Read a Capabilities Object using CDMI Content Type

Header Type Description Requirement

Accept Header
String

"application/cdmi-capability" or a consistent value as per
clause 5.13.2

Optional

X-CDMI-
Specification-
Version

String
Array

A comma-separated list of versions supported by the client,
e.g., "1.0.2, 1.5, 2.0"

Mandatory

Table 109 - Response Headers - Read a Capabilities Object using CDMI Content Type

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, e.g., "1.0.2".

If the server does not support any of the versions supported
by the client, the server shall return a 400 Bad Request
status code.

Mandatory

Content-Type Header
String

"application/cdmi-capability" MandatoryIECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

161 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

88

89

90

91

92

93

94

95

ISO/IEC 17826:2012(E)
12.2.6 Response Message Body

The response message body fields for reading a CDMI capabilities object using CDMI content type are
shown in Table 110.

If individual fields are specified in the GET request, only these fields are returned in the result body.
Optional fields that are requested but do not exist are omitted from the result body.

12.2.7 Response Status

Table 111 describes the HTTP status codes that occur when reading a capabilities object using CDMI
content type.

Table 110 - Response Message Body - Read a Capabilities Object using CDMI Content Type

Field Name Type Description Requirement

objectType JSON
String

"application/cdmi-capability" Mandatory

objectID JSON
String

Object ID of the object Mandatory

objectName JSON
String

Name of the object Mandatory

parentURI JSON
String

URI for the parent object Mandatory

parentID JSON
String

Object ID of the parent container object Mandatory

capabilities JSON
Object

The capabilities supported by the corresponding object.
Capabilities in the "/cdmi_capabilities/" object are system-
wide capabilities. Capabilities found in children objects
under "/cdmi_capabilities/" correspond to the capabilities of
a specific subset of objects. Each capability is expressed as
a JSON string.

Mandatory

childrenrange JSON
String

The child capabilities of the capability expressed as a range.
If a range of child capabilities is requested, this field
indicates the children returned as a range.

Mandatory

children JSON
Array

Names of the children capabilities objects. For the root
container capabilities, this includes "domain/", "container/",
"dataobject/", and "queue/". Within each of these
capabilities objects, further more specialized capabilities
profiles may be specified by the cloud storage system.

Mandatory

Table 111 - HTTP Status Codes - Read a Capabilities Object using CDMI Content Type

HTTP Status Description

200 OK The capabilities object content was returned in the reponse.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

406 Not Acceptable The server is unable to provide the object in the content type specified in
the Accept header.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 162

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

ISO/IEC 17826:2012(E)
12.2.8 Examples

EXAMPLE 1 GET to the root container capabilities URI to read all fields of the container:

GET /cdmi_capabilities/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-capability
X-CDMI-Specification-Version: 1.0.2

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-capability
X-CDMI-Specification-Version: 1.0.2

{
 "objectType" : "application/cdmi-capability",
 "objectID" : "00007E7F00104BE66AB53A9572F9F51E",
 "objectName" : "cdmi_capabilities/",
 "parentURI" : "/",
 "parentID" : "00007E7F0010128E42D87EE34F5A6560",
 "capabilities" : {
 "cdmi_domains" : "true",
 "cdmi_export_nfs" : "true",
 "cdmi_export_iscsi" : "true",
 "cdmi_queues" : "true",
 "cdmi_notification" : "true",
 "cdmi_query" : "true",
 "cdmi_metadata_maxsize" : "4096",
 "cdmi_metadata_maxitems" : "1024"
 },
 "childrenrange" : "0-3",
 "children" : [
 "domain/",
 "container/",
 "dataobject/",
 "queue/"
]
}

EXAMPLE 2 GET to the root container capabilities URI to read the capabilities and children of the container:

GET /cdmi_capabilities/?capabilities;children HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-capability
X-CDMI-Specification-Version: 1.0.2

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-capability
X-CDMI-Specification-Version: 1.0.2

{
 "capabilities" : {
 "cdmi_domains" : "true",
 "cdmi_export_nfs" : "true",
 "cdmi_export_iscsi" : "true",
 "cdmi_queues" : "true",
 "cdmi_notification" : "true",
 "cdmi_query" : "true",
 "cdmi_metadata_maxsize" : "4096",
 "cdmi_metadata_maxitems" : "1024"
 },
 "children" : [
 "domain/",
 "container/",
 "dataobject/",

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

163 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

ISO/IEC 17826:2012(E)
 "queue/"
]
}

EXAMPLE 3 GET to the root container capabilities URI to read the first two children of the container:

GET /cdmi_capabilities/?childrenrange;children:0-1 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-capability
X-CDMI-Specification-Version: 1.0.2

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-capability
X-CDMI-Specification-Version: 1.0.2

{
 "childrenrange" : "0-1",
 "children" : [
 "domain/",
 "container/"
]
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 164

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

1

2

3

4

5

6

7

8

9

10
13 Exported Protocols

13.1 Overview

CDMI™ containers are accessible not only via CDMI as a data path, but also via other protocols as well.
This access is especially useful for using CDMI as the storage interface for a cloud computing
environment, as Figure 8 shows.

The exported protocols from CDMI containers may be used by the virtual machines in the cloud computing
environment as virtual disks on each guest as shown. The cloud computing infrastructure management is
shown as implementing both an Open Cloud Computer Interface (OCCI) and CDMI interfaces. With the
internal knowledge of the network and the virtual machine manager's mapping of drives, this infrastructure
may associate the CDMI containers to the guests using the appropriate exported protocol.

Figure 8 - CDMI and OCCI in an Integrated Cloud Computing Environment

VM VM VM

Data Storage Resources

Compute Resources

iSCSI NFS

OCCI
API

CDMI
API

iSCSI NFS WebDAV

NFS NFS

Client

iSCSI
Web
DAV

Virtual
Machine
Manager

 CDMI
Exported
Protocols

Cloud Computing
and Storage
Infrastructure

CDMI

OCCI

 Private, Hidden Storage Network for the Cloud

Container Container Container Container Container

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 165

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58
To support exported protocols and improve their interoperability with CDMI, CDMI provides a type of
exported protocol that contains information obtained via the OCCI interface. In addition, OCCI provides a
type of storage that corresponds to a CDMI container that is exported with a specific type of protocol used
by OCCI. A client of both interfaces performs operations that align the architectures, including the
following:

• The client creates a CDMI container through the CDMI interface and exports it as an OCCI export
protocol type. The CDMI container objectID is returned as a result.

• The client creates a virtual machine through the OCCI interface and attaches a storage volume of
type CDMI using the objectID and protocol type. The OCCI virtual machine ID is returned as a
result.

• The client updates the export protocol structure of the CDMI container object with the OCCI virtual
machine ID to allow the virtual machine access to the container.

• The client starts the virtual machine through the OCCI interface.

