
INTERNATIONAL
STANDARD

ISO/IEC
13211-1

First edition
1995-06-01

Information technology - Programming
languages - Prolog -

Part 1:
General core

Technologies de I’informa tion - Langages de programmation -
Prolog -

Partie 1: Noyau g&Gral

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

Contents Page

. . .
Foreword . ~111

Introduction . ix

1 Scope .. 1
1.1 Notes .. 1

2 Normative references . 1

3 Definitions . 2

4 Symbols and abbreviations 10
4.1 Notation .. 10

4.1.1 Basic mathematical types 10
4.1.2 Mathematical and set Operators 10
4.1.3 Other functions 10

4.2 Abstract data type: Stack 11
4.3 Abstract data type: mapping 11

5 Compliance ... 11
5.1 Prolog processor 11
5.2 Prolog text 12
5.3 Prolog goal 12
5.4 Documentation. 12
5.5 Extensions 12

5.5.1 Syntax 12
5.5.2 Predefined Operators 12
5.5.3 Character-conversion mapping 12
5.5.4 Types. 12
5.5.5 Directives 13
5.5.6 Side effects 13
5.5.7 Control constructs 13
5.5.8 Flags 13
5.5.9 Built-in predicates 13

@ ISO/IEC 1995
All rights reserved. Unless otherwise specified, no part of this publication may be
reproduced or utilized in any form or by any means, electronie or mechanical, including
photocopying and microfilm, without Permission in writing from the publisher.

ISO/IEC Copyright Office l Case Postale 56 l CH-l 211 Geneve 20 l Switzerland
Printed in Switzerland

ii

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

5.510 Evaluable functors 13
55.11 Reserved atoms. 13

6 Syntax ... 13
6.1 Notation .. 13

6.1.1 Backus Naur Form 13
6.1.2 Abstract term Syntax 14

6.2 Prolog text and data. 15
6.2.1 Prolog text 15
6.2.2 Prolog data. 15

6.3 Terms .. 15
6.3.1 Atomic terms 16
6.3.2 Variables 16
6.3.3 Compound terms - functional notation 16
6.3.4 Compound terms - Operator notation 17
6.3.5 Compound terms - list notation 19
6.3.6 Compound terms - curly bracketed term 20
6.3.7 Terms - double quoted list notation 20

6.4 Tokens ... 20
6.4.1 Layout text. 21
6.4.2 Names 21
6.4.3 Variables 23
6.4.4 Integer numbers 23
6.4.5 Floating Point numbers 23
6.4.6 Double quoted lists 24
6.4.7 Back quoted strings 24
6.4.8 Other tokens 24

6.5 Processor Character set 24
6.5.1 Graphit characters 25
6.5.2 Alphanumeric characters 25
6.5.3 Solo characters 25
6.5.4 Layout characters 25
6.5.5 Meta characters 26

6.6 Collating sequence 26

7 Language concepts and semantics 26
7.1 Types .. 27

7.1.1 Variable 27
7.1.2 Integer 27
7.1.3 Floating Point 28
7.1.4 Atom 29
7.1.5 Compound term 29
7.1.6 Related terms 29

7.2 Term Order 30
7.2.1 Variable 31
7.2.2 Floating Point 31
7.2.3 Integer 31
7.2.4 Atom 31
7.2.5 Compound 31

7.3 Unification 31
7.3.1 The mathematical definition 31
7.3.2 Herbrand algorithm 31
7.3.3 Subject to occurs-check (STO) and not subject to occurs-

check (NSTO) 33
7.3.4 Normal unification in Prolog 33

7.4 Prolog text 33
7.4.1 Undefined features 34

. . .
111

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

7.4.2 Directives 34
7.4.3 Clauses 35

7.5 Database .. 36
7.5.1 Preparing a Prolog text for execution 36
7.5.2 Static and dynamic procedures 36
7.5.3 Private and public procedures 36
7.5.4 A logical database update 37

7.6 Converting a term to a clause, and a clause to a term 37
7.6.1 Converting a term to the head of a clause 37
7.6.2 Converting a term to the body of a clause. 37
7.6.3 Converting the head of a clause to a term 37
7.6.4 Converting the body of a clause to a term. 38

7.7 Executing a Prolog goal 38
7.7.1 Execution 38
7.7.2 Data types for the execution model- 38
7.7.3 Initialization 39
7.7.4 A goal succeeds 39
7.7.5 A goal fails 39
7.7.6 Re-executing a goal 39
7.7.7 Selecting a clause for execution 40
7.7.8 Backtracking 40
7.7.9 Side effects 40
7.7.10 Executing a user-defined procedure 40
7.7.11 Executing a user-defined procedure with no more clauses 42
7.7.12 Executing a built-in predicate 42

7.8 Control constructs 43
7.8.1 truel0. 43
7.8.2 fail/O 43
7.8.3 callll 44
7.8.4 !/O - tut 45
7.8.5 (‘,‘)/2 - conjunction 47
7.8.6 (;)/2 - disjunction 47
7.8.7 (->)/2 - if-then 49
7.8.8 (;)/2 - if-then-else 50
7.8.9 catch/3 51
7.8.10 throwfl 53

7.9 Evaluating an expression 54
7.9.1 Description 54
7.9.2 Errors 54

7.10 Input/output 54
7.10.1 Sources and sinks 54
7.10.2 Streams 55
7.10.3 Read-Options list 58
7.10.4 Write-Options list 58
7.10.5 Writing a term 59

7.11 Flags .. 60
7.11.1 Flags defining integer type 1 60
7.11.2 Other flags 61

7.12 Errors .. 61
7.12.1 The effect of an error 62
7.12.2 Error classification 62

8 Built-in predicates 63
8.1 The format of built-in predicate definitions 63

8.1.1 Description 63
S.l.2 Template and modes 64
8.1.3 Errors 64

iv

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

8.1.4 Examples 65
8.1.5 Bootstrapped built-in predicates . , , , , , . , , , . , , , , , , , 65

8.2 Term unification 65
8.2.1 (=)/2 - Prolog unify 65
8.2.2 unify_with_occurs_check/2 - unify . . , , , , , , , , , , , , , . . 66
8.2.3 (\=)/2 - not Prolog unifiable 67

8.3 Type testing 67
8.3.1 var/l 67
8.3.2 atom/l 68
8.3.3 integer/1 68
8.3.4 floatll 68
8.3.5 atomic/l 68
8.3.6 compound/l 69
8.3.7 nonvar/l 69
8.3.8 number/l 69

8.4 Term comparison 70
8.4.1 (@=<)/2 - term less than or equal, (==)/2 - term identical,

(\==)/2 - term not identical, (@<)/2 - term less than,
(@>)/2 - term greater than, (@>=)/2 - term greater than
or equal 70

8.5 Term creation and decomposition 71
8.5.1 functor/3 71
8.5.2 arg/3 72
8.5.3 (=..)/ 2 - univ 72
8.5.4 copy-term/2 73

8.6 Arithmetic evaluation 74
8.6.1 (is)/2 - evaluate expression 74

8.7 Arithmetic comparison 74
8.7.1 (=:=)/2 - arithmetic equal, (=\=)/2 - arithmetic not equal,

(<)/2 - arithmetic less than, (=<)/2 - arithmetic less
than or equal, (>)/2 - arithmetic greater than, (>=)/2 -
arithmetic greater than or equal 76

8.8 Clause retrieval and information 77
8.8.1 clause/2 77
8.8.2 current-predicate/l 78

8.9 Clause creation and destruction 78
8.9.1 asserta/l 78
8.9.2 assertz/l 79
8.9.3 retract/l 80
8.9.4 abolishll 81

8.10 All solutions 82
8.10.1 findall/ 82
8.10.2 bagof/3 83
8.10.3 setof/3 84

8.11 Stream selection and control 86
8.11.1 currenL.input/l 86
8.11.2 current-output/1 86
8.11.3 set-input/l 87
8.11.4 set-output/1 87
8.11.5 open/4, open/3 87
8.11.6 close/2, close/l 88
8.11.7 flush-output/l, flush-output/0 89
8.11.8 stream_property/2, at-end-ofstream/O, at-end-of-strearn/l . 89
8.11.9 set_stream_position/2 90

8.12 Character input/output 9 1
8.12.1 get_char/2, getcharll , get-Code/1 , get-Code/2 9 1
8.12.2 peek_char/2, peek-charll , peek-codell , peekcodel2 92

V

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

8.12.3 put-charl2, put-charll, put-codell, putcodel2, nl/O, nlll , 94
8.13 Byte inputloutput 95

8.13.1 get-bytel2, get-bytell 95
8.13.2 peek-bytel2, peek-bytell 96
8.13.3 put-bytel2, put-bytell 97

8.14 Term inputloutput 98
8.14.1 read_term/3, read_term/2, readll, readl2 98
8.14.2 write_term/3, write_term/2, writell, writel2, writeqll,

writeql2, writecanonicalll, write-canonicall2 99
8.14.3 op/3 101

8.14.4 current-op/3 102
8.14.5 char-conversionl2 103
8.14.6 currentcharconversionl2 103

8.15 Logic and control 104
8.15.1 (\+)/l - not provable 104
8.15.2 oncell 105
8.15.3 repeat/O 105

8.16 Atomic term processing 105
8.16.1 atomJengthl2 106
8.16.2 atomconcatl3 106
8.16.3 sub-atom/5 107
8.16.4 atomcharsl2 108
8.16.5 atomcodes 109
8.16.6 char-codel2 109
8.16.7 numbercharsl2 110
8.16.8 numbercodesl2 111

8.17 Implementation defined hooks 112
8.17.1 set-prologflagl2 112
8.17.2 current-prologflagl2 112
8.17.3 halt/0 113
8.17.4 halt/1 113

9 Evaluable functors 114
9.1 The simple arithmetic functors 114

9.1.1 Evaluable functors and operations 114
9.1.2 Exceptional values 114
9.1.3 Integer operations and axioms 114
9.1.4 Floating Point operations and axioms 115
9.1.5 Mixed mode operations and axioms 116
9.1.6 Type conversion operations 117
9.1.7 Examples 117

9.2 The format of other evaluable functor definitions 119
9.2.1 Description 119
9.2.2 Template and modes 119
9.2.3 Errors 119
9.2.4 Examples 119

9.3 Other arithmetic functors 119
9.3.1 (**)/2 - power 119
9.3.2 sin/1 120
9.3.3 cos/1 120
9.3.4 atanll 120
9.3.5 expll 121
9.3.6 log/1 121
9.3.7 sqrtll 122

9.4 Bitwise functors . , , , , , , , , , , , , , , . , , . , , , , , , , , , , , , , , . . 122
9.4.1 (>>)/2 - bitwise right shift 122
9.4.2 (<<)/2 - bitwise left shift 122

vi

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

9.4.3 (/\)/2 - bitwise and 123
9.4.4 (\/)/2 - bitwise or 123
9.4.5 (\)/l - bitwise complement 124

Annex

A Formal semantics 125
A.l

A.2

A.3

A.4

A.5

Introduction 125
A.l.l Specification language: Syntax 125
A.1.2 Specification language: semantics 126
A.1.3 Comments in the formal specification 126
A.1.4 About the style of the Formal Specification 127
A.l.5 References 127
An informal description 127
A.2.1 Search-tree for “pure” Prolog 128
A.2.2 Search tree for “pure” Prolog with tut 13 1
A.2.3 Search-tree for kerne1 Prolog 132
A.2.4 Database and database update view 134
A.2.5 Exception handling 135
A.2.6 Environments 135
A.2.7 The semantics of a Standard program 136
A.2.8 Getting acquainted with the formal specification 136
A.2.9 Built-in predicates 137
A.2.10 Relationships with the informal semantics of 7.7 and 7.8 138
Data structures 138
A.3.1 Abstract databases and terms 138
A.3.2 Predicate indicator 143
A.3.3 Forest 143
A.3.4 Abstract lists, atoms, characters and lists 146
A.3.5 Substitutions and unification 148
A.3.6 Arithmetic 149
A.3.7 Differente lists and environments 149
A.3.8 Built-in predicates and packets 150
A.3.9 Input and output 154
The Formal Semantics 155
A.4.1 The kerne1 155
Control constructs and built-in predicates 170
A.5.1 Control constructs 170
A.5.2 Term unification 171
A.5.3 Type testing 172
A.5.4 Term comparison 172
A.5.5 Term creation and decomposition 173
A.5.6 Arithmetic evaluation - (is)/2 174
A.5.7 Arithmetic comparison 174
A.5.8 Clause retrieval and information 174
A.5.9 Clause creation and destruction 175
A.5.10 All solutions 178
A.5.11 Stream selection and control 180
A.5.12 Character inputloutput 183
A.5.13 Byte inputloutput 189
A.5.14 Term inputloutput 192
A.5.15 Logic and control 194
A.5.16 Atomic term processing 195
A.5.17 Implementation defined hooks 198

vii

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized System for worldwide
standardization. National bodies that are members of ISO or IEC participate
in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields
of mutual interest. Other international organizations, governmental and non-
governmental, in liaison with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint
technical committee ISOIIEC JTC 1. Draft International Standards adopted
by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75% of
the national bodies casting a vote.

International Standard ISOIIEC 13211 was prepared by Joint Technical Committee
ISOIIEC JTC 1, Information technology, Subcommittee SC 22, Programming
languages, their environments and System software interfaces.

Annex A of this part of ISOIIEC 13211 is for information only.