13.2 Exported Protocol Structure

The export of a container, via data path protocols other than CDMI, is accomplished by creating or
updating a container and supplying one or more export protocol structures, one for each such protocol. In
this international standard, all such protocols are referred to as foreign protocols. The implementation of
foreign protocols shall be indicated by "true" values for system-wide capabilities in 12.1.1 that shall always
begin with "cdmi_export_".

The elements of the export protocol structure include

• the protocol being used;

• the identity of the container as standardized by the protocol;

• the internet domain of the protocol name server for the clients being served;

• the list of who may mount that container via that protocol, identified as standardized by that
protocol or optionally by leveraging the name mapping protocol (see 13.2.1) and specifying CDMI
user or groupnames;

• required export parameters for the protocol;

• optional export parameters for the protocol; and

• export control parameters.

This international standard defines JSON export structures for several well-known foreign protocols. All
depend on the following user and groupname mapping feature in the case that multi-protocol access to the
container is desired. However, name mapping is not required if CDMI is used only to provision containers
to be used exclusively by foreign protocols.

Implementations that support authenticated and authorized access to CDMI objects via both CDMI and
foreign protocols need a way to support the setting of security on a per-object basis. The numerous
methods of doing this include:

• Defining or adopting a security scheme and mapping all requests into that scheme. CDMI
implementations that adopt this scheme shall use a name mapping technique to accomplish it, as
(a) this mapping is easier for administrators to manage than straight id-to-id mapping, and (b) it is
desired that interoperable CDMI implementations behave similarly in this respect. This means that
the name of the principal in an incoming request is mapped to the name of a principal in the
security domain, and that principal’s id is acquired and used in the authorization procedure.

• Allowing each protocol to set its own security, which implies that an object might be accessible to a
given user via one protocol but not another.

• Using the security scheme of the last protocol that was used to set permissions on the object. This
method also requires mapping the principal in the incoming request to a principal in the security
domain of the object. As in the first case, the server shall use a name mapping procedure to obtain
the id that is used to authorize the user against the desired object’s ACL.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

166 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106
CDMI does not mandate which method shall be used. It does, however, specify how users and groups
shall be mapped between protocols.

13.2.1 Mapping Names from CDMI to Another Protocol

Clients wishing to restrict exports via foreign protocols to mounting only by certain users and groups may
be required to provide user and groupname mapping information to the server. This mapping information is
also required if access to the container is desired by multiple protocols, e.g., both CDMI and NFS. The
mapping is done as follows.

1 When a network share on a CDMI container is created, the server should use the appropriate
mechanism, e.g., Powershell WmiClass.Create() on the Windows platform or /etc/exports on Unix,
to limit permitted mounts of the share from other servers, as specified in the "hosts" line of the
"exports" property. The syntax of the hosts line follows the syntax of /etc/exports in the Linux
operating system, as encoded in a JSON string. If the CDMI server is unable to limit mounts as
specified by the hosts line, an error shall result, but the success or failure of the operation depends
on the implementation.

2 When any request requiring the use of a CDMI principal name comes in via a foreign protocol, the
foreign domain controller to which the foreign server belongs shall be queried for the principal name
corresponding to the user id given in the request. Failure to procure the principal name shall cause
the original request to fail.

3 The usermap list for that protocol shall be searched, in order, for an entry matching the username
gotten from the foreign domain controller (see 13.2.3 for details on the search). If no match is found,
the request shall be denied. The search results may be kept in the same cache entry as the
information from the preceding step

4 The CDMI principal name gotten from the first matching usermap entry during this search is then
used to authorize the user request via the security mechanism of the protocol whose security
governs access to the object.

13.2.1.1 Capabilities

The following capabilities describe the supported operations that can be performed on an existing
container:

• The system-wide capability to export via a given protocol is indicated by the
cdmi_<protocol>_export capability in the system-level metadata (e.g., "cdmi_nfs_export", when
set to "true", indicates the ability of the system to export containers via NFS). If false or not set,
attempts to export containers via the given protocol shall fail.

• Support for the ability to export an existing container object via a given foreign protocol is indicated
by the cdmi_<protocol>_export capability in the specified container. The default shall be "true" if
this capability is unset.

13.2.1.2 Domains

The internet domain name corresponding to each export shall be given as a JSON-formatted string in the
"domain" child element of the protocol export specification. If this element is not present, it shall be
assumed that the domain is the same as that of the server hosting the CDMI implementation.

13.2.1.3 Caching

The lookup to a foreign domain controller can be quite expensive, especially for stateless protocols such
as NFS v3, in which it can be theoretically required for nearly every operation. It shall be permissible to
cache the results of this lookup. The recommended lifetime of a username cache entry is 30 minutes.
Implementations should use this value or less when possible. Servers shall flush this cache whenever a
change is made to the exports metadata concerning the protocol being cached. A client may request that
the cache be flushed by reading in the usermap data for one or more protocols and writing them back
without change. Servers shall flush their username mapping caches, as part of the rewrite operation, for
any protocol for which the usermap information has been changed or reset.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 167

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163
For authorization by group to operate via a foreign protocol, a similar mapping exercise must be
performed. Multiple lookups to the foreign domain controller may be required to get all the groupnames for
a given user (e.g., it is common for an NFS user to be a member of a half-dozen groups). A groupname
cache may be used to mitigate the cost of these lookups. The recommended lifetime of a groupname
cache entry is one-half day. Implementations should use this value or less when possible. Clients may
force a flush of the cache by reading in and resetting the group map information. Servers shall immediately
flush their groupname mapping cache, as part of the rewrite operation, for any protocol for which the group
map information has been changed or reset.

13.2.1.4 Groups

Groupname mapping for each foreign protocol shall be specified in a groupname field of the foreign
protocol export specification. Its syntax is identical to the syntax for the username field.

Note: The mapping information is only required on the container being exported.

13.2.1.5 Synopsis

PUT /MyContainer HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0

{
 "exports" : {
 "nfs" : {

 "hosts" : { "*.mycollege.edu", "derf.cs.myuni.edu" },
 "domain" : "lab.mycollege.edu",
 "usermap" : {
 { <cdminame>, <map>, <nfsname> },
 { "jimsmith", "<-->", "jims" },
 { [ordered list of CDMIname/operator/NFSname triples] },
 { "*", "<-->", "*" }
 }
 "groupmap" : {
 { "admins", "<-", "wheel" },
 { "everyone", "<-", "*" }
 }
 }
 "cifs" : {
 "hosts" : "*",
 "domain" : "lab.mycollege.edu",
 "usermap" : {
 { "jimsmith", "<-->", "james.smith" }
 { [ordered list of CDMIname/operator/NFSname triples] },
 { "*", "<-->", "*" }
 }
 "groupmap" : {
 { "admins", "<-", "Administrators" },
 { "everyone", "<-", "*" }
 }
 }
 }
}

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0

{
 "objectURI" : "/Containers/MyContainer/",
 "objectID" : "00007E7F00100C435125A61B4C289455",
 "objectName" : "MyContainer/",

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

168 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210
 "parentURI" : "/Containers/",
 "parentID" : "00007E7F0010D538DEEE8E38399E2815",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/container/",
 "completionStatus" : "complete",
 "metadata" : { ... },
 "exports" : { <exports as listed in request> }
}

13.2.2 Administrative Users

By default, the following users shall be considered "root", or administrative users, and equivalent to each
other:

• root (Unix/NFS/LDAP),

• Administrator (Windows/AD/CIFS), and

• the domain owner (CDMI).

Servers shall automatically map these users to the root user of the target protocol unless otherwise
instructed by the usermaps.

As an automatic mapping does not meet strict security standards, servers shall override these built-in
entries with any usermap entries that apply to one or more root users.

EXAMPLE In the following example, root gets mapped to nobody, and everyone else is mapped to a
user of the same name in the NFS domain as they have in the CDMI domain.

PUT /MyContainer HTTP/1.1
Host: cloud.example.com
Accept: application/vnd.org.snia.cdmi.container+json
Content-Type: application/vnd.org.snia.cdmi.container+json
X-CDMI-Specification-Version: 1.0

{
 "exports" : {
 "nfs" : {

 "usermap" : {
 { "nobody", "<-", "root" },
 { "*", "<-->", "*" }
 }
 }
 }
}

Permissions Mapping

The permissions sets of file-serving protocols, unfortunately, do not map on a one-to-one basis to each
other. NFSv4 ACLs, Windows ACLs, POSIX ACLs, NFSv3 perms and object-based capabilities all are
capable of representing security conditions that the others are not, except NFSv3, which is the least
expressive. The primary area of concern is in representing the possibly rich set of permissions in a CDMI
ACL in a more restricted perms-based system, such as NFSv3, for display to users.

As there are a number of possible ways to coordinate the permissions/ACLs and CDMI ACLs, this
international standard does not mandate a particular method. However, all mappings of user and
groupnames between domains shall use the name mapping mechanism specified in 13.2.3.

13.2.3 User and Groupname Mapping Syntax and Evaluation Rules

A BNF-style grammar for name mapping is as follows:

name_mapping_list = protocol protocol mapping_list

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 169

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250
protocol = "cdmi" | "nfs" | "cifs" | "ldap"

mapping_list = name mapping_operator name

name = pattern | utf8_name | quoted_utf8_name

quoted_utf8_name = " utf8_name "

utf8_name = <any legal utf8 character sequence not including the characters ",',\,/,:,*,?>

pattern = <utf8_name> * | *

mapping_operator = "<--" | "<-->" | "-->"

To restate this in English, a mapping entry consists of two names separated by a directional indicator. As
most environments use the same usernames and groupnames across administrative domains, the most
common mapping is " * <--> * ", which maps any name to the same name in the foreign protocol domain,
and vice versa. It is highly recommended that this be both the default map and the last entry on all more
complex maps.

CDMI specifies pattern matching on names in the namemap, but only "prefix matching" is required. The
symbol " * " at the end of a character string shall match zero or more occurrences of any non-whitespace
character.

Evaluation of the name mapping list shall proceed in order; once a match is made, evaluation shall cease
and the result of the match shall be returned.

If evaluation falls off the end of the match list, the result is system dependent. However, it is recommended
that servers either deny access altogether or map the user in question to the equivalent of "anonymous" on
the destination protocol. It is also recommended that an entry be devoted to the special user
"EVERYONE@".

13.3 Discovering and Mounting Containers via Foreign Protocols

Clients need a way to discover exported containers that may be available for mounting. Discovering
containers is done via a GET operation to the "exports" member of a container.

Synopsis:

To read all exports for an existing container object, the following request shall be performed:

GET <root URI>/<ContainerName>/<TheContainerName>/?exports

To read selected exports for an existing container object, the following request shall be performed:

GET <root URI>/<ContainerName>/<TheContainerName>/
?exports:protocol=<protocol>,user=<user>,verbose="false"

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <TheContainerName> is the name specified for the topmost container for which exports are
available.

• <protocol> is the name of a protocol to which query results should be restricted. This parameter is
optional; if it is omitted, or a value of "all" is given, information about all protocols shall be returned,
subject to additional filtering.

• <user> is the login name of a CDMI user who wishes to mount the share. This parameter is
optional and defaults to the owner of the container. When non-empty, servers shall filter the

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

170 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299
returned export list to include only exports which may be mounted given the restrictions in the
protocol export structures.

• <verbose> is an optional parameter indicating a desire for maximum information about the
exports. When present, it shall have the values "true" or "false". The default is "false". When true,
the server should return additional information about the container, as contained in its "exports"
member. The amount of said information that is returned is implementation dependent, as server
implementors need to be able to balance the needs of their clients against various security
considerations.

13.4 NFS Exported Protocol

To export a container via NFS, the information required is exactly what the server implementation will use
to do the export. Normally this information is contained in the /etc/exports file on a server or the equivalent.
Administrators should be aware that lines may be automatically added to that file for each CDMI container
that is exported.

Required members of the protocol structure for NFS are

• "protocol". The protocol being requested. This shall be "NFSv3", "NFSv4", "NFSv4.1", or any
subsequent NFS version enshrined in a major IETF RFC. Version 2 of NFS is not supported by
CDMI.

• "exportpath". The pathname to which the export should be surfaced. This shall be a UTF8 string of
the form [<server>]:/<path>, where the <server> component is optional, (e.g., "eeserver:/lessons/
number1"). The <server> component of the path must be obtained from an administrator of the
service running the CDMI implementation.

• "exportdomain". The internet domain of the protocol name server for the clients being served. This
is normally the name of the LDAP domain for the organization, e.g., "iti.edu". A value of "." shall be
interpreted to be the DNS name of the domain occupied by the CDMI server.

• "mode". This shall be either "ro", "rw", "root" or "rpc_gsssec". This mode becomes the default
export mode. Hosts requiring different access shall be specified in the optional "rw_mode",
"ro_mode", and "root_mode" structure members. However, the "rpc_gsssec" mode overrides all
other modes, and all other mode members and their contents shall be ignored if it is specified.

• "control". Export control for the container. This shall be either "immediate", "off", "on", or <n> (a
number). Servers may set the value to "on" but clients shall not. A numeric value (<n>) indicates
that the export should be shut down in <n> seconds, possibly after a message has been sent to
clients mounting the export. If a client specifies a value for <n> but the server does not support
delayed shutdown of exports, then <n> shall be interpreted to mean "off".