. . .
VI11

@ ISO/IEC 1995

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

Introduction

This is the first International Standard for Prolog, Part 1 (General Core). It was
produced on 20 April 1995.

There is no other International Standard for Prolog.

Prolog (Programming in Logic) combines the concepts of logical and algorithmic
programming, and is recognized not just as an important tool in AI (Artificial
Intelligente) and expert Systems, but as a general purpose high-level programming
language with some unique properties.

The language originates from work in the early 1970s by Robert A. Kowalski
while at Edinburgh University (and ever since at Imperial College, London) and
Alain Colmerauer at the University of Aix-Marseilles in France. Their efforts
led in 1972 to the use of formal logic as the basis for a programming language.
Kowalski’s research provided the theoretical framework, while Colmerauer’s
gave rise to the programming language Prolog. Colmerauer and his team then
built the first interpreter, and David Warren at the AI Department, University of
Edinburgh, produced the first Compiler.

The crucial features of Prolog are unification and backtracking. Unification
Shows how two arbitrary structures tan be made equal, and Prolog processors
employ a search strategy which tries to find a Solution to a Problem by
backtracking to other paths if any one particular search Comes to a dead end.

Prolog is good for windowing and multimedia because of the ease of building
complex data structures dynamically, and also because the concept of backing
out of an Operation is built into the language.

Prolog is taught in more UK university computing degrees than any other
programming language,

This part of ISOIIEC 13211 defines the general core features of Prolog, and
part 2 will define modules.

ix

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

This page intentionally left blank

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

INTERNATIONAL STANDARD 0 ISO/IEC ISO/IEC 13211=1:1995(E)

Information technology - Programming languages - Prolog -

Part 1:
General core

1 Scope

ISOIIEC 13211 is designed to promote the applicability
and portability of Prolog text and data among a variety of
data processing Systems.

This part of ISOIIEC 13211 specifies:

a) The representation of Prolog text,

b) The Syntax and constraints of the Prolog language,

c) The semantic rules for interpreting Prolog text,

d) The representation of input data to be processed by
Prolog,

e) The representation of output produced by Prolog,
and

f) The restrictions and limits imposed on a conforming
Prolog processor.

NOTE - This part of ISOAEC 13211 does not specify:

a) the size or complexity of Prolog text that will exceed the
capacity of any specific data processing System or language
processor, or the actions to be taken when the corresponding
limits are exceeded;

b) the minimal requirements of a data processing System
that is capable of supporting an implementation of a Prolog
processor;

c) the methods of activating the Prolog processor or the
set of commands used to control the environment in which
Prolog text is prepared for execution and executed;

d) the mechanisms by which Prolog text is prepared for
use by a data processing System;

e) the typographical representation of Prolog text published
for human reading;

1) the user environment (top level loop, debugger, library
System, editor, Compiler etc.) of a Prolog processor.

This part of ISOAEC 13211 is intended for use by implernentors
and knowledgeable programmers, and is not a tutorial.

1.1 Notes

Notes in this part of ISOIIEC 13211 have no effect on the
language, Prolog text or Prolog processors that are defined
as conforming to this part of ISOIIEC 13211. Reasons for
including a note include:

a) Cross references to other clauses and subclauses of
this part of ISOIIEC 13211 in Order to help readers find
their way around,

b) Warnings when a built-in predicate as defined in
this part of ISOIIEC 13211 has a different meaning in
some existing implernentations.

2 Normative references

The following Standards contain provisions which, through
reference in this text, constitute provisions of this part of
ISOIIEC 13211. At the time of publication, the editions
indicated were valid. All Standards are subject to revision,
and Parties to agreements based on this part of ISOIIEC
13211 are encouraged to investigate the possibility of
applying the most recent editions of the Standards listed
below. Members of IEC and ISO maintain registers of
currently valid International Standards.

ISOIIEC 646 : 1991, Information technology - ISO 7-bit
coded Character set for information interchange.

ISO 2382-15 : 1985, Data processing - Vocabulary -
Part 15: Programming languages.

ISO 8859-1 : 1987, Information technology - a-bit
Single-byte coded graphic Character sets - Part I: Latin
alphabet No. 1.

ISOIIEC 9899 : 1990, Programming languages - C.

ISOIIEC TR 10034 : 1990, Guidelines for the prepara-
tion of conformity clauses in programming language
Standards.

ISOIIEC 10967-1 : 1994, Information technology - Lan-
guage independent arithmetic - Part I: Integer and
Joating Point arithmetic.

BS 6154 : 198 1, Method of defining - Syntactic meta-
language.

1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

39 arity: The number of arguments of a compound
k-m. Syntactically, a non-negative integer associated with
a functor or predicate.

3 Definitions

This terminology for Prolog has a format modelled on that
of ISO 2382.

3.10 assert, to: To assert a clause is to add it to the
user-defined procedure in the database defined by the
predicate of that clause.

NOTE - It is unnecessary for the user-dejrzed procedure to
already exist.

An entry consists of a Phrase (in bold type) being defined,
followed by its definition. Words and phrases defined in
the glossary are printed in italics when they are used in
other entries. When a definition contains two words or
phrases defined in separate entries directly following each
other (or separated only by a punctuation sign), * (an
asterisk) separates them.

3.11 associativity (of an Operator): Property of being
non-associative, right-associative, or left-associative (see
63.4, table 4).

Words and phrases not defined in this glossary are assumed
to have the meaning given in ISO 2382-15; if they do not
appear in ISO 2382- 15, then they are assumed to have
their usual meaning. 3.12 atom: A basic Object, denoted by an identifier

(see 6.1.2 b, 7.1.4).
For the purposes of ISO/IEC 13211, the following defini-
tions apply:

3.13 atom, null: See 3.117 - null atom.

3.1 A: The set of atoms (see 61.2 b, 7.1.4).
3.14 atom, one-char: See 3.119 - one-char atom.

32 . activation: The process of executing an activator.
3.15 atomic term: An atom or a number.

33 activator: The result of preparing a goal for exe-
cution (see 7.7.3).

3.16 axiom: A rule satisfied bY an operati on and all
values of the data type to which the Operation belongs.

3.4 algorithm, Herbrand: See 3.85 - Herbrand al-
gorithm.

3.17 backtrack, to: To return to the choicepoint of the
current goal in Order to attempt to re-execute it (see 7.7.8).

3.5 alias: An atom associated with an open stream (see
7.10.2.2).

3.18 bias, exponent: See 3.68 - exponent bias.

3.19 body: A goal, distinguished by its context as part
of a rule (see 3.154).

The Standard input stream has the alias user-input, and
the Standard output stream has the alias User-output (see
7.10.2.3).

3.20 bootstrapped (built-in predicate): Defined as a
special case of a more general buiZt-in predicate (see
8.15).

NOTE - A s tream tan have many
the alias of at most one stream.

aliases, but an atom tan be

36 . anonymous variable: A variable (represented in a
term or Prolog text by -) which differs from every other
variable (and anonymous variable) (see 6.1.2, 6.4.3).

3.21 built-in predicate: A procedure whose execution
is implemented by the processor (see 8).

3.22 byte: An integer in the range [0..255] (see 7.1.2.1).
37 argument: A term which is associated with a
piedication or compound term.

3.23 C: The set of characters (see 7.1.4.1).

38 arithmetic data type:
a;e members of 2 or R.

A data type whose values
3.24 callable term: An atonz or a compound term.

2

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

3.25 CC: The set of Character Codes (see 7.1.2.2). 3.37 compound term: A functor of arity N, N positive,
together with a sequence of N arguments (see 6.1.2 e,
7.1.5).

3.26 Character: A member of C - an implementation
defined Character set (see 6.5, 7.1.4.1).

3.38 configuration: Host and target Computers, any op-
erating System(s) and Software used to operate a processor.

3.27 Character, quoted: See 3.144 - quoted charac-
ter.

3.28 Character, unquoted: See 3.194 - unquoted
Character.

3.29 Character-conversion mapping: A mapping on
the set of characters, C, which specifies that, in some
Prolog text units and sources, some characters are intended
to be equivalent to other characters, and converted to those
characters (see 3.46, 7.4.2.5, 8.14.5).

3.30 choicepoint: A state during execution from
a goal tan be executed in more than one way.

which

3.31 class (of an Operator): The class of an Operator
defines whether it is a prefix, infix, or postfix Operator
(see 6.3.4).

3.32 clause: A fact or a rule. It has two Parts: a head,
and a body.

NOTE - In ISO/IEC International Standards “clause” has the
meaning: one of the numbered Paragraphs of a Standard. In
this part of ISO/IEC 13211, the context distinguishes the two
meanings.

3.33 clause-term: A read-term T. in Prolog text where
T does not have principal functor (: -) / 1 (see 6.2.1.2).

3.34
dering

collating sequence: An implementation
defined on the set C of characters (see

deflned
6 6) . .

or-

3.35 complete database: The set of procedures with
respect to which execution is performed (see 7.5).

3.36 composition (of two Substitutions): The mapping
resulting from the application of the first Substitution
followed by the application of the second. Composition
of the Substitutions cr1 and 02 is denoted 01 o 02. When
the composition acts on a term t, it is denoted by Tat-,
with the meaning ((tai)az).

3.39 conforming processor: A processor which con-
forms to all the compliance clauses (see 5.1) for processors
in this part of ISO/IEC 13211.

3.40 conforming Prolog data: Sequences of characters
and bytes that conform to all the compliance clauses for
ProZog data in this part of ISO/IEC 13211 (see 5, 6.2.2).

3.41 conforming Prolog text: A sequence of characters
that conforms to all the compliance clauses for Prolog text
in this part of ISO/IEC 13211 (see 5, 6.2).

3.42 construct, control: See 3.45 - control construct.

3.43 constructor, list: See 3.100 - list constructor.

3.44 contain, to: A term Tl contains another term T2 if
either ~1 and T2 are identical terms, or Tl is a compound
term, one of whose arguments contains T2.

3.45 control construct: A procedure
is part of the Prolog processor (see 7.8).

whose definition

3.46 Convc: The Character-conversion mapping on C
(the set of charactersj which specifies that, in some Prolog
text units and sources, some characters are converted to
other characters (see 3.29, 7.4.2.5, 8.14.5).

The initial value of Convc shall be identity-mappingc.

NOTES

1 A directive or goal char-conversion(In,
out) (7.4.2.5, 8.14.5) replaces Convc by
update-mappingc (In, Out, Convc).

2 Any unquoted Character c that is part of a read-term which
is input by read-term/ 3 (8.14.1) or as Prolog text is replaced
by appl y-mappingc (c, Convc).

3 Convc tan be inspected by calling
current_char,conversion/2 (8.14.6).

3

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

4 The rationale for providing this facilitv is because some
extended Character sets (for example, Japanese JIS Character
Sets) are used with the basic Character set and contain the
characters equivalent to those in the basic Character set with
different encoding. In such cases, users will often wish the
meaning of characters in Prolog data and Prolog text to be the
same regardless of the encoding.

3.47 convert (from type A to type B): An Operation
whose signature is

convert&+B : A + B U {error}
which converts a value of type A to type B. It shall be
an error if the conversion cannot be made.

For example, see converting a ternz to a clause and vice
versa (7.6), Character-conversion (3.29, 7.4.2.5, 8.14.5)
and converting a Joating Point value to an integer value
and vice versa (9.1.6).

3.48 copy, renamed (of a term): See 3.150 - re-
named copy (of a term).

3.49 CT: The set of compound terms (see 6.1.2 e,
7.1.5).

3.50 tut: A control construct whose effect is to remove
all choicepoints back to a deeper execution state defined
by its cutparent (see 7.7.2, 7.8.4).

3.51 data, conforming Prolog: See 3.40 - conform-
ing Prolog data.

3.52 database: The set of user-defined procedures
which currently exist during execution (see 7.5).

3.58 directive-term: A read-term T. in Prolog text
where T has principal functor (: - > / 1 (see 6.2.1.1).

3.59 dynamic (of a
is one whose clauses
execution, for example
(see 7.5.2).

procedure): A dynamic procedure
tan be inspected or altered during
by asserting or retracting * clauses

3.60 effect, side: See 3.157 - side effect.

3.61 element (of a Zist): An element of a non-empty
List is either the head of the Zist or an element of the taiZ
of the Zist. The empty Zist has no elements.

3.62 empty list: The atonz [1 (nil).

3.63 error: A special circumstance which Causes the
normal process of execution to be interrupted (see 7.12).

3.64 evaluable functor: The principal functor of an
expression (see 7.9, 9).

3.65 evaluate: To reduce an expression to its value.
(see 7.9, 8.6.1, 9).

3.66 exceptional value: A non-numeric value of an
expression: float-overflow, int-Overflow, underflow,
Zero-divisor, or undefined (see 7.9).

NOTE - It is an evakation-error (E) when the value
of an expression is an exceptional value.

3.53 database, complete: See 3.35 - complete
database.

3.67 execution (Verb: to execute): The process by
which a Prolog processor tries to satisfy a goal (see 7.7.1).

3.54 data type:
that manipul ate tho

A set of values and a set of operations
se values.

3.55 data type, arithmetic: See 3.8 - arithmetic
data type.

3.56 denormalized value: A jloating Point value of
type F providing less than the full precision allowed by
F (see FD, 7.1.3).

3.57 directive: A term D which affects the meaning of
Prolog text (see 7.4.2), and is denoted in that Prolog text
by a directive-term : - (D) .