Optional export parameters for NFS are

• "domain_servers". A list of server names or IP addresses that function as name servers for the
domain given in "domain". If given, this list shall override the names obtainable by the CDMI server
via other programmatic means.

• "mount_name". The name by which the client should surface the export. This replaces the last
name in the path string, (e.g., mounting "eeserver:/lessons/number1" with a mountname of "1"
over the directory /somepath/lessons/num1 should result in a /somepath/lessons/1 directory on
the client).

• "hosts". A list of hosts that can access the container in the mode given in "mode". The default shall
be "*"; other values restrict the possibilities.

• "root_hosts". A list of hosts that can access the container in superuser mode. The default shall be
an empty list.

• "rw_hosts". A list of hosts that can access the container in r/w mode. The default shall be an empty
list.

• "ro_hosts". A list of hosts that can access the container in r/o mode only. The default shall be an
empty list.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 171

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345
• "mount_type". One of the two strings "hard" or "soft". Clients hang when a server serving a hard
mount becomes unresponsive. Clients with soft mounts generate error messages. The default is
implementation dependent.

• "recurse". This shall be either "true" or "false". The default shall be "true". When true, "recurse"
indicates that mounts within the CDMI directory structure (presumably put there by other NFS
operations) shall be followed and the mounted directory exposed as though it were part of the
CDMI container actually being exported. This parameter is equivalent to the Linux "crossmnt"
parameter.

Other export parameters for NFS are not specified by the CDMI protocol but may be included in the export
structure. These include Linuxisms, such as "sync", "no_wdelay", "insecure_locks", and "no_acl", as well
as any other parameters used by a given server operating system. In all such cases, the parameter shall
be specified as a JSON tuple in which "true" and "false" are explicitly called out for binary flags, and a
JSON-formatted string or list is used for other parameters.

EXAMPLE

{ "exports"
{ "nfs"
{

...
{"no_wdelay", "true" },
{"refer", "otherserver://path/leaf"},
...

}
}

}

Export Control

Export control is accomplished with the use of a single member, named "control":

• The value "immediate" shall indicate to the server that the export shall be made successfully
before the PUT operation returns. Servers shall reset the value to "on" and place that in the reply.

• The value "off" shall indicate to the server that the export, if new, shall not be enabled, and if
existing, shall be shut down and all client connections forcibly broken.

• A numeric value <n> shall indicate that the server shall wait <n> seconds before forcibly shutting
down the export and breaking client connections. Whether the server sends a warning message to
clients, giving them a chance to exit from the connection gracefully, is recommended but
implementation dependent. Once the export has been shut down, the server shall also change the
value of "control" to "off" in the export structure.

Servers shall support wildcard matching on the " * " and " ? " characters in the hosts lists (this is standard
practice), so that **.cs.uscs.edu" matches all servers in the cs.ucsc.edu department.

Servers may support netgroup names in the various hosts lists. These, when supported, shall resolve to
ordinary lists of hostnames via queries to the domain nameserver.

Servers may also support IP address ranges in the various lists of hosts. These shall be IP addresses
augmented by the same wildcard matching as is used for ordinary host names (e.g., "192.168.1.*" exports
to all the machines on a default home NetGear network). Client-side developers should note that
"exporting to" only means making a container available for export. The client must still mount the exported
container before there is a connection with the server.

Users wishing to use optional and vendor-specific settings are responsible for determining from the CDMI
product vendor what settings are legal and their format. Servers shall return 400 (Bad Request) when an
export setting does not conform to an allowable setting on the server.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

172 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392
13.5 CIFS Exported Protocol

To export a container via CIFS, the information required is exactly what the server implementation will use
to do the export. Where this information is contained on a server is implementation dependent. The server
may add or delete lines automatically to and from that file for each CDMI container that is exported or
unexported.

Required members of the protocol structure for CIFS are

• "share_name". The name by which the share shall be discoverable via CIFS.

• "exportdomain". The domain of the protocol name server for the clients being served. This is
normally the name of the Active Directory LDAP domain for the organization, e.g. "iti.edu". A value
of "." shall be interpreted to be the domain occupied by the CDMI server.

• "mode". This shall be either "ro" or "rw".

• "control". Export control for the container. This shall be either "immediate", "off", or <n> (a
number). Servers may set the value to "on", but clients shall not. The semantics and normative
requirements are exactly the same as for NFS, as documented in the paragraph "Export Control"
in the subclause on NFS Exports (see 13.4).

There is no "protocol" specification; CDMI assumes that normal SMB protocol negotiation will take place.

Optional export parameters are "comment," which is often used as a user-friendly share name on the
client.

Other export parameters for CIFS are not specified by the CDMI protocol, but may be included in the
export structure. These include vendor settings such as "forcegroup", "umask", "caching", and "oplocks",
as well as any other parameters used by a given server operating system. In all such cases, the
parameter shall be specified as a JSON tuple in which "true" and "false" are explicitly called out for binary
flags, and a JSON-formatted string or list is used for other parameters.

EXAMPLE

{ "exports"
{ "cifs"
{

...
{"caching", { "manual", "document", "program" },
{"oplocks", "true"},
...

}
}

}

Users wishing to manipulate vendor-specific settings are responsible for determining from the CDMI
product vendor what settings are legal and their format. Servers shall return 400 (Bad Request) when an
export setting does not conform to an allowable setting on the server.

For more detail on the use of the OCCI export protocol structure attributes, see 13.1 "Overview". Because
the actual networking and access control is under the control of a hidden, common infrastructure
implementing both OCCI and CDMI, the normal permission structure shall not be provided.

13.6 OCCI Exported Protocol

CDMI defines an export protocol structure for the OGF standard: Open Cloud Computing Interface (OCCI)
as follows:

• Protocol is "OCCI/<protocol standard>" (e.g., OCCI/NFSv4).

• The identifier is the CDMI objectID.

• A JSON array of URIs to OCCI compute resources shall have access (permissions) to the
exported container.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 173

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441
EXAMPLE An example of an OCCI export protocol structure in JSON is as follows:

"OCCI/iSCSI": {
 "identifier": "00007E7F00104BE66AB53A9572F9F51E",
 "permissions": [
 "http://example.com/compute/0/",
 "http://example.com/compute/1/"
]
 }

For more detail on using the OCCI export protocol structure attributes, see 13.1 "Overview". Because the
actual networking and access control is under the control of a hidden, common infrastructure that
implements both OCCI and CDMI, the normal permission structure shall not be provided.

13.7 iSCSI Export Modifications

CDMI defines the export of a container using the iSCSI protocol (see RFC 3720). Each container is
exported as a single SCSI Logical Unit at a Logical Unit Number (LUN). One or more iSCSI initiators
import the LUN through an iSCSI target node and port using one or more iSCSI network portals (IP
addresses).