3.68 exponent bias: A number added to the exponent
of a floating Point number, usually to convert the exponent
to an unsigned integer.

3.69
which

expression: An atomic term or a compo
may be evaluated to produce a value (see

lund term
8.6.1, 9).

3.70 extension: A facility provided by the processor
that is not specified in this part of ISO/IEC 13211 but that
would not Cause any ambiguity or contradiction if added
to this part of ISO/IEC 13211.

4

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

3.71 1”: The set of jloating Point values (see 6.1.2 d,
7.1.3).

3.85 Herbrand algorithm: An algorithm which com-
putes the most general unifier MGU of a set of equations
(see 7.3.2).

3.72 fact: A clause whose body is the goal true.
3.86 1: The set of integers (see 6.1.2 c, 7.1.2).

NOTE - A fact tan be represented in Prolog text b y a ternz
whose princ+al functor is neither (: -) /l nor (:-)/2.

3.87 identical terms: Two terms are identical if they
have the same abstract Syntax (see 6.1.2).

3.73 fail, to: Execution of a goal fails if it is not
sati@ed.

3.88
denote

identifier: A basic unstr muctured Object
predicate name.

used to
an atom, functor name or

3.74 file name: An implementation deflned * ground
term which identifies to the processor a file which will be
used for inputloutput during the execution of the Prolog
text.

3.89 iff: If and only if.

3.90 implementation defined: Defined partly by this
part of ISO/IEC 13211, and partly by the documentation
accompanying a processor (see 5).

3.75 flag: An atom which is associated with an imple-
mentation deflned or user-defined value (see 7.11).

3.76 floating Point value: A member of the set F
(see 6.1.2 d, 7.1.3). 3.91 implementati

dependent feature is
.on dependent: An implernen tation
dependent on the processor.

NOTE - This part of ISO/IEC 13211 does not require
an implementation dependent feature to be defined in the
accompanying processor documentation.

3.77 functor: An identijier together with an arity.

3.78 functor name: The identifier of a functor.

3.92 implementation specific: UndeJined by this part of
ISO/IEC 13211 but supported by a conforming processor.

3.79 function, rounding: See 3.153 - rounding func-
tion. NOTE - This part of ISO/IEC 13211 does not require an

implementation specific feature to be supported by a conforming
processor, but it preserves the Syntax and semantics of a strictly
conforming Prolog text which does not use it, for example,
defining a term Order on variables, or defining unification for
terms which are STO (3.165).

3.80 functor, principal: See 3.134 - principal func-
tor.

3.81 goal: A predication which is to be executed (see
body, quer-y, and 7.7.3). 3.93 indicator, predicate: See 3.13 1 - predicate in-

dicator.

3.82 ground term: An atomic term or a compound term
is ground with
the Substitution

3.94 input/output mode: An atom which represents an
attribute of a stream. A processor shall support the
input/output modes: read, write, append (see 8.11.5,

whose arg ,uments are all ground. A term
to a Substitution if application of respect

yields a ground term.
7.10.1.1).

3.83 head (of a list): The first argument of a non-empty
list. 3.95 instance (of a term): The result of applying a

Substitution to the term.

3.84 head (of a rule): A predication, distinguished by
its context.

If t is a term and 0 a
is denoted ta.

Substitution, the instance of t by CT

5

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

3.96 instantiated: A variable is instantiated with re-
spect to a Substitution if application of the Substitution
yields an atomic ternz or a compound term.

A term is instantiated if any of its variables are instantiated.

3.97 integer value: A member of the set 1 (see 6.1.2 c,
7.1.2).

3.98 level, top: See 3.185 - top level.

3.99 list: Either the empty list or a non-empty List.

NOTE - Examples: [] , [a, X] , [l, 2, -1 , [a 1 [b]]

3.100 list constructor: The principal functor ’ . f /2
used for constructing Zists.

3.101 list, empty: See 3.62 - empty list.

3.102 list, non-empty: See 3.114 - non-empty list.

3.103 list, partial: See 3.125 - partial list.

3.104 list, read-Options: See 3.147 - read-Options
list.

3.105 list, write-Options: See 3.207 - write-Options
list.

3.106 mapping: A data type MT where T is a data
type (see 4.3).

3.107 mode, input/output: See 3.94 - inputioutput
mode.

3.108 most general unifier (MGU): The most general
unifier (MGU) of terms is a minimal Substitution which
acts on the terms to make them identical. Any unifier is
an instance of some MGU.

NOTE - It is defined up to a renaming of the variables. If
idempotent no variable of its domain appears in the resulting
terms. An idempotent MGU tan be computed by the Herbrand
algorithm (see 7.3.2).

3.109 name (of atom): A sequence of characters which
distinguishes an atom from any different atom (see 6.1.2 b).

6

3.110 name, file: See 3.74 - file name.

3.111 name, functor: See 3.78 - functor name.

3.112 name, predicate:

3.113 named variable:
anonymous variable (see 6

See 3.132 - predicate name.

A variable which is not an
1.2 a, 6.4.3).

3.114 non-empty list: A compound term whose prin-
cipal functor is the Zist constructor and whose second
argument is a List.

3.115 normalized value: A jloating Point value of type
F providing the full precision allowed by F (see 7.1.3).

3.116 NSTO: Not subject to occurs-check (see 7.3.3).

3.117 null atom: The atonz ’ I.

3.118 number:

3.119 one-char
Character.

An integer value orfloating Point value.

atom: An atonz whose is a Single

3.120 Operand (of a compound term or predication):
An argument of a compound term (predication) whose
functor name (predicate name) is an Operator.

3.121 Operand (of an Operation): A value supplied to
an Operation defined by a signature and one or more
axioms.

3.122 Operator: A functor name or predicate name
which allows compound terms or predications respectively,
to be expressed in prefix, infix or postfix form (see 6.3.4).

3.123 Operator, predefined: See 3.128 - predefined
Operator.

3.124 Options, stream: See 3.167 - stream-Options.

3.125 partial list: A variable, or a compound term
whose principal functor is the List constructor and whose
second argument is a partial list.

NOTE - The concept of a partial list is used in 8.5.3.

Examples: A, [a 1 X] , [1, 2 1 B]

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

3.126 Position, stream: See 3.168 - stream Position.

3.127 precision: The number of digits in the fraction
of a Jloating Point value (see 7.1.3).

3.128 predefined Operator: An Operator which is ini-
tially provided by the processor.

3.129 predicate: An identifier together with an arity.

3.130 predicate, built-in: See 3.21 - built-in predi-
cate.

3.131 predicate indicator: A compound term A/N,

where A is an atom and N is a non-negative integer,
denoting one particular procedure (see 7.1.6.6).

3.132 predicate name: The identifier of a predicate.

3.133 predication: A predicate with arity N and a
sequence of N arguments.

3.134 principal functor: The principal functor of a
compound term is F/N if the functor of the compound
ternz is F and its arity is N.

The principal functor of an
atomic term is C.

atomic term is C/ o if the

3.135 private (of a procedure): A private procedure is
one whose clauses cannot be inspected during execution.
(see 7.5.3).

3.136 procedure: A control construct, a built-in pred-
icate, or a user-deBned procedure. A procedure is either
static or dynamic. A procedure is either private or public
(see 7.5).

3.137 procedure, user-defined: See 3.195 - user-
defined procedure.

3.138 processor:
combination with a

A Compiler or interpreter workin g in
conflguration.

3.139 processor, conforming: See 3.39 - conforming
processor.

3.140 Prolog data: A sequence of read-terms (see
6.2.2).

3.141 Prolog text: A sequence of read-terms denoting
directives and clauses (see 6.2, 7.4).

3.142 public (of a procedure): A public procedure is
one whose clauses tan be inspected during execution, for
example by calling the built-in predicate clause/Z (see
7.5.3, 8.8.1).

3.143 query: A goal given as interactive input to the
top level.

NOTE - This part of ISO/IEC 13211 does not define or
require a processor to support the concept of top Level.

3.144 quoted Character: A Character in Prolog text
or Prolog data which is a Single quoted Character
or a double qyuoted Character or a back quoted
Character (see 6.4.2.1).

NOTE - For example, ’ a ’ ‘b\ ’ c I contains 5 quoted characters
(1) a, 69 I, (3) b, (4) ’ (a meta escape sequence), (5) c.

3.145 R: The set of real numbers (see 4.1 .l).

3.146 read-Option: A compound term with uninstanti-
ated * arguments which amplifies the results produced
by the built-in predicate read-term/3 (8.14.1) and the
bootstrapped * built-in predicates based on it (see 7.10.3).

3.147 read-Options list: A list of read-Options.

3.148 read-term: A term followed by an end token.
(see 6.2.2, 6.4.8).

3.149 re-execute, to: To re-execute a goa2 is to attempt
to satisfy it again (see 7.7.6, 7.7.8).

3.150 renamed copy: (of a term) A special variant of
a term (see 7.1.6.2).

3.151 retract, to: To retract a clause is to remove it
from the user-defined procedure in the database defined
by the predicate of that clause.

7 l

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

3.161 sourcehink: A source or a sink. 3.152 rounding: Computing a representable final value
(for an Operation) which is close to the exact (but
unrepresentable) value for that Operation (see 9.1.3.1,
9.1.4.1). 3.162 specifier (of an Operator): One of the atoms fx,

fy, xfx, xfy, yfx, xf or yf. A specifier denotes the
class and associativity of an Operator (see 6.3.4).

3.153 rounding function: A function with signature:
rnd : R --+ Iy (where X is a discrete subset of R)

which maps each member of X to itself, and is monotonic
non-decreasing. Formally, if x and 2/ are in R,

3.163 Stack: A data type ,SD where D is a data type
(see 4.2).

x E X + rnd(x) = x
x < y + rnd(x) 5 rnd(Y) 3.164 static (of a procedure): A static procedure is one

whose clauses cannot be altered (see 7.5.2).
NOTE - If u E R is between two adjacent values in x’,
rnd(u) selects one of those adjacent values.

3.165 STO: Subject to occurs-check (see 7.3.3).

3.154 rule: A clause whose body is not the goal true.
During execution, if the body is true for some Substitution,
then the head is also true for that Substitution. A rule
is represented in Prolog text by a term whose principal
functor is (: -) /2 where the first argument is converted
to the head, and the second argument is converted to the

3.166 stream: A connection to a Source or sink (see
7.10.2).

3.167 stream-Options: A list of zero or more ternzs

which specify additional characteristics over and above
those given by the mode of a stream (see 7.10.2.11).

body.

3.155 satisfy, to: To satisfy a goal is to execute it
successfully. 3.168 stream Position: An absolute Position in a

source/sink to which the stream is connected (see 7.10.2.8).

3.156 sequence, collating: See 3.34 - collating se-
quence. 3.169 stream, target: See 7.10.2.5 - Target stream.

3.157 side effect: A non-logical effect of an activator
during execution (see 7.7.9).

3.170 stream-term: An implementation dependent *
ground ternz which identifies a streanz inside Prolog text
(see 7.10.2.1).

3.158
defines

signature: A specification of an Operation
its name, and the type of its operands(s) and

which
value. 3.171 Substitution: A mapping from variables to terms.

By extension a Substitution acts on a term by acting on
each variable in the term.

NOTE - The Operation is further defined by one or more
axioms.

NOTE - A Substitution is represented by a Greek letter (for
example C, 0, p) acting a s a postfix operato f-7 for example:

For example, the signature:

addI : I x I + I U {id-overflow}

Substitution { x - a,Y --+ 3+Z, Z - b }

Term T foo(X, Y, z>
New term Ta foo(a, 3 + Z, b)

defines the Operation addI which takes two integer operands
(1 x 1) and produces either a Single integer value (1) or the
exceptional value int-Overflow.

3.159 sink: A physical Object to which a processor
Outputs results, for example a file, terminal, or interprocess
communication channel (see 7.10.1).

3.172 succeed, to: Execution of a goal succeeds if it
is satisfied.

3.173 tail: The second argument of a non-empty List.
3.160 Source: A physical Object from which a processor
inputs data, for example a file, terminal, or interprocess
communication channel (see 7.10.1). 3.174 target stream: See 7.10.2.5 - Target stream.

8

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

3.175 term: An atomic term, a compound ternz or a
variable (see 7. I).

3.176 term, atomic: See 3.15 - atomic term.

3.177 term, callable: See 3.24 - callable term.

3.178 term, compound: See 3.37 - compound term.

3.179 term, ground: See 3.82 - ground term.

3.180 terms, identical: See 3.87 - identical terms.

3.181
terms

term-precedes: A
which defines a total

binary relation on the set of
ordering of terms (see 7.2).

3.182 term, stream: See 3.170 - stream-term.

3.183 text, conforming Prolog: See 3.41 - conform-
ing Prolog text.

3.184 text, Prolog: See 3.141 - Prolog text.

3.185 top level: A process whereby a Prolog processor
repeatedly inputs and executes * queries.

NOTE - This part of ISO/IEC 13211 does not define or
require a processor to support the concept of top Zevel.

3.186 type: The type of a term is a property of the
term depending on its Syntax and is one of: atom, integer,
floating Point, variable or compound term (see 7.1).

3.187 type, data: See 3.54 - data type.

3.188 undefined: A feature is undefined if this part of
ISO/IEC 13211 (1) states it is undefined, or (2) makes no
requirements concerning its execution.

3.189 unifiable: Two or more terms are unifiable i$f
there exists a unifier for them.