The export is described by the presence of an export field structure on the container that specifies the

• export protocol ("Network/iSCSI");

• iSCSI target information (IP addresses or fully qualified domain names, target identifier, and LUN);

• logical unit world-wide name; and

• iSCSI initiators having access.

The target identifier may be in iqn, naa, or eui format and shall have the target portal group tag appended
in hexadecimal.

13.7.1 Read Container

All of the information in the export structure is returned:

"exports" :
{
 "Network/iSCSI": {
 "portals": [
 "192.168.1.101",
 "192.168.1.102"
],
 "target_identifier": "iqn.2010-

01.com.cloudprovider:acmeroot.container1,t,0x0001",
 "logical_unit_number": "3",
 "logical_unit_name": "0x60012340000000000000000000000001",
 "permissions": [
 "iqn.2010-01.com.acme:host1",
 "iqn.2010-01.com.acme:host2"
]
 }
}

13.7.2 Create and Update Containers

The following code creates a container with iSCSI export or updates an existing container with new iSCSI
export. Support for either of these operations is indicated by the cdmi_export_iscsi capability on the parent
container of the created container or of the existing container, respectively.

"exports" :
{
 "Network/iSCSI": {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

174 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479
 "permissions": [
 "iqn.2010-01.com.acme:host1",
 "iqn.2010-01.com.acme:host2"
]
 }
}

For these export creation operations, the CDMI implementation selects the IP portals, iSCSI target, logical
unit number and logical unit name; these are not supplied. Only the list of initiator identifiers that are to
have access to the container are specified.

13.7.3 Modify an Export

The following code modifies an export on an existing container. Support for this operation is indicated by
the cdmi_export_iscsi on the parent container of the existing container. For this operation, only the current
list of initiator identifiers that are to have access to the container are specified.

"exports" :
{
 "Network/iSCSI": {
 "permissions": [
 "iqn.2010-01.com.acme:host2"
]
 }
}

13.8 WebDAV Exported Protocol

CDMI defines an export protocol structure for the WebDAV standard as follows (see RFC 4918):

• Protocol is "Network/WebDAV".

• The path of the WebDAV mount point as is presented to clients (including server host name).

• The list of who may access the share is determined by the standard CDMI ACLs for each resource
as exported via WebDAV.

EXAMPLE The following example shows a WebDAV export protocol structure in JSON:

"Network/WebDAV" :
{
 "identifier": "/users",
 "permissions": "domain"
}

In this example, the value "domain" in the permissions field indicates that user credentials should be
mapped through the domain membership in the domain of the CDMI container being exported.

WebDAV supports locking, but it is up to implementations to support any locking of access through CDMI
as a result, and the interaction between the two protocols is purposely not described in this international
standard. IE

CNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 175

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

©ISO/IEC 2012 – All rights reserved 176

14 Snapshots

A snapshot is a point-in-time copy (image) of a container and all of its contents, including subcontainers
and all data objects and queue objects. The client names a snapshot of a container at the time the
snapshot is requested. A snapshot operation creates a new container to contain the point-in-time image.
The first processing of a snapshot operation also adds a cdmi_snapshots child container to the Source
Container. Each new snapshot container is added as a child of the cdmi_snapshots container. The
snapshot does not include the cdmi_snapshots child container or its contents (see Figure 9).

A snapshot operation is requested using the container update operation (see 9.5), in which the snapshot
field specifies the requested name of the snapshot.

A snapshot may be accessed in the same way that any other CDMI™ object is accessed. An important
use of a snapshot is to allow the contents of the Source Container to be restored to their values at a
previous point in time using a CDMI copy operation.

Figure 9 - Snapshot Container Structure

Source Container

cdmi_snapshots

Snap_Shot_A

Snap_Shot_B...

PUT(Container Update) A

PUT(Container Update) B

https://example.com/
source/

https://example.com/source/
cdmi_snapshots/

https://example.com/source/cdmi_snapshots/
Snap_Shot_A/

https://example.com/source/cdmi_snapshots/
Snap_Shot_B/

1

2

3

4

5

6

7

8

9

10

11

12

ISO/IEC 17826:2012(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
15 Serialization/Deserialization

15.1 Overview

Occasionally, bulk data movement is needed between, into, or out of clouds. Cloud serialization operations
provide a means to normalize data to a canonical, self-describing format, which includes:

• data migration between clouds,

• data migration during upgrades (or replacements) of cloud implementations, and

• robust backup.

The canonical format of serialized data describes how the data is to be represented in a byte stream. As
long as this byte stream is not altered during the transfer from source to destination, the data may be
reconstituted on the destination system.

15.2 Exporting Serialized Data

A canonical encoding of the data is obtained by creating a new data object and specifying that the source
for the creation is to serialize a given CDMI™ data object, container, or queue. On a successful
serialization, the result shall be a data object that is created with the serialized data as its value. If a
container has an exported block protocol, the serialized data may contain the block-by-block contents of
that container along with its metadata.

The resulting data object that is produced is the canonical representation of the selected data object,
container and children, or queue.

• If the source specified is a data object, the canonical format shall contain all data object fields,
including the value, valuetransferencoding, and metadata fields.

• If the source being specified is a queue, the canonical format shall contain all queue fields,
including the value and valuetransferencoding fields of enqueued items, along with the metadata
of the queue itself.

• If the source being specified is a container, the canonical format shall contain all container fields,
recursively, including all children of the container. If a user attempts to serialize a container that
includes children that the user, who is performing the serialization operation, does not have
permission to read, these objects shall not be included in the resulting serialized object.

When performing a serialization operation, objects shall only be included if the principal initiating the
serialization has sufficient permissions to read those objects.

15.3 Importing Serialized Data

Canonical data may be deserialized back into the cloud by creating a new data object, container object, or
queue object and by specifying that the source for the creation is to deserialize a given CDMI data object
or by specifying the serialized data in base 64 encoding in the deserializevalue field.

The destination may or may not exist previously. If not, a create operation is performed. If a container
already exists, an update operation with serialized children shall update the container and all children. If
the serialized container object does not contain children, only the container object is updated. Data objects
are recreated as specified in the canonical format, including all metadata and the data object ID.

• If the user who is deserializing a serialized data object has the "cross_domain" privilege and has
not specified a domainURI as part of the deserialize operation, the original domainURIs from the
serialized object shall be used. If any of the specified domainURIs are not valid in the context of
the storage system on which the deserialization operation is being performed, the entire
deserialize operation shall fail.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 177

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95
• If the user who is deserializing a serialized object specifies a domainURI as part of the deserialize
operation, the domainURI of every object being deserialized shall be set to the specified
domainURI. To specify a domainURI other than the domainURI of the parent, the user shall have
the cross_domain privilege. If the user does not have the cross_domain privilege and specifies a
domainURI other than the domainURI of the parent, a 400 Bad Request response shall be
returned.

• If the user who is deserializing a serialized object does not specify a domainURI and does not
have the "cross_domain" privilege, then the deserialization operation shall only be successful if all
objects have the same domainURI as the parent object on which the deserialization operation is
being performed.

Deserialization operations shall restore all metadata from the specified source. If the original provider of
the serialized data-supported vendor extensions is through custom metadata keys and values, then these
customized requirements shall be restored when deserialized. However, the custom metadata keys and
values may be treated as user metadata (preserved, but not interpreted) by the destination provider.
Preservation allows custom data requirements to move between clouds without losing this information.

15.3.1 Canonical Format

The canonical format shall represent specified data objects and containers, as they exist within the storage
system. Each object shall be represented by the metadata for the object, identifiers, and the data stream
contents of the data object. Because metadata is inherited from enclosing containers, all parent metadata
shall be represented in the canonical format (essentially flattening the hierarchy). To preserve the actual
metadata values that apply to the data object that is being serialized, the non-overridden metadata is
included from both the immediate parent container of the specified object and from the parent of each
higher-level container.

The canonical format shall have the following characteristics:

• recursive JSON for the data object, consistent with the rest of CDMI;

• user and data system metadata for each data object/container;

• data stream contents for each data object and queue;

• binary data represented using escaped JSON strings; and

• typing of data values consistent with CDMI JSON representations.

15.3.2 Example JSON Canonical Serialized Format

EXAMPLE In this example, a data object and a queue in a container have been selected for serialization:

{
 "objectType": "application/cdmi-container",
 "objectID": "00007E7F00102E230ED82694DAA975D2",
 "objectName": "MyContainer/",
 "parentURI": "/",
 "parentID": "00007E7F0010128E42D87EE34F5A6560",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/container/",
 "completionStatus": "Complete",
 "metadata": {},
"exports" : {
 "OCCI/iSCSI": {
 "identifier": "00007E7F00104BE66AB53A9572F9F51E",
 "permissions": [
 "http://example.com/compute/0/",
 "http://example.com/compute/1/"
]
 }, "Network/NFSv4" : {
 "identifier" : "/users",
 "permissions" : "domain"
 }
 },

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

178 ©ISO/IEC 2012 – All rights reserved

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

ISO/IEC 17826:2012(E)

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147
"childrenrange" : "0-1",
 "children" : [
 {
 "objectType" : "application/cdmi-object",
 "objectID" : "0000706D0010B84FAD185C425D8B537E",
 "objectName" : "MyDataObject.txt",
 "parentURI" : "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {

 },
 "valuerange" : "0-36",
 "valuetransferencoding": "utf-8",
 "value" : "This is the Value of this Data Object"
 },
{
 "objectType" : "application/cdmi-queue",
 "objectID" : "00007E7F00104BE66AB53A9572F9F51E",
 "objectName" : "MyQueue",
 "parentURI" : "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/queue/",
 "completionStatus" : "Complete",
 "metadata" : {

 },

 "queueValues" : "0-1",
 "mimetype": [
 "text/plain",
 "text/plain"
],
 "valuetransferencoding": [
 "utf-8",
 "utf-8"
],"valuerange" : [
 "0-2",
 "0-3"
],
 "value" : [
 "red",
 "blue"
]
 }
]
}

To allow efficient deserialization in stream mode when serializing containers to JSON, the children array
should be the last item in the canonical serialized JSON format.IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 17

82
6:2

01
2

©ISO/IEC 2012 – All rights reserved 179

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

ISO/IEC 17826:2012(E)
16 Metadata

16.1 Access Control

Access control comprises the mechanisms by which various types of access to objects and containers are
authorized and permitted or denied. CDMI™ uses the well-known mechanism of an Access Control List
(ACL) as defined in the NFSv4 standard (see RFC 3530). ACLs are lists of permissions-granting or
permissions-denying entries called access control entries (ACEs).

16.1.1 ACL and ACE Structure

An ACL is an ordered list of ACEs. The two types of ACEs in CDMI are ALLOW and DENY. An ALLOW
ACE grants some form of access to a principal. Principals are either users or groups and are represented
by identifiers. A DENY ACE denies access of some kind to a principal. For instance, a DENY ACE may
deny the ability to write the metadata or ACL of an object but may remain silent on other forms of access.
In that case, if another ACE ALLOWs write access to the object, the principal is allowed to write the
object's data, but nothing else.

ACEs are composed of four fields: type, who, flags, and access_mask, as per RFC 3530. The type, flags,
and access_mask shall be specified as either unsigned integers in hex string representation or as a
comma-delimited list of bit mask string form values taken from Table 112, Table 114, and Table 115.

16.1.2 ACE Types

Table 112 defines the following ACE types, following NFSv4.

Note: The reason that the string forms may be safely abbreviated is that they are local to the ACE
structure type, as opposed to constants, which are relatively global in scope.

The client is responsible for ordering the ACEs in an ACL. The server shall not enforce any ordering and
shall store and evaluate the ACEs in the order given by the client.

16.1.3 ACE Who

The special "who" identifiers need to be understood universally, rather than in the context of a particular
external security domain (see Table 113). Some of these identifiers may not be understood when a CDMI
client accesses the server, but they may have meaning when a local process accesses the file. The ability

Table 112 - ACE Types

String Form Description Constant Bit Mask

"ALLOW" Allow access rights for a principal CDMI_ACE_ACCESS_ALLOW 0x00000000

"DENY" Deny access rights for a principal CDMI_ACE_ACCESS_DENY 0x00000001

"AUDIT" Generate an audit record when the
principal attempts to exercise the specified
access rights

CDMI_ACE_SYSTEM_AUDIT 0x00000002

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

2

©ISO/IEC 2012 – All rights reserved 180

https://iecnorm.com/api/?name=ce29bc2eb6a4b261f331cd9f112b02f2

	1 Scope
	2 Normative References
	3 Terms
	4 Conventions
	4.1 Interface Format
	4.2 Typographical Conventions
	4.3 Request and Response Body Requirements
	4.4 Key Word Requirements

	5 Overview of Cloud Storage
	5.1 Introduction
	5.2 What is Cloud Storage?
	5.3 Data Storage as a Service
	5.4 Data Management for Cloud Storage
	5.5 Data and Container Management
	5.6 Reference Model for Cloud Storage Interfaces
	5.7 Cloud Data Management Interface
	5.8 Object Model for CDMI
	5.9 CDMI Metadata
	5.10 Object ID
	5.11 CDMI Object ID Format
	5.12 Security
	5.13 Required HTTP Support
	5.13.1 RFC 2616 Support Requirements
	5.13.2 Content-Type Negotiation
	5.13.3 Range Support
	5.13.4 URI Escaping
	5.13.5 Use of URIs
	5.13.6 Reserved Characters

	5.14 Time Representations
	5.15 Backwards Compatibility
	5.15.1 Value Transfer Encoding
	5.15.2 Container Export Capabilities