3.190 unifier (of two or more terms): A Substitution
such that applying this Substitution to each term results in
identical ternzs.

3.191 unifier, most general: See 3.108 - most gen-
eral unifier.

3.192 unify, to: To find and apply a most general
unifier of two terms by successfully executing (explicitly
or implicitly) the built-in predicate (=) /2 (unify) (see
8.2.1).

3.193 uninstantiated: A
when it is not instantiated.

variable uninstantiated

3.194 unquoted Character: A Character in Prolog text
or Prolog data which is not a quoted Character (see
6.4.2.1).

3.195 user-defined procedure: A procedure which is
defined by a sequence of clauses where the head of each
clause has the same predicate indicator, and each clause
is expressed by Prolog text or has been asserted during
execution (see 8.9).

3.196 V: The set of variables, (see 6.1.2 a, 7.1 .l).

3.197 value, denormalized: See 3.56 - denormalized
value.

3.198 value, exceptional: See 3.66 - exceptional
value.

3.199 value, normalized: See 3.115 - normalized
value.

3.200 variable: An Object which may become instanti-
ated to a term during execution. (see 6.1.2 a, 7.1 .l).

3.201 variable, anonymous: See 3.6 -
variable.

anonymous

3.202 variable, named: See 3.113 - named variable.

3.203 variable set (of a term): See 7.1.1.1 - Variable
set of a term.

3.204 variant (of a term): See 7.1.6.1 - Variants of
a term.

9

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

Table 1 - The basic sets

Symbol Mathematical Type

3.205 witness (of a set of variables): See 7.1 S.2 -
Witness of a variable set.

3.206 write-Option: A ground term that controls the
output produced by the built-in predicate write_term/3
(8.14.2) and its bootstrapped * built-in predicates (see
7.10.4, 7.1.4.2).

Table 2 - Basic mathematical operations

Operator Signature Meaning

>
A
V
1

<
< -
- -

>
>
+

*
/

BXB+Q!?

L?X16-fB

BXB+L?

BXB-,B

B * G

RX72.*B

RXR” f?

72. x 72 -j u

TLXR-‘tG

RXTL’G

72 x TL * B

R#XR-+R

RxR+R

RXR-72.

RXR*+R

equivalence
implication
conjunction
disjunction
negation
less
less or equal
equal
not equal
greater or equal
greater
addition
subtraction
mul tiplication
division

3.207 write-Options list: A list of write-Options.

4.1.3 Other functions

3.208 2: The set of mathematical integers (see 4.1.1 j.

4 Symbols and abbreviations

The following Symbols and abbreviations are used in this
part of ISO/IEC 13211.

4.1.3.1 Substitution composition

Signature: 0 : Substitution x ,S7h3titzikio~2 -+

Substituhon

Axiom: f o 9 = h where h.(z) = .f(s(x))

4.1.3.2 Ix 1 - abs x

4.1 Notation
Signature: 1 1 : R -+ 77.

4.1.1 Basic mathematical types
Axiom: 1x1 = if x > 0 then x else -x -

Table 1 defines the notation for the basic mathematical
types.

4.1.2 Mathematical and set Operators

Table 2 defines the basic operations which have their
conventional (exactj mathematical meaning.

The following notation also has its conventional (exact)
mathematical meaning:

xY, log, y, on R

The following set operations also have their conventional
mathematical meaning:

E (member), $ (not memberj, = (equality), C (subset),
U (Union), -+ (mappingj, x (cartesian product)

4.1.3.3 1x1 - floor x

The notation 1x1 designates the largest integer not greater
than x.

Signature: 1 J : R ---+ 2

Axiom: 1x1 = n where (x - 1 < 72) A (12 < x) ,

4.1.3.4 -tr(2) - truncate x

The notation b(x) designates the integer part of x
(truncated towards Zero).

Signature: tr : R --) 2

Axiom: t T(x) = if x 2 0 then 1x1 else - l-xj

10

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114: 1995(E)

4.1.3.5 dx - Square root For all a, a’, b, b’ E T, m. E MT, the following axioms
shall apply:

Signature: J : R --+ R U {undefined}

CLpply-mappingT (a, identit y_mappingT) = a
Axiom: If x > 0 then dx is the positive Square root of x
else undefined

apply-mappingT (u, mappingT (a’, 6, m))
= b if c1 = CL’
= appiy-mappingT(a, m) if cL # c&’ 4.1.3.6 Maximum of real set

update-mappingT(a, 6, identity-mappingT)
= identity-mappingT if a = b
= mappingT(a, b, identity_mappingT) if a # b

Signature: max : R-Set ---+ R

Axiom: max(S) = x if x E S A x > y for all y E S -

update-mappingT(a, b, mappingT(a’, b’, m))
= mappingT(a’, bi, update-mappingT(a, b, m))

if a # a’
= mappingT(a, b, m)

if a = a’ and a # b
= n2

if a = a’ and a = b

4.1.3.7 Minimum of real set

Signature: min : R---Set -+ R

Axiom: min(S) = x if x E S A x < y for all y E S -

42 . Abstract data type: Stack NOTE - Convc (3.46) is a mapping.

The following functions are specified for a Stack So where
D is a data type:

5 Compliance
pushD : D X SD + SD
topD : SD -+ D U {error}
popD : SD - & u {error}

newsi!ackD : + SD
isemptyo : 5’~ -+ Boolean

51 . Prolog processor

A conforming Prolog processor shall:

aj Correctly
conforms to:

prepare for execution Prolog text which
For all ci E D, s E S D, the following axioms shall apply:

topD (pushD (d, s)) = d
1 j the requirements of this part of ISO/IEC 13211,
and

Topf (newstacko) = error

2j the implementation defined and implernen
specific features of the Prolog processor,

pop~ (p~~s~2D (d, s)) = s

popD (newstackD) = error
b) Correctly execute Prolog goals which have been
prepared for execution and which conform to: isemptyo (newstackD) = true

1 j the requirements of this part of ISO/IEC 13211,
and

iSemptyD (pushe (d, s)) = false

definition of executing a goal NOTE - Stacks are used in the
(7.7) and control constructs (7.8). 2) the implementation defined and impl

specific features of the Prolog processor,
emen

43 . Abstract data type: mapping
cj Reject any Prolog text or
fails to conform to:

read- term whose Syntax

The following functions
where T is a data type:

are specified for a mapping MT

1) the requirements of this part of ISO/IEC 13211,
and identity_mappingT : + MT

mappingT 1 T x T x MT ++ MT
apply-naappingT : T X MT + T
update_mappingT : TxTxMT+MT

2) the implementation defined and implementation
specific features of the Prolog processor,

11

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

d) Specify all permitted variations from this part of
ISO/IEC 13211 in the manner prescribed by this part of
ISO/IEC 13211, and

e) Offer a strictly conforming mode which shall reject
the use of an implementation specific feature in Prolog
text or while executing a goal.

5.2 Prolog text

Conforming Prolog text shall use only the constructs speci-
fied in this part of ISO/IEC 13211, and the implementation
defined and implementation specific features supported by
the processor.

Strictly conforming Prolog text shall use only the con-
structs specified in this part of ISO/IEC 13211, and the
implementation defined features supported by the processor.

5.3 Prolog goal

A conforming Prolog goal is one whose execution is
defined by the constructs specified in this part of ISO/IEC
132 11, and the implementation defined and implementation
specific features supported by the processor.

A strictly conforming Prolog goal is one whose execution
is defined by the constructs specified in this part of
ISO/IEC 13211, and the implementation defined features
supported by the processor.

5.4 Documentation

A conforming Prolog processor shall be accompanied
by documentation that completes the definition of every
implementation defined and implementation specific feature
specified in this part of ISO/IEC 13211.

5.5 Extensions

A processor may support, as an implementation specific
feature, any construct that is implicitly or explicitly
undefined in the part of ISO/IEC 13211.

5.51 Syntax

A processor may support one or more additional char-
acters in PCS (6.5) and additional Syntax rules as an
implementation specific feature iff:

a> any sequence of tokens that conforms to the Syntax
of Prolog text and data defined in subclause 6.2 shall
have the abstract Syntax defined in that subclause,

b) any sequence of tokens that conforms to the Syntax
of a term defined in subclause 6.3 shall have the abstract
Syntax defined in that subclause,

c) any sequence of characters that conforms to the
Syntax of Prolog tokens defined in subclause 6.4 shall
be parsed to those Prolog tokens.

NOTE - The presence of an infix and a postfix Operator
with the same priority is also an allowable extension as an
implementation specific feature as long as, like any other Syntax
extension, it does not Change the meaning of Prolog text which
conforms to the Standard.

5.52 Predefined Operators

A processor may support
Operators (table 7) as an

one or more additional predefined
implementation specific feature.

5.5.3 Character-conversion mapping

A processor may support some other initial value of
Convc, the Character-conversion mapping (3.46), as an
implementation specific feature.

5.5.4 Types

A processor may support one or more additional types
(7.1) as an implementation specific feature iff, for every
additional type T supported by a processor:

a) No term with type T shall also have a type T’
where T and T’ are different.

b) For every two terms t and t’ with types T and T’
respectively, t term-precedes t’ (7.2) shall depend only
on T and T’ unless T = T’.

c) The processor shall define in its accompanying
documentation the effect of converting a term of type
T to a clause (7.6), and vice versa.

d) The processor shall define in its accompanying
documentation, the abstract and token Syntax of every
term of type T.

e) The processor shall define in its accompanying
documentation, the effect of evaluating as an expression
a term of type T (7.9).

f) The processor shall define in its accompanying
documentation, the effect of writing a term of type T
(7.10).

12

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

Table 3 - BS6154 syntactic metalanguage 5.5.5 Directives

BS6154 Symbol Meaning

Unquoted characters Non-terminal Symbol
II II . . . Terminal Symbol
I I . . . Terminal Symbol
(1 . . . Brackets
c 1 . . . Optional Symbols
1 --’ 1 Symbols repeated zero

or more times
=
. t
I

(* .I. “)

Defining Symbol
Rule terminator
Alternative
Concatenation
Comment

A processor
indicators (7

may support one or more additional directi
specific feature.

ve
‘L4.2) as an implementation

5.5.6 Side effects

A processor may support one or more additional side
effects (7.7.9) as an implementation specific feature.

5.5.7 Control constructs

A processor maY support one or more additi onal con
3) as an implementation specific feature.

trol
constructs (7

6 Syntax 5.5.8 Flags

This clause defines the abstract and concrete syntaxes of
a term, Prolog text and data.

Terms are the data structures manipulated at runtime by a
Prolog application. Subclause 6.2 defines how terms form
Prolog text and data, subclause 6.3 defines how tokens are
combined to form terms, and subclause 6.4 defines how
sequences of characters form tokens.

A
(7 .

processor
11) as an

may support one or more additional flags
implementation specific feature.

5.5.9 Built-in predicates

A process or may su pport one or more addi tional built-in
predicates (8) as an implernen tation specific feature.

When a processor supports additional built-in predicates as
an implementation specific feature, it may also support as
an implementation specific feature one or more additional
forms of Error-term (7.12.1).

NOTES

1 The concept of a program is different in Prolog from that
in many other programming languages. The closest equivalent
concept in this part of ISO/IEC 13211 is the concept of “Prolog
tex t”.

2 Different sequences of characters in Prolog text and data tan
have identical semantic meanings. The semantics is therefore
based on an abstract Syntax (6.1.2).

NOTE - The additional forms of Error-term may include
for example >=(N), between(N,M) and one-of(List) as
valid domains.

5.5.10 Evaluable functors

A processor may support one or more additional evaluable
functors (9) as an implementation specific feature. A
processor may support the value of an expression being a
value of an additional type instead of an exceptional value.

6.1 Notation

6.1.1 Backus Naur Form

Syntax productions are written in a tabular notation, where
the first line uses the extended BNF notation standardized
as BS6154 and summarized in table 3.

The metalanguage Symbols ‘=’ ‘ 1’ ‘ , ’ are right-associative
infix Operators which bind increasingly tightly.

NOTE - A program that makes no use of extensions should
not rely on catching errors from procedures that evaluate their
arguments (such as is/2, 8.6.1) unless it is executed in strictly
conforming mode (5.1 e).

5.5.11 Reserved atoms
The remaining lines of each Syntax production link different
attributes of each production and express tontext-sensitive
constraints. Esch entry tan be considered as a Parameter of
a logical grammar (i.e. a definite clause or metamorphosis
grammar). Parameters apply to non-terminal and terminal
Symbols. In these lines, variables are written in italic type

A processor may reserve some atoms for use in extensions.
The effect of executing a goal whose execution Causes
a variable to be instantiated to a reserved atom or to a
compound term whose functor name is a reserved atom is
implementation defined.

13

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISOIIEC 132114 : 1995(E) @ ISO/IEC 1995

style, and constants in typewriter type style. Esch
attribute of the grammar is on a separate line which is
identified at the Start of the line.

3) n is the concatenation of the characters
below for each form of name token (6.4.2):

defined

Letter digit token - The initial smal 1 let
char followed by each alphanumeric char.

ter
The facets of the term grammar are:

Graphit token - Esch graphic token char. Abstract - The abstract term or list of abstract terms
associated with the non-terminal Symbol defined by the
Syntax rule is specified in terms of the abstract elements
of the Symbols forming its definition.

Quoted
Single

token - The Character
Character. quoted

denoted by each

Semicolon token - The Character ;. Priority - The tontext-sensitive aspects of the prece-
dence grammars on which the Prolog Operator notation
is based. Cut token - The Character !.