	6 Common Operations
	6.1 Overview
	6.2 Discover the Capabilities of a Cloud Storage Provider
	6.3 Create a New Container
	6.4 Create a Data Object in a Container
	6.5 List the Contents of a Container
	6.6 Read the Contents of a Data Object
	6.7 Read Only the Value of a Data Object
	6.8 Delete a Data Object

	7 Interface Standard
	7.1 HTTP Status Codes
	7.2 Object References

	8 Data Object Resource Operations
	8.1 Overview
	8.1.1 Data Object Metadata
	8.1.2 Data Object Consistency
	8.1.3 Data Object Representations

	8.2 Create a Data Object Using CDMI Content Type
	8.2.1 Synopsis
	8.2.2 Delayed Completion of Create
	8.2.3 Capabilities
	8.2.4 Request Headers
	8.2.5 Request Message Body
	8.2.6 Response Headers
	8.2.7 Response Message Body
	8.2.8 Response Status
	8.2.9 Examples

	8.3 Create a Data Object using a Non-CDMI Content Type
	8.3.1 Synopsis
	8.3.2 Capability
	8.3.3 Request Headers
	8.3.4 Request Message Body
	8.3.5 Response Headers
	8.3.6 Response Message Body
	8.3.7 Response Status
	8.3.8 Example

	8.4 Read a Data Object using CDMI Content Type
	8.4.1 Synopsis
	8.4.2 Capabilities
	8.4.3 Request Headers
	8.4.4 Request Message Body
	8.4.5 Response Headers
	8.4.6 Response Message Body
	8.4.7 Response Status
	8.4.8 Examples

	8.5 Read a Data Object using a Non-CDMI Content Type
	8.5.1 Synopsis
	8.5.2 Capabilities
	8.5.3 Request Header
	8.5.4 Request Message Body
	8.5.5 Response Headers
	8.5.6 Response Message Body
	8.5.7 Response Status
	8.5.8 Examples

	8.6 Update a Data Object using CDMI Content Type
	8.6.1 Synopsis
	8.6.2 Capabilities
	8.6.3 Request Headers
	8.6.4 Request Message Body
	8.6.5 Response Header
	8.6.6 Response Message Body
	8.6.7 Response Status
	8.6.8 Examples

	8.7 Update a Data Object using a Non-CDMI Content Type
	8.7.1 Synopsis
	8.7.2 Capabilities
	8.7.3 Request Headers
	8.7.4 Request Message Body
	8.7.5 Response Header
	8.7.6 Response Message Body
	8.7.7 Response Status
	8.7.8 Examples

	8.8 Delete a Data Object using CDMI Content Type
	8.8.1 Synopsis
	8.8.2 Capability
	8.8.3 Request Header
	8.8.4 Request Message Body
	8.8.5 Response Headers
	8.8.6 Response Message Body
	8.8.7 Response Status
	8.8.8 Example

	8.9 Delete a Data Object using a Non-CDMI Content Type
	8.9.1 Synopsis
	8.9.2 Capability
	8.9.3 Request Headers
	8.9.4 Request Message Body
	8.9.5 Response Headers
	8.9.6 Response Message Body
	8.9.7 Response Status
	8.9.8 Example

	9 Container Object Resource Operations
	9.1 Overview
	9.1.1 Container Metadata
	9.1.2 Reserved Container Names
	9.1.3 Container Object Addressing
	9.1.4 Container Object Representations

	9.2 Create a Container Object using CDMI Content Type
	9.2.1 Synopsis
	9.2.2 Delayed Completion of Create
	9.2.3 Capabilities
	9.2.4 Request Headers
	9.2.5 Request Message Body
	9.2.6 Response Headers
	9.2.7 Response Message Body
	9.2.8 Response Status
	9.2.9 Example

	9.3 Create a Container Object using a Non-CDMI Content Type
	9.3.1 Synopsis
	9.3.2 Capability
	9.3.3 Request Headers
	9.3.4 Request Message Body
	9.3.5 Response Headers
	9.3.6 Response Message Body
	9.3.7 Response Status
	9.3.8 Example

	9.4 Read a Container Object using CDMI Content Type
	9.4.1 Synopsis
	9.4.2 Capabilities
	9.4.3 Request Headers
	9.4.4 Request Message Body
	9.4.5 Response Headers
	9.4.6 Response Message Body
	9.4.7 Response Status
	9.4.8 Examples

	9.5 Update a Container Object using CDMI Content Type
	9.5.1 Synopsis
	9.5.2 Delayed Completion of Snapshot
	9.5.3 Capabilities
	9.5.4 Request Headers
	9.5.5 Request Message Body
	9.5.6 Response Header
	9.5.7 Response Message Body
	9.5.8 Response Status
	9.5.9 Examples

	9.6 Delete a Container Object using CDMI Content Type
	9.6.1 Synopsis
	9.6.2 Capability
	9.6.3 Request Header
	9.6.4 Request Message Body
	9.6.5 Response Headers
	9.6.6 Response Message Body
	9.6.7 Response Status
	9.6.8 Example

	9.7 Delete a Container Object using a Non-CDMI Content Type
	9.7.1 Synopsis
	9.7.2 Capability
	9.7.3 Request Headers
	9.7.4 Request Message Body
	9.7.5 Response Headers
	9.7.6 Response Message Body
	9.7.7 Response Status
	9.7.8 Example

	9.8 Create (POST) a New Data Object using CDMI Content Type
	9.8.1 Synopsis
	9.8.2 Delayed Completion of Create
	9.8.3 Capabilities
	9.8.4 Request Headers
	9.8.5 Request Message Body
	9.8.6 Response Headers
	9.8.7 Response Message Body
	9.8.8 Response Status
	9.8.9 Examples

	9.9 Create (POST) a New Data Object using a Non-CDMI Content Type
	9.9.1 Synopsis
	9.9.2 Capability
	9.9.3 Request Header
	9.9.4 Request Message Body
	9.9.5 Response Header
	9.9.6 Response Message Body
	9.9.7 Response Status
	9.9.8 Examples

	9.10 Create (POST) a New Queue Object using CDMI Content Type
	9.10.1 Synopsis
	9.10.2 Delayed Completion of Create
	9.10.3 Capabilities
	9.10.4 Request Headers
	9.10.5 Request Message Body
	9.10.6 Response Headers
	9.10.7 Response Message Body
	9.10.8 Response Status
	9.10.9 Example

	10 Domain Object Resource Operations
	10.1 Overview
	10.1.1 Domain Object Metadata
	10.1.2 Domain Object Summaries
	10.1.3 Domain Object Membership
	10.1.4 Domain Usage in Access Control
	10.1.5 Domain Object Representations