The characters of
from one upwards.

the name of an atom are numbered Esch term and Operator is associated with a priority, i.e.
an integer between 0 and 1201. An atomic term and a
compound term expressed in functional notation have a
zero priority. A compound term expressed in Operator
notation (i.e. its principal functor occurs as an Operator)
has a priority which is equal to or greater than the
priority of its principal functor (see 6.3.4.1).

c) 1 is a set of integers (see 7.1.2) such that i E 1 is
defined for each ferm of integer token (6.4.4) by:

Integer constant - The number obtained by inter-
preting as a decimal number the concatenation of
the decimal digit char characters forming the
integer constant.

Specifier - The specifier of an Operator (which defines
its class and associativity, see table 4).

Binary constant - The number obtained by inter-
preting as a binary number the concatenation of the
binary digit char characters forming the binary
constant.

Condition - One or more additional conditions which
must be satisfied for the rule of the term grammar to
aPPlYs

Octal constant - The number obtained by inter-
preting as an octal number the concatenation of the
octal digit char characters forming the octal
constant.

6.1.2 Abstract term Syntax

Prolog is typeless in the sense that it includes only one data
type, whose members are called terms. The enumerable
set of terms is defined as the Union of disjoint sets which
shall include V, A, I, F, and CT where: Hexadecimal constant - The number obtained by

interpreting as a hexadecimal number the concate-
nation of the hexadecimal digit char characters
forming the hexadecimal constant.

a) V is a set of variables such that for each ferm of
variable token (6.4.3):

Character code constant - The value in the collat-
ing sequence (6.6) of the Character denoted by the
Single quoted Character.

1) Every occurrence of the same named variable in
a read-term corresponds to the same member of V,
and

d) F is a set of floating Point values (see 7.1.3) and
,f E F is defined for each float number by rounding
(see 9.1.4.1) the real number defined by

(integer + fraction) * 10exponent where:

2) Every other named variable corresponds to a
different member of V, and

3) Every anonymous variable corresponds to a dif-
ferent member of V.

integer - The number obtained by interpreting as
a decimal number the concatenation of the charac-
ters forming the integer constant of the float
number token.

b) A is a set of atoms such that the name n of a E A
is defined by:

1) n is the two characters [] for the empty list.
f raction - The number obtained by interpreting
as a decimal fraction the concatenation of “0 .” and
the characters forming frac t ion.

2) n is
brackets.

the two characters {} for the empty curly

14

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

exponent - If float nutier has no exponent
then Zero, else the number obtained by interpreting
as a signed decimal number the concatenation of the
characters sign and integer constant formingthe
exponent.

p text = clause term, p text ;
Abstract: c . t c t

p text = ;
Abstract: nd

e) CT is a set where c E CT is defined for each
compound term, and c is defined as f (xr , . . . , z,)
where:

6.2.1.1 Directives
1) f is the functor name of the compound term, and

directive term = term, end ;
Abstract: dt dt
Priority : 1201
Condition: The principal functor of dt is (: -) / 1

2) n is the arity of the compound term, and

3)
the

XI,-4-h for all n > 0, are the arguments of
compound term.

Prolog text (6.2) is
list x where x is:

represented by an abstract
directive = directive term ;

Abstract: d . .- (4
a) d-t where d is the abstract Syntax for a directive,
and t is Prolog text, or

NOTE - Subclause 7.4.2 defines the possible directives and
their meaning. b) ca t where c is the abstract Syntax for a clause, and

t is Prolog text, or

C> nd, the empty list. 6.2.1.2 Clauses

clause term = term, end ;
Abstract: c c
Priority: 1201
Condition: The principal functor of c is not (: -) / 1

NOTES

1 A quoted token that contains no
Character is the null atom.

Single quoted

2 The middle dot () denotes associative
directives and clauses.

concatenation of the
NOTE - Subclause 7.4.3 defines how each clause becomes
part of the database.

6.2 Prolog text and data
6.2.2 Prolog data

Prolog text is a sequence of read-terms which denote
directives, and (2) clauses of user-defined procedures.

(1)
A Prolog read-term tan be read as data by calling the
built-in predicate read-term/ 3 (8.14.1).

Subclause 7.4 defines the correspondence between Prolog
text and the complete database.

read term = term, end ;
Abstract: a a
PriOrity: 1201 6.2.1 Prolog text

Prolog
terms.

text is a sequence of directive-terms clause-
NOTE - Any layout text before the term is regarded as part
of the first token of the term. A read-term ends with the end
token. prolog text = p text ;

Abstract: pt Pt

6.3 Terms
p text = directive term, p text ;

Abstract: d - t d t Every Prolog term is either an atomic term (6.3.1), a
variable (6.3.2), or a compound term (6.3.3).

15

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

6.3.1 Atomic terms

6.3.1.1 Numbers

term = integer ;
Abstract: n n
Priority: 0

atom = open curly, close curly ;
Abstract: { }

An atom is a name, or 11 (the empty list) ,
empty curly brackets).

Or 0 @h e

NOTE - An atom which is an Operator
in Order to denote a term of priority 0.

needs to be bracketed

term = float number ;
Abstract: Y r
Priority: 0

6.3.2 Variables

term = variable ;
Abstract: ‘u V

Priority: 0
6.3.1.2 Negative numbers

term = name, integer ;
Abstract: -n a n
Priority: 0
Condition: a is -

6.3.3 Compound terms - functional notation

Every compound term tan be expressed in functional
notation. When the principal functor is an Operator, it tan
also be expressed in Operator notation (6.3.4). When the
principal functor is ’ . f /2 it tan also be expressed in list
notation (6.3.5), and sometimes it tan be expressed as a
double quoted list (6.3.7). When the principal functor is
{} / 1 it tan also be expressed as a curly bracketed term
(6.3.6).

term = name, float nurder ;
Abstract: -T a T
Priority: 0
Condition: a is -

which is the name - followed directly by a numeric
t denotes the corresponding negative constant. constan

Functional notation is a subset of the Prolog
which all compound terms tan be expressed.

Syntax in

6.3.1.3 Atoms
A compound term written in functional notation has the
form f(Al,... ,An) where each argument Ai is an arg
and they are separated by , (comma).

term = atom ;
Abstract: a a
Priori ty : 0
Condition: a is not an Operator term = atom, open ct, arg list, close ;

Abstract: f (1)
Priority: 0

f

arg list
Abstract: a

arg list
Abstract: a, 1

6.3.3.1 Arguments

1

arg ;
Cl

term = atom ;
Abstract: a a
Priority: 1201
Condition: a is an Operator

An atom which is an Operator shall not be the immediate
Operand (3.120) of an Operator. The priority of a term
consisting of an Operator is therefore given the priority
1201 rather than the normal 0.

arg I cornma, arg list ;
a 1

atom = name ;
a Abstract:

An argument (represented by arg in the Syntax rules)
occurs as the argument of a compound term or element of
a list. It tan be an atom which is an Operator, or a term
with priority not greater than 999. When an argument is
an arbitrary term, its priority shall be less than the priority

atom = open list, close list ;
Abstract: []

16

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 w ISO/IEC 132114 : 1995(E)

Table 4 - Specifiers for Operators

Specifier Class Associativity

fx prefix non-associative
fY prefix right-associative

xfx infix non-associative
XfY infix right-associative
YfX infix left-associative
xf postfix non-associative
Yf postfix left-associative

of the I , I (comma) Operator so that there is no conflict
between comma as an infix Operator and comma as an
argument or list element separator.

arg = atom ;
Abstract: a a
Condition: a is an Operator

arg = term ;
Abstract: a
Priori ty : c)99

NOTE - This concept of an “argument” ensures that both
the terms f(x,y) and f(:-, l [:-, :-I:-1) are
syntactically valid whatever operato; ’ definitions are currently
defined. Comma is not an atom, and the following ‘terms’
have Syntax errors: ft, d, La, I 1~1, and [a,bl ,l;
but the following terms are syntactically valid: f (’ , ’ , a) ,
[a,‘,‘Ivl, and b,bl’,‘l.

6.3.4 Compound terms - Operator notation

Operator notation tan be used for inputting or outputting
a compound term whose functor Symbol is an Operator
defined in the Operator table (see 6.3.4.4, table 7).

An Operator is an atom defined by its specifier and priority.

The priority of an Operator is an integer in the range R,
where

R = {T,T E 2 1 1 < T < 1200)
A lower priority meai stringer Operator binding.

The specifier of an Operator (defined by table 4) is a
mnemonic that defines the class (prefix, infix or postfix)
and the associativity (right-, left- or non-associative) of
the Operator.

An Operand (3.120) with the same (or smaller) priority
as a right-associative Operator which follows that Operator
need not be bracketed.

Table 5 - Valid and invalid terms

Invalid term Valid term

fx fx 1 fx (fx 1)

lxf xf (1 xf) xf

lxfx 2 xfx 3 (1 xfx 2) xfx 3

lxfx 2 xfx 3 1 xfx (2 xfx 3)

Table 6 - Equivalent terms

Unbracketed Equivalent bracketed
term term

fY fY 1 fy (fy 1)
lxfy 2 xfy 3 lxfy (2 xfy 3)
lxfy 2 yfx 3 1 xfy (2 yfx 3)

fY 2 Yf fy (2 yf)

1 Yf Yf (1. yf) yf

1 yfx 2 yfx 3 (1 yfx 2) yfx 3

An Operand with smaller priority than a 1
Operator which precedes that Operator need
eted.

An Operand with the same priority as a 1

eft-associative
not be brack-

eft-associative
Operator which precedes that Operator need only be
bracketed if the principal functor of the Operand is a
right-associative Operator.

An Operand with the same priority as a non-associative
Operator must be bracketed.

The Iterm non-terminal denotes a subset of terms, namely
those allowed as the left Operand of a left-associative
Operator with a given priority.

NOTES

1 The examples of terms in tables 5 and 6 assume that each
atom fx, fy, xfx, xfy, yfx, xf and yf is an Operator with
the corresponding specifier and same priority.

2 Table 5 Shows some invalid terms and how they need to be
bracketed to be valid.

3 Table 6 Shows equivalent bracketed and unbracketed terms.
The Operators xfy and yf x are assumed to have the same
priority, and the Operators fy and yf are also assumed to have
the same priority.

17

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

6.3.4.1 Operand

An Operand (3.120) is a term.

term = lterm ;
Abstract: a a
Priority: n 12

lterm = term ;
Abstract: a a

Priority: n 72 - 1

A term
term of

with smaller priority tan
larger priority is allowed.

always occur where a

term = open, term, close ;
Abstract: a a
Priority: 0 1201

term = open ct, term, close ;
Abstract: a a

Priority: 0 1201

Brackets are used to override the priority of Operators.

lterm = term, op ;
Abstract: f(a) a .f
Priority: n 12 - 1 n

Specifier: xf

term = op, term ;
Abstract: f(a) f a
Priority: n n 12

Specifier: fY
Condition:If a is a numeric constant, f is not -
Condition: The first token of a is not open ct

lterm = op, term ;
Abstract: f(a) f a
Priori ty : 72 12 12 - 1
Specifier: fx
Condition: If a is a numeric constant, f is not -
Condition: The first token of a is not open ct

NOTES

1 The condition “the first token of a is not open ct" defines
the use of - in the term - (1, 2) as functor and the use in
- (1, 2 > as prefix Operator.

2 The lterm non-terminal assigns an unambiguous reading
to terms such as fy t 1 yf where the Operators have the same
priority.

6.3.4.2 Operators as functors
6.3.4.3 Operators

lterm = term, op, term ;
Abstract: f (a, b) a f b
Priori ty : n n-l n n-l
Specifier: xfx

lterm = lterm, op, term ;
Abstract: f (a, b) a f b
Priority: n n n n-1
Specifier: YfX

term = term, op, term ;
Abstract: f(a, b) a f b
Priority: n n-l n n
Specifier: X fY

lterm = lterm, op ;
Abstract: f(a) a f
Priority: 72 n n
Specifier: Yf

An Operator is an atom (6.3.1.3).

A comma (6.4.8) shall be equivalent to the atom , , ,
when , , , is an Operator.

op = atom ;
Abstract: a a
Priority: n n
Specifier: s s
Condition: a is an Operator

op = comma ;
Abstract: ,
Priority: 1000
Specifier: xfy

There
name.

shall not be two Operators with the same class and

There shall not be an infix and a postfix Operator with the
same name.

18

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISOAEC 132114 : 1995(E)

Table 7 - The Operator table

Priority Specifier Operator(s)

1200 xfx -- --> .
1200 fx :- ?-
1100 xfy - I
1050 XfY ->
1000 X fY I I

900 fy \1
700 xfx = \=
700 xfx == \ == @< @=< @> @>=
700 xfx = . .
700 xfx is =:= =\= < =< > >=
500 YfX + - /\ \/
400 YfX * / // rem mod -c< >>
200 xfx **

200 xfy n
200 fY - \

NOTES

1 Comma is a solo Character (6.5.3), and a token (6.4) but
not an atom.

2 A comma token
I l I as it is defined

is treated as synonymous wi
in the initial Operator table.

th the Operator

3 The third argument of op/ 3 (8.14.3) may be any atom
except 1 , 1 so the priority of the comma Operator cannot be
changed.

4 The constraints on multiple Operators allow a parser to
decide immediately the specifier of an Operator without too
much look ahead. For example

t1 yf-or-yfx fy-or-yf t2
= tl yf-or-yfx (fy-or-yf t2 >

tl yf-oryfx fy-or-yf yf
= ((tl yf-or-yfx 1 fy-or-yf 1 yf

In these cases knowledge about the complete term is necessary
in Order to decide whether to interpret the yf -or-yfx as a yf
or yfx Operator.

6.3.4.4 The Operator table

The Operator table defines which atoms shall be regarded
as Operators when (1) a sequence of tokens is parsed as a
read-term by the built-in predicate read-term/3 (8.14.1),
or (2) Prolog text is prepared for execution (7.4), or (3)
output by the built-in predicate (8.14.2).

Table 7 defines the predefined Operators, that is, those
Operators defined in the initial state of the Operator table.

NOTES

1 The predicate indicators whose predicate names are oper-
ators are: (a) (=) /2 (Prolog unify), (\=) / 2 (not Prolog
unifiable), (b) Term comparison, (c) (= . .) /2 (univ), (d)
Arithmetic evaluation, (e) Arithmetic comparison, (f) (\ +) / 1
(not provable).

2 The control constructs defined as Operators are: (a) (I) /2
(conjunction), (b) (;) / 2 (disjunction, if-then-else), (c) (->) / 2
(if-then).

3 The evaluable functors defined as Operators are: (a) binary
arithmetic functors, (b) (-) / 1 (negation), (c) bitwise functors.

4 The Operator table may be altered during execution, see
op/3 (8.14.3).

6.3.5 Compound terms - list notation

List notation tan be used for inputting or outputting a
compound term with principal functor I . I /2 (dot).

term = open list, items, close list ;
Abstract: Z 1
Priority: 0

items = arg I comma, items ;
Abstract: .(h, Z> h 1

items = arg, ht sep, arg ;
Abstract: .(h, t) h t

items = arg ;
Abstract: *@SI) t

NOTE - For the Syntax of an empty list, see 6.3.1.3.

6.3.5.1 Examples

A list is generally of the ferm [El I . . . I En 1 Taill

where the items are separated by I (comma).

The following examples show terms expressed in list and
functional notation.

Cal == Aa, HL

ta, bl == Aa, .(b, HH.

[a 1 b] == Ja, b).

19 /

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

IECNORM.COM : Click to view the full PDF of ISO/IEC 13211-1:1995

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995

close (* 6.4 *)
= [layout text sequence (* 6.4.1 *) J ,

close token (* 6.4.8 *) ;
open list (* 6.4 *)

= [layout text sequence (* 6.4.1 *)] ,
open list token (* 6.4.8 *) ;

close list (* 6.4 *)
= [layout text seq-uence (* 6.4.1 *)] ,

close list token (* 6.4.8 *) ;
open curly (* 6.4 *)

= [layout text sequence (* 6.4.1 *)] ,
open curly token (* 6.4.8 *> ;

close curly (* 6.4 *)
= [layout text sequence (* 6.4.1 *)] ,

close curly token (* 6.4.8 *> ;
ht sep (* 6.4 *)

= [layout text sequence (* 6.4.1 *)] ,
head tail separator token (* 6.4.8 *) ;

comma (* 6.4 *)
= [layout text seguence (* 6.4.1 *>] ,

comma token (* 6.4.8 *) ;

end (* 6.4 *)
= [layout text sequence (* 6.4.1 *) 1 ,

end token (* 6.4.8 *) ;

concatenating the characters of
A token shall not be followed by characters such that

the token with these
specified by the above characters forms a valid token as

Syntax.

NOTES

1 This is the eager consumer rule: 123 . e defines the tokens
123 . e. A layout text is sometimes necessary to
separate two tokens.

2 A quoted token begins and ends with the same quote
Character, and tan contain that quote Character only as (a) part
of a meta escape sequence, or (b) two adjacent quote characters,
for example 'ab"cd Ie', or ~tfl~l~~~~~gt~, or \ ' \ \.

3 Not every sequence of tokens forms a valid term. Additional
requirements are made in subclause 6.3.

6.4.1 Layout text

Layout text separates tokens and is also used to resolve
two ambiguities:

a) 1s . (dot) a graphic token or an end token?

b) 1s an atom followed by an open token the functor of
a compound term (6.3.3) or a prefix Operator (6.3.4.2)?

layout text sequence (* 6.4.1 *)
= layout text (* 6.4.1 *),

{ layout text (* 6.4.1 *) } ;

layout text (* 6.4.1 *)
= layout char (* 6.5.4 *)
1 comment (* 6.4.1 *) ;

ISO/IEC 132114 : 1995(E)

The comment text of a Single line comment shall not
contain a new line char.

The comment text of a bracketed comment shall not
contain the comment close sequence.

comment (* 6.4.1 *)
= Single line comment (* 6.4.1 *)
1 bracketed comment (* 6.4.1 *) ;

Single line comment (* 6.4.1 *)
= end line comment char (* 6.53 *),

comment text (* 6.4.1 *) ,
new line char (* 6.5.4 *) ;

bracketed comment (* 6.4.1 *)
= comrnent open (* 6.4.1 *),

comment text (* 6.4.1 *),
comment close (* 6.4.1 *) ;

comment open (* 6.4.1 *)
= comment 1 char (* 6.4.1 *),

comment 2 char (* 6.4.1 *) ;
comment close (* 6.4.1 *)

= comment 2 char (* 6.4.1 *),
comment 1 char (* 6.4.1 *) ;

comment text (* 6.4.1 *)
= { char (* 6.5 *) } ;

comment 1 char (* 6.4.1 *) = 'V" ;
comment 2 char (* 6.4.1 *) = "*" ;

6.4.2 Names

name token (* 6.4.2 *)
= letter digit token (* 6.4.2 *)
1 graphic token (* 6.4.2 *)
1 guoted token (* 6.4.2 *)
1 semicolon token (* 6.4.2 *)
1 tut token (* 6.4.2 *) ;

letter digit token (* 6.4.2 *)
= small letter char (* 6.5.2 *),

{ alphanumeric char (* 6.5.2 *) } ;

A graphic token shall not begin with the Character sequence
comment open (6.4.1).

A graphic token shall not be the Single Character . (dot)
when . is followed by a layout char or Single line
comment.

graphic token (* 6.4.2 *)
= graphic token char (* 6.4.2 *),

{ graphic token char (* 6.4.2 *) > ;

graphic token char (* 6.4.2 *)
= graphic char (* 6.5.1 *)
1 backslash char (* 6.5.5 *) ;

21
I /

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

A quoted token consists of the characters denoted by
the sequence of Single quoted Character (6.4.2.1)
appearing within the quoted token. If this Character
sequence forms a valid atom without quotes the quoted
token shall denote that atom.

A quoted token which does not contain a Single quo ted
Character is the null atom.

A quoted token tan be spread over two or more lines by
means of continuation escape sequences.

A quoted token QT containing one or more continuation
escape sequences shall be equivalent to the quoted token
which would be obtained by removing the continuation
escape sequences from QT.

quoted token (* 6.4.2 *)
= Single quote char (* 6.5.5 *),

{ Single qyuoted item (* 6.4.2 *) } ,
Single quote char (* 6.5.5 *) ;

Single qyuoted item (* 6.4.2 *)
= Single qyuoted Character (* 6.4.2.1 *)
1 continuation escape sequence (* 6.4.2 *) ;

continuation escape sequence (* 6.4.2 *)
= backslash char (* 6.5.5 *),

new line char (* 6.5.4 *) ;

semicolon token (* 6.4.2 *)
= semicolon char (* 6.5.3 *) ;

tut token (* 6.4.2 *)
= tut char (* 6.5.3 *) ;

NOTE - 'abc' and abc denote the same atom.

But ’ \ \ / I and \ \ / do not denote the same atom because \
is used to Start an escape sequence in a quoted token.

6.4.2.1 Quoted characters

Single guoted Character (* 6.4.2.1 *)
= non quote char (* 6.4.2.1 *)
1 Single quote char (* 6.5.5 *),

Single quote char (* 6.5.5 *)
1 double q-uote char (* 6.5.5 *)
1 back quote char (* 6.5.5 *) ;

double quoted Character (* 6.4.2.1 *>
. = non quote char (* 6.4.2.1 *)

1 Single q-uote char (* 6.5.5 *)
1 double quote char (* 6.5.5 *),

double quote char (* 6.5.5 *)
1 back quote char (* 6.5.5 *) ;

back quoted Character (* 6.4.2.1 *)
= non quote char (* 6.4.2.1 *)
1 Single quote char (* 6.5.5 *)
1 double qyote char (* 6.5.5 *)
1 back quote char (* 6.5.5 *),

back quote char (* 6.5.5 *) ;

non quote char (* 6.4.2.1 *)
= graphic char (* 6.5.1 *)
1 alphanumeric char (* 6.5.2 *)
1 solo char (* 6.5.3 *)
1 space char (* 6.5.4 *)
1 meta escape sequence (* 6.4.2.1 *)
1 control escape sequence (* 6.4.2.1 *)
1 octal escape sequence (* 6.4.2.1 *)
1 hexadecimal escape sequence (* 6.4.2.1 *) ;

A quoted Character is a Single quoted Character
or a double quoted Character or a back quoted
Character.

A Single quoted Character which consists of two adjacent
Single quote chars denotes a Single quote char. A double
quoted Character which consists of two adjacent double
quote chars denotes a double quote char. A back quoted
Character which consists of two adjacent back quote chars
denotes a back quote char.

A quoted Character which consists of a graphic char, or an
alphanumeric char, or a solo char, or a space char denotes
that char.

A meta escape sequence denotes the escaped meta char.

meta escape sequence (* 6.4.2.1 *)
= backslash char (* 6.5.5 *),

meta char (* 6.55 *) ;

A control escape sequence denotes the control Character
indicated by the name of the symbolic control char,
iff that control Character is an extended Character of the
processor Character set (6.5).

control escape seguence (* 6.4.2.1 *)
= backslash char (* 6.5.5 *),

symbolic control char (* 6.4.2.1 *) ;

symbolic control char (* 6.4.2.1 *)
= symbolic alert char (* 6.4.2.1 *)
1 symbolic backspace char (* 6.4.2.1 *)
1 symbolic carriage return char (* 6.4.2.1
1 symbolic form feed char (* 6.4.2.1 *)
1 symbolic horizontal tab char (* 6.4.2.1 *)
1 symbolic new line char (* 6.4.2.1 *)
1 symbolic vertical tab char (* 6.4.2.1 *) ;

symbolic alert char (* 6.42.1 *)
= " a " ;

symbolic backspace char (* 6.4.2.1 *)
= "b" ;

symbolic carriage return char (* 6.4.2.1 *)
= " r " ;

symbolic form feed char (* 6.4.2.1 *)
= ‘1 f 1’ ;

symbolic horizontal tab char (* 6.4.2.1 *)
= " t " ;

symbolic new line char (* 6.4.2.1 *)
= 'In" ;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

symbolic vertical tab char (* 6.4.2.1 *)
= "V" ;

An octal or hexadecimal escape sequence denotes the
Character from the processor Character set (6.5) whose
value according to the collating sequence (6.6) is equal to
the value denoted by the octal or hexadecimal constant.

octal escape sequence (* 6.4.2.1 *)
= backslash char (* 6.5.5 *),

octal digit char (* 6.5.2 *),
{ octal digit char (* 6.5.2 *) } ,
backslash char (* 6.5.5 *) ;

hexadecimal escape sequence (* 6.4.2.1 *)
= backslash char (* 6.5.5 *),

symbolic hexadecimal char (* 6.4.2.1 *),
hexadecimal digit char (* 6.5.2 *),
{ hexadecimal digit char (* 6.5.2 *) } ,
backslash char (* 6.5.5 *) ;

symbolic hexadecimal char (* 6.4.2.1 *)
= "X" ;

NOTES

1 A new line char is not allowed in a quoted Character.

2 \ cannot be followed by a space in a quoted token, and a
new line char occurs in a quoted token only as part of a
continuation escape sequence (6.4.2), so an atom ’ a\
bf does not conform to this Syntax unless \ is followed by a
new line char in which case the atom is equivalent to the
atoms ’ ab' and ab.

3 The representations of the symbolic control characters are
those recommended by the International Standard for C (ISO/IEC
9899).

4 A back quoted string (6.4.7) contains back quoted characters,
but this part of ISO/IEC 13211 does not define a token (or
term) based on a back quoted string.