	10.2 Create a Domain Object using CDMI Content Type
	10.2.1 Synopsis
	10.2.2 Capabilities
	10.2.3 Request Headers
	10.2.4 Request Message Body
	10.2.5 Response Headers
	10.2.6 Response Message Body
	10.2.7 Response Status
	10.2.8 Example

	10.3 Read a Domain Object using CDMI Content Type
	10.3.1 Synopsis
	10.3.2 Capabilities
	10.3.3 Request Headers
	10.3.4 Request Message Body
	10.3.5 Response Headers
	10.3.6 Response Message Body
	10.3.7 Response Status
	10.3.8 Examples

	10.4 Update a Domain Object using CDMI Content Type
	10.4.1 Synopsis
	10.4.2 Capability
	10.4.3 Request Headers
	10.4.4 Request Message Body
	10.4.5 Response Header
	10.4.6 Response Message Body
	10.4.7 Response Status
	10.4.8 Example

	10.5 Delete a Domain Object using CDMI Content Type
	10.5.1 Synopsis
	10.5.2 Capability
	10.5.3 Request Headers
	10.5.4 Request Message Body
	10.5.5 Response Headers
	10.5.6 Response Message Body
	10.5.7 Response Status
	10.5.8 Example

	11 Queue Object Resource Operations
	11.1 Overview
	11.1.1 Queue Object Metadata
	11.1.2 Queue Object Addressing
	11.1.3 Queue Object Representations

	11.2 Create a Queue Object using CDMI Content Type
	11.2.1 Synopsis
	11.2.2 Delayed Completion of Create:
	11.2.3 Capabilities
	11.2.4 Request Headers
	11.2.5 Request Message Body
	11.2.6 Response Headers
	11.2.7 Response Message Body
	11.2.8 Response Status
	11.2.9 Example

	11.3 Read a Queue Object using CDMI Content Type
	11.3.1 Synopsis
	11.3.2 Capabilities
	11.3.3 Request Headers
	11.3.4 Request Message Body
	11.3.5 Response Headers
	11.3.6 Response Message Body
	11.3.7 Response Status
	11.3.8 Examples

	11.4 Update a Queue Object using CDMI Content Type
	11.4.1 Synopsis
	11.4.2 Capability
	11.4.3 Request Headers
	11.4.4 Request Message Body
	11.4.5 Response Header
	11.4.6 Response Message Body
	11.4.7 Response Status
	11.4.8 Example

	11.5 Delete a Queue Object using CDMI Content Type
	11.5.1 Synopsis
	11.5.2 Capability
	11.5.3 Request Header
	11.5.4 Request Message Body
	11.5.5 Response Headers
	11.5.6 Response Message Body
	11.5.7 Response Status
	11.5.8 Example

	11.6 Enqueue a New Queue Value using CDMI Content Type
	11.6.1 Synopsis
	11.6.2 Capability
	11.6.3 Request Headers
	11.6.4 Request Message Body
	11.6.5 Response Headers
	11.6.6 Response Message Body
	11.6.7 Response Status
	11.6.8 Examples

	11.7 Delete a Queue Object Value using CDMI Content Type
	11.7.1 Synopsis
	11.7.2 Capability
	11.7.3 Request Header
	11.7.4 Request Message Body
	11.7.5 Response Headers
	11.7.6 Response Message Body
	11.7.7 Response Status
	11.7.8 Example

	12 Capability Object Resource Operations
	12.1 Overview
	12.1.1 Cloud Storage System-Wide Capabilities
	12.1.2 Storage System Metadata Capabilities
	12.1.3 Data System Metadata Capabilities
	12.1.4 Data Object Capabilities
	12.1.5 Container Capabilities
	12.1.6 Domain Object Capabilities
	12.1.7 Queue Object Capabilities
	12.1.8 Capability Object Representations

	12.2 Read a Capabilities Object using CDMI Content Type
	12.2.1 Synopsis
	12.2.2 Capability
	12.2.3 Request Headers
	12.2.4 Request Message Body
	12.2.5 Response Headers
	12.2.6 Response Message Body
	12.2.7 Response Status
	12.2.8 Examples

	13 Exported Protocols
	13.1 Overview
	13.2 Exported Protocol Structure
	13.2.1 Mapping Names from CDMI to Another Protocol
	13.2.1.1 Capabilities
	13.2.1.2 Domains
	13.2.1.3 Caching
	13.2.1.4 Groups
	13.2.1.5 Synopsis

	13.2.2 Administrative Users
	13.2.3 User and Groupname Mapping Syntax and Evaluation Rules

	13.3 Discovering and Mounting Containers via Foreign Protocols
	13.4 NFS Exported Protocol
	13.5 CIFS Exported Protocol
	13.6 OCCI Exported Protocol
	13.7 iSCSI Export Modifications
	13.7.1 Read Container
	13.7.2 Create and Update Containers
	13.7.3 Modify an Export

	13.8 WebDAV Exported Protocol

	14 Snapshots
	15 Serialization/Deserialization
	15.1 Overview
	15.2 Exporting Serialized Data
	15.3 Importing Serialized Data
	15.3.1 Canonical Format
	15.3.2 Example JSON Canonical Serialized Format

	16 Metadata
	16.1 Access Control
	16.1.1 ACL and ACE Structure
	16.1.2 ACE Types
	16.1.3 ACE Who
	16.1.4 ACE Flags
	16.1.5 ACE Mask Bits
	16.1.6 ACL Evaluation
	16.1.7 Example ACE Mask Expressions
	16.1.8 Canonical Format for ACE Hexadecimal Quantities
	16.1.9 JSON Format for ACLs

	16.2 Support for User Metadata
	16.3 Support for Storage System Metadata
	16.4 Support for Data System Metadata
	16.5 Support for Provided Data System Metadata

	17 Retention and Hold Management
	17.1 Introduction
	17.2 Retention Management Disciplines
	17.3 CDMI Retention
	17.4 CDMI Hold
	17.5 CDMI Auto-deletion
	17.6 Retention Security Considerations

	18 Scope Specification
	18.1 Introduction
	18.2 Examples
	18.3 Query Matching Expressions

	19 Results Specification
	19.1 Introduction
	19.2 Examples

	20 Logging
	20.1 Overview
	20.2 Object Logging
	20.3 Security Logging
	20.4 Data Management Logging
	20.5 Logging Queues
	20.6 Logging Security Considerations

	21 Notification Queues
	22 Query Queues
	22.1 Overview
	22.2 Extending CDMI Query

	Annex A (normative) Transport Security
	A.1 Introduction
	A.2 General Requirements for HTTP Implementations
	A.3 Basic HTTP Security
	A.4 HTTP over TLS (HTTPS)
	A.5 Transport Layer Security (TLS)
	A.5.1 Cipher Suites
	A.5.2 Digital Certificates

	Annex B (informative) Bibliography
	Blank Page
	Blank Page