6.4.3 Variables

variable token (* 6.4.3 *)
= anonymous variable (* 6.4.3 *)
1 named variable (* 6.4.3 *) ;

anonymous variable (* 6.4.3 *)
= variable indicator char (* 6.4.3 *) ;

named variable (* 6.4.3 *)
= variable indicator char (* 6.4.3 *),

alphanumeric char (* 6.5.2 *),
{ alphanumeric char (* 6.5.2 *))

1 capital letter char (* 6.5.2 *),
{ alphanumeric char (* 6.5.2 *) } ;

variable indicator char (* 6.4.3 *)
= underscore char (* 6.5.2 *) ;

6.4.4 Integer numbers

integer token (* 6.4.4 *)
= integer constant (* 6.4.4 *)
1 Character code constant (* 6.4.4 *)
1 binary constant (* 6.4.4 *)
1 octal constant (* 6.4.4 *)
1 hexadecimal constant (* 6.4.4 *) ;

integer constant (* 6.4.4 *)
= decimal digit char (* 6.5.2 *),

{ decimal digit char (* 6.5.2 *) } ;

Character code constant (* 6.4.4 *)
= " 0 " I Single quote char (* 6.5.5 *),

Single guoted Character (* 6.4.2.1 *) ;

binary constant (* 6.4.4 *)
= binary constant indicator (* 6.4.4 *),

binary digit char (* 6.5.2 *),
{ binary digit char (* 6.5.2 *) } ;

binary constant indicator (* 6.4.4 *)
= '1 Ob 'I ;

octal constant (* 6.4.4 *)
= octal constant indicator (* 6.4.4 *),

octal digit char (* 6.5.2 *),
{ octal digit char (* 6.5.2 *) } ;

octal constant indicator (* 6.4.4 *)
= " 00" ;

hexadecimal constant (* 6.4.4 *>
= hexadecimal constant indicator (* 6.4.4 *),

hexadecimal digit char (* 6.5.2 *),
{ hexadecimal digit char (* 6.5.2 *) } ;

hexadecimal constant indicator (* 6.4.4 *)
= " Ox" ;

An integer constant is unsigned. Negative integers are
defined by the term Syntax (6.3.1.2).

A Character code constant denotes the value of the Character
according to the collating sequence (6.6).

6.4.5 Floating Point numbers

float number token (* 6.45 *)
= integer constant (* 6.44 *),

fraction (* 6.4.5 *),
[exponent (* 6.4.5 *) 1 ;

fraction (* 6.4.5 *)
= decimal Point char (* 6.4.5 *),

decimal digit char (* 6.5.2 *),
{ decimal digit char (* 6.5.2 *)) ;

exponent (* 6.4.5 *)
= exponent char (* 6.4.5 *),

sign (* 6.4.5 *) ,
integer constant (* 6.4.4 *) ;

sign (* 6.4.5 *)
= negative sign char (* 6.4.5 *)

23

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

1 [positive sign char (* 6.4.5 *) 1 ;

positive sign char (* 6.4.5 *) = "+" ;
negative sign char (* 6.4.5 *) = "-" ;
decimal Point char (* 6.4.5 *) = "." ;
exponent char (* 6.4.5 *) = "e" 1 “E” ;

NOTE - A float number token is unsigned. Negative
floating Point values are defined by the term Syntax (6.3.1.2).

6.4.6 Double quoted lists

A double quoted list token denotes a term which depends
on the value of the Prolog flag double-quotes (7.11.2.5)
at the time the read-term or Prolog text is input.

A double quoted list token tan be spread over two or
more lines by means of continuation escape sequences.

A double quoted list token DQ containing one or more
continuation escape sequences shall be equivalent to the
double quoted list token which would be obtained by
removing the continuation escape sequences from DQ.

double quoted list token (* 6.4.6 *>
= double quote char (* 6.5.5 *),

{ double quoted item (* 6.4.6 *) } ,
double quote char (* 6.5.5 *) ;

double quoted item (* 6.4.6 *)
= double quoted Character (* 6.4.2.1 *)
1 continuation escape sequence (* 6.4.2 *> ;

6.4.7 Back quoted strings

A back quoted string is a sequence of back quote chars
appearing within the back quoted string.

A back quoted string tan be spread over two or more
lines by means of continuation escape sequences.

A back quoted string BS containing one or more contin-
uation escape sequences shall be equivalent to the back
quoted string which would be obtained by removing the
continuation escape sequences from BS.

back quoted string (* 6.4.7 *)
= back q-uote char (* 6.5.5 *>,

{ back quoted item (* 6.4.7 *) } ,
back q-uote char (* 6.5.5 *) ;

back quoted item (* 6.4.7 *)
= back quoted Character (* 6.4.2.1 *)
1 continuation escape sequence (* 6.4.2 *) ;

NOTE - This part of ISO/IEC 13211 does not define a token
(or term) based on a back quoted string.

It would be a valid extension of this part of ISO/IEC 13211 to
define a back quoted string as denoting a Character string
constant.

6.4.8 Other tokens

open token (* 6.4.8 *>
= open char (* 6.5.3 *) ;

close token (* 6.4.8 *>
= close char (* 6.5.3 *> ;

open list token (* 6.4.8 *>
= open list char (* 6.5.3 *) ;

close list token (* 6.4.8 *)
= close list char (* 6.5.3 *) ;

open curly token (* 6.4.8 *>
= open curly char (* 6.5.3 *) ;

close curly token (* 6.4.8 *)
= close curly char (* 6.5.3 *) ;

head tail separator token (* 6.4.8 *)
= head tail separator char (* 6.5.3 *) ;

comma token (* 6.4.8 *)
= comma char (* 6.5.3 *) ;

end token (* 6.4.8 *)
= end char (* 6.4.8 *) ;

end char (* 6.4.8 *) = " . " ;

An end char shall be followed by a layout Character or a
9 0.

NOTES

1 A, (comma) has three different
the context where it appears: it tan
compound term (6.3.3), it tan separate
or tan be equivalent to the Operator ’

meanings, depending on
separate arguments of a
elements of a list (6.3.5),
I I (6.3.4.2).

2 A read-term is terminated by . (end char).

3 The eager consumer rule applies to the parsing of an end
token. An end char is not an end token if it could be one
Character of a graphic token (6.4.2), so a layout char
is necessary to separate an end char from a bracketed
comment.

6.5 Processor Character set

The processor Character set PCS is an implementation
defined Character set. The members of PCS shall include
each Character defined by char (6.5).

PCS may include additional members, known as extended
characters. It shall be implementation defined for each
extended Character whether it is a graphic char, or an
alphanumeric char, or a solo char, or a layout char, or a
meta char.

char (* 6.5 *>
= graphic char (* 6.5.1 *>

24

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

1 alphanumeric char (* 6.5.2 *)
1 solo char (* 6.5.3 *)
1 layout char (* 6.5.4 *)
1 meta char (* 6.5.5 *) ;

NOTES

1 Prolog text and data input from text streams consist of a
sequence of characters taken from PCs.

2 Examples of extended characters are Single-octet characters
such as Gl graphic characters in ISO 8859-1, or multi-octet
characters such as Chinese, Japanese, or Korean characters.
Examples of extended small letter char (6.52) are small letters
with grave or acute accent and Japanese Kanji characters.
Examples of extended capital letter char (6.52) are capital
letters with grave or acute accent.

6.5.1 Graphit characters

graphic char (* 6.5.1 *)
- II 1, II ll 1, II '1 II ll 1' * 8' '1 '1 '1 _

5 '1 # / II 1 1 II $: '1 1 1 ll & < 11 1 1 '1 = 1' 1 1 '1 + > II 1 1 '1 ? 1' 1 1 II @ - II

I II A '1 I '1 - '1 .
I

A graphic Character denotes itself in a quoted Character.

6.5.2 Alphanumeric characters

alphanumeric char (* 6.5.2 *)
= alpha char (* 6.5.2 *)
1 decimal digit char (* 6.5.2 *) ;

alpha char (* 6.5.2 *)
= underscore char (* 6.5.2 *)
1 letter char (* 6.5.2 *) ;

letter char (* 6.5.2 *)
= capital letter char (* 6.5.2 *)
1 small letter char (* 6.5.2 *) ;

small letter char (* 6.5.2 *)
= II a II 1 II b II 1 II c II 1 II d 81 1 II e II 1 II f II 1 II g II 1 t' h tt

I ” i ” I It ~II 1 II~II 1 ,111t 1 II,,I 1 II~II 1 11011 1 llptl

I llqll 1 llrll 1 lls" 1 ,It" 1 ,tut' 1 'IV" 1 IIwll 1 llxll

I “Y” I “z” ;
capital letter char (* 6.5.2 *)

= ll A It 1 It B It 1 It C It 1 It D ,I 1 It E II 1 II F II 1 It G '1 1 II H It

I ',Ill 1 'IJ" 1 IIKII 1 ll~ll 1 ,IM" 1 ,Lall 1 "0" 1 llpll

1 ,IQ" 1 ,,Rll 1 llsll 1 ,,l-p" 1 IIU" 1 ll~" 1 ll~ll 1 IIX"

I “y” I “z” ;
decimal digit char (* 6.5.2 *)

y

'1 II 1' '1 '1 ll '1 '1 II II

II 0 5 II 1 1 II 1 6 II 1 1 II 2 7 II 1 1 II 3 8 II 1 1 II 4 9 II ;

binary digit char (* 6.5.2 *)
= ” 0 ” I ” 1 ” ;

octal digit char (* 6.5.2 *)
= ” ” ” ” '1 '1 '1 '1 II II 0 I 1 1 2 1 3 1 4

1 II 5 II 1 II 6 II 1 II 7 II ;

hexadecimal digit char (* 6.5.2 *)
= II II '1 '1 '1 II '1 '1 '1 1' () 1 1 1 2 1 3 1 4

1 11 5 11 1 II 6 II 1 II 7 II 1 II 8 11 1 It 9 It

1 (‘IA” I lt a II) 1 (0 B II 1 It b lt) 1 (II C II 1 II c II)

I (lt D '1 1 It d tt) 1 (It E It 1 II e '1) 1 (II F II 1 II f lt) ;

underscore char (* 6.5.2 *) = " " ; -

An alphanumeric Character denotes itself in a quoted
Character.

NOTE - The alphanumeric characters tan be concatenated to
form:

a> an atom when they follow a small letter char, or

b) a variable when they follow an underscore char or a
capital letter char.

Two such atoms and variables that are adjacent must be separated
by a layout Character or comment.

6.5.3 Solo characters

solo char (* 6.5.3 *)
=
I
I
I
I
I
I
I
I
I
I

tut

tut char (* 6.5.3 *)
open char (* 6.5.3 *)
close char (* 6.5.3 *)
comma char (* 6.5.3 *)
semicolon char (* 6.5.3 *)
open list char (* 6.5.3 *)
close list char (* 6.5.3 *)
open curly char (* 6.5.3 *)
close curly char (* 6.5.3 *>
head tail separator char (* 6.5.3 *)
end line comment char (* 6.5.3 *) ;

char (* 6.5.3 *) = " ! " ;
open char (* 6.5.3 *) = " (" ;
close char (* 6.5.3 *) = ")" ;
comma char (* 6.5.3 *) = ", " ;
semicolon char (* 6.5.3 *) = ";" ;
open list char (* 6.5.3 *) = " [" ;
close list char (* 6.5.3 *) = "1" ;
open curly char (* 6.5.3 *) = "{" ;
close curly char (* 6.5.3 *) = "}" ;
head tail separator char (* 6.5.3 *) = " 1" ;
end line comment char (* 6.5.3 *) = "%" ;

A solo Character denotes itself in a quoted Character.

NOTE - An unquoted solo Character is a Single Character
token except that % and the remaining characters on the line are
a comment that has no significance in Prolog text or a Prolog
read-term.

A solo Character need not be separated from the previous and
following tokens by a layout Character or comment.

6.5.4 Layout characters

layout char (* 6.5.4 *)
= space char (* 6.5.4 *)
1 horizontal tab char (* 6.5.4 *)
1 new line char (* 6.5.4 *) ;

25 j

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

The collating sequence integer for a quoted Character
(6.4.2.1) which is not a control escape sequence
or an octal escape sequence or a hexadecimal
escape sequence is the collating sequence integer for
the unquoted Character that the quoted Character denotes.

space char (* 6.5.4 *) = " " ;
horizontal tab char (* 6.5.4 *>

= implementation dependent ;
new line char (* 6.5.4 *)

= implementation dependent ;

The collating sequence integer for a quoted Character
which is a control escape sequence is implementation
defined.

A space char denotes itself in a quoted Character.

NOTE - An unquoted
to separate tokens, but

layout , Character is sometimes necessary
s not itself a token or part of a token. 1

The collating sequence integer for a quoted Character
which is an octal escape sequence is the value of the
octal characters interpreted as an octal integer.

6.5.5 Meta characters

meta char (* 6.5.5 *)
= backslash char (* 6.5.5 *)
1 Single quote char (* 6.5.5 *)
1 double q-uote char (* 6.5.5 *)
1 back quote char (* 6.5.5 *) ;

The collating sequence integer for a quoted Character
which is a hexadecimal escape sequence is the value
of the hexadecimal characters interpreted as a hexadecimal
integer.

backslash char (* 6.5.5 *) = "\" ;
Single quote char (* 6.5.5 *) = "' ;
double quote char (* 6.5.5 *) = "' ;
back quote char (* 6.5.5 *) = 1, \ 1, . I

The collating sequence integer for each extended Character
shall also be implementation defin ed.

NOTE - These requirements on the collating sequence are
satisfied by both ASCH and EBCDIC.

NOTE - A meta Character mod
following characters, for example:

ifies the meaning of the

a) A backslash Character Starts an escape sequence in a
quoted token, a double quoted list token, and a Character
code constant; but in a graphic token, it behaves like a
graphic char (6.5.1) (see 6.4.2).

7 Language concepts and semantics

This clause defines the semantic concepts of Prolog:

b) A Single quote char is used to indicate the Start and end
of a quoted token (see 6.4.2).

a) Subclause 7.1 defines a type to be associated with
each term,

c) A double quote char is used to indicate the Start and
end of a double quoted list token (see 6.4.6). W Subclause 7.2 defines an ordering for any two terms,

c) Subclause 7.3 defines unification in Prolog, d) A back quote char is used to indicate the Start and end
of a back quoted string.

d) Subclause 7.4 defines the meaning of Prolog text,

6.6 Collating sequence e) Subclause 7.5 defines the database,

The collating sequence is defined implicitly by associating
a unique collating sequence integer with each Character.

f) Subclause 7.6 defines the process of converting
terms to goals, and vice versa,

The collating sequence
(6.5) is implementation

integer
defined

for an
subject

unquoted Character
to the restrictions: g) Subclause 7.7 defines the execution of a goal,

h) Subclause 7.8 defines the control constructs of
Prolog,

a) The collating sequence integers for each capital
letter char from A to z shall be monotonically
increasing.

i) Subclause 7.9 defines the evaluation of a Prolog
term as an expression. b) The collating sequence integers for each small

let ter char from a to z shall be monotonically
j) Subclause 7.10 defines input/output concepts, increasing.

k) Subclause 7.11 defines flags, C) The collating sequence integers for each decimal
digit char from 0 to 9 shall be monotonically
increasing and contiguous. 1) Subclause 7.12 defines errors.

26

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISOLIEC 13211-1 : 1995(E)

‘9.1 Types NOTES

The type of any term is determined by its abstract Syntax
(6.1.2).

Every term has one of the following mutually-exclusive
types: V (variables), I (integers), F (floating Point values),
A (atoms), CT (compound terms).

A term with type 1, F, or A is an atomic term.

Built-in predicates which test explicitly the type of a term
are defined in 8.3.

NOTE - Prolog is not a typed language, and an argument of
a compound term or predication tan be any term whatsoever.
Nonetheless, some predications tan be satisfied only when the
arguments possess particular proper-Ges, and some evaluable
functors are defined only when the operands (3.121) possess
some particular property. Note also that although the control
constructs, built-in predicates and evaluable functors are defined
for all arguments and operands (3.120), it is often an error
unless an argument has a particular sort of value.

It is therefore convenient when defining Prolog
term as belonging to one of several disjoi nt types

to classify a

1 For example, f (x, Y), f (Y, X), X+Y, Y-l-X are all
witnesses of the variable set { X, Y }.

2 The concept of a witness is required when defining bagof / 3
(8.10.2) and setof /3 (8.10.3).

7.1.1.3 Existential variables set of a term

The existential variables set, EV, of a term T is a set of
variables defined recursively as follows:

a) If T is a variable or an atomic term then EV is the
empty set,

b) Else if T unifies with A (v, G) then EV is the
Union of the variable set (7.1 .l .l) of v and the existential
variables set of the term G,

c) Else EV is the empty set.

NOTE - For example, { X, Y } is the existential variables
set of each of the terms X”Y”f (X,Y,Z), (X,Y)“f (Z,Y,X),
and (x+Y) ^3.

7.1.1.4 Free variables set of a term
7.1.1 Variable

A variable is a member of a set V (see 6.1.2 a). While
a goal is being executed, unification may Cause a variable
to become unified with another term.

The free variables set, FV, of a term T with respect to a
term v is a set of variables defined as the set differente
of the variable set (7.1 .l. 1) of T and BV where BV is a
set of variables defined as the Union of the variable set of
v and the existential variables set (7.1 .1.3) of T.

NOTE - The Syntax of a variable is defined in 6.3.2 and 6.4.3.

NOTES
7.1.1.1 Variable set of a term

The variable set, SV, of a term T is a set of variables
defined recursively as:

a) If T is an atomic term then SV is the empty set,

b) Else if T is a variable then SV is the set { T },

c) Else if T is a compound
of the variable sets for each

term then SV is
of the arguments

the Union
of T.

NOTE - For example, { X, Y } is the variable set of each of
the terms f (X,Y), f (Y,X), X+Y, and Y-X-X.

1 For example, { X, Y } is the free variables set of X+Y+Z
with respect to f (z) , and also of z” (A+X+Y+Z) with respect
to A.

2
ba

The concept of
gof /3 (8.10.2)

a free
and s

7.1.2 Integer

variables
'etof/3

set is required when defining
(8.10.3).

An integer is a member of a set 1 (see 6.1.2 c) where 1
is a subset of 2 characterized by one or three Parameters.
The first Parameter is

bounded E Boolean (whether the set 1 is finite)

If bounded is false, it is the only Parameter. In this case,
7.1.1.2 Witness of a variable set

I=2
A witness of a
those variables

set of
occurs

variables is a
exactly once.

term in which each of
If bounded is true, the other two Parameters are

27

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

minint E 2 (the smallest integer in 1)
maxint E 2 (the largest integer in 1)

minint and maxint shall satisfy:

maxint > 0

and one of: minint = -(maxint)
minint = - (maxint + 1)

Given specific values for maxint and minint,

I= 1

NOTES

x E 2 (minint < x < maxint} - -

1 When bounded is false, expressions with an integer value
will not have a value int-Overflow, but might produce a resource
error (7. 12, 7.12.2 h) because of exhaustion of resources.

2 During execution the values of the Parameters bounded,
minint, and maxint are values associated with various flags
(see 7.11.1).

3 A processor may provide as an extension more than one
integer type. Esch integer type shall have a distinct set of the
operations described in 9.1.3.

4 The abstract Syntax of an integer number is defined in
6.3.1 .l and 6.3.1.2. The token Syntax of a (positive) integer
token is defined in 6.4.4.

7.1.2.1 Bytes

B, a set of bytes, is a subset of 1 where:

B = {i E I 1 0 < i < 255) - -

7.1.2.2 Character Codes

CG’, a set of Character Codes, is a subset of 1 where:

CC = {i E 1 1 3c E C, i = character-Code(c)}

where character-Code(c) is a function giving the collating
sequence integer (6.6) for a Character c (7.1.4.1) of the
processor Character set (6.5).

The mapping between a Character code and a
bytes shall be implementation defined.

sequence of

NOTE - A Character code may correspond to more than
one byte in a stream. Thus, inputting a Single Character may
consume several bytes from an input stream, and writing a
Single Character may output several bytes to an output stream.

There is a one-to-one mapping between members of C
(characters) (7.1.4.1) and members of CC (Character Codes).

7.1.3 Floating Point

A floating Point value is a member of a set F (see 6.1.2 d)
where F is a finite subset of R characterized by five
Parameters:

rE2 (the radix of F)

l-2 (the precision of F)
emin E 2 (the smallest exponent of F)
emax E 2 (the largest exponent of F)
denorm E Boolean (whether F contains

denormalized values)

These Parameters shall satisfy:

r>2
Äp>2

Ap-2<--emin<rP-1 - -
A p < emax < rp - I - -

These Parameters should also satisfy:

r is even
A 9-l > 106
A (em&-- 1) < -2 * (p - 1)
Aemax>2t(p-1)

A - 2 < (emin - 1) + emax < 2 - -

Given specific values for r, p, emin, emax, and denorm,

FN= (0, r)-i * Te-P
1 i, e E 2, rp-l < i 5 rp - 1, emin < e 5 emax}

FD= {AS+ remzn-p 1 i E 2, 1 2 i 5 rp -1 - 1)

F = FN U FD if denorm = true
= FN if denorm = false

The members of FN are called normalized floating Point
values because of the constraint 9-l < i < rJ’ - 1. The - -
members of FD are called denormalized floating Point
values.

The type F is called normalized if it contains only
normalized values, and called denormalized if it contains
denormalized values as well.

NOTES

1 This part of ISO/IEC 13211 does not advocate any particular
representation for floating Point values. However, concepts such
as rudix, precision, and exponent are derived from an abstract
model of such values described in the rationale (annex A) of
ISO/IEC 10967-1 - Language Independent Arithmetic (LIA).
The constraints on the Parameters are also justified and explained
there.

28

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

7.1.4.2 Boolean 2 The floating Point type has commonly, but misleadingly,
been known as “real” in many Prolog proces sors.

Bool is a subset of A.
3 The terms normalized and denormalized refer to the mathe-
matical values involved, not to any method of representation.

BOOM = { true , false }

4 The abstract Syntax of a floating Point number is defined
in 6.3.1.1 and 6.3.1.2. The token Syntax of a (positive) float
number token is defined in 6.4.5.

When an argument of an Option (see for example, 7.10) is
~001, a member of Bool shall be provided, and omitting
to specify such an Option shall be equivalent to providing
that Option with argument false.

7.1.3.1 Additional floating Point constants and sets

For convenience, five constants, and an unbounded set are
defined:

7.1.5 Compound term

A compound term is a member of a set CT (see 6.1.2 e)
and is an arbitrary data structure. It has a functor which
is an identifier with an arity, and a number of terms as
the arguments.

fmax = max {z E F 1 x > 0)
- - (1 - r-P> * yemax

frninN = min {z E FN 1 x > 0)
=r emin - 1

Arguments are numbered from 1.

fmino = min {z E FD 1 x > 0)
= remin-p

NOTE - The Syntax of a compound term is defined in 6.1.2 e,
6.3.3, 6.3.4, and 6.3.5.

fmin = min {z E F 1 z > 0)
= f?ninD if denorm = true
= fminN if denorm = false

7.1.6 Related terms

7.1.6.1 Variants of a term
epsilon = rl-p (the maximum relative error in FN)

Two terms are variants if there is a bijection s of the
variables of the former to the variables of the latter such
that the latter term results from replacing each variable x
in the former by XS.

F* =F
U { *i * re-P

1 i,eEZ, rp-l <i<rP--1, e>emax}

NOTES NOTES

1 F* contains values beyond those that are representable in
the type F.

1 For example, f (A, B, A) is a variant of f (X, Y, X),
g(A, B) is a variant of g(-, -), and P+Q is a variant of
P+Q.

7.1.4 Atom 2 The concept of a variant is required when defining bagof / 3
(8.10.2) and setof /3 (8.10.3).

An atom is a member of the set A (see 6.1.2 b) and serves
for example, as a predicate name, or a functor name, or
as a programmer’s mnemonic for one of several distinct
items.

7.1.6.2 Renamed copy of a term

A term T2 is a renamed copy of a term Tl if:

7.1.4.1 Characters and one-char atoms a> ~2 is a variant of ~1, and

C, a set of characters, is an implementation defined subset
of PCS, the processor Character set (6.Q

b) None of the variables in the variable set of T2
occur in any structure created during the execution of a
goal (7.7).

Any member of C is represented in a Prolog term by a
one-char atom whose name is that member of C. NOTE - The concept of a renamed copy of a term is required

when defining the execution of a user-defined procedure (7.7. lO),
and the built-in predicates functor/3 (8.5.1), copy-term/2
(8.5.4), clause/2 (8.8.1), etc.

NOTE - There is a one-to-one mapping between members of
C (characters) and members of CC (Character Codes) (7.1.2.2).

29

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

7.1.6.3 Iterated-goal term

The iterated-goal term G of a term T
recursively as follows:

a) If T unifies with A (-, Goal
iterated-goal term of Goal,

b) Else G is T.

is a term defined

then G is the

NOTES

1 For example, f oo (x) is the iterated-goal term of A (X,
foo(X)).

2 The concept of an iterated-goal term is required when
defining bagof /3 (8.10.2) and setof /3 (8.10.3).

7.1.6.4 Proper sublist of a list

SL is a proper sublist of a list L if:

a> SL is an empty list, or

b) SL is a proper sublist of the tail of L, or

c) The heads of SL and L are identical, and the tail of
SL is a proper sublist of the tail of L.

NOTES

1 For example, u,3,41, ~2~31, [5] , and [] are all
proper sublists of [1,2 , 3 ,4, 5] .

2 The concept of a proper sublist is required when defining
bagof /3 (8.10.2) and setof /3 (8.10.3).

7.1.6.5 Sorted list of a list

SL is the sorted list of a list L if:

4
an

L-element is an element of SL iff L-element is
element of L, and

b) Ll,element and L2-element are successive
elements of SL iff Ll-element term-precedes
L2-element during the creation of the sorted list
(see 7.2 especially 7.2.1).

NOTES

1 For example, [1,2,3] is the sorted list of [2,3,1,2,1];
and [x,Y, -X, -Y] (but not [X,Y, -Y, -x]) may be the sorted
list of [-X,Y,-Y,X].

2 The concept of a sorted list is required when defining
setof/3 (8.10.3).

7.1.6.6 Predicate indicator

PI is a predicate indicator if it is a compound term
, /’ (A, N) where A is an atom and N is a non-negative
integer.

The predicate indicator ’ / ’ (A, N) indicates the procedure
whose identifier is A and whose arity is N.

NOTE - In Prolog text and this part of ISO/IEC 13211 a
predicate indicator ' / ' (A, N) is normally written as A/N or
(A) /N depending on whether or not A is an Operator.

7.1.6.7 Predicate indicator sequence

PI-sequence is a predicate indicator sequence if it is
a compound term , , , (PI-~, PI-~) where ~1-1 is a
predicate indicator, and PI-n is a predicate indicator or a
predicate indicator sequence.

The predicate indicator sequence , , , (A/N, PI-n) indi-
cates the procedure whose identifier is A and whose arity
is N, together with all the procedures indicated by PI-n.

NOTE - A predicate indicator sequence , , ' (Pl/Al ,
I '(P2/A2,
Pi /A2,

P3 /A3)) is normally written as Pl/Al ,
P3/A3.

7.1.6.8 Predicate indicator list

PI-list is a predicate indicator list if it is a compound
term , . , (PI-~, PI-n) where ~1-1 is a predicate indicator,
and PI-n is an empty list or a predicate indicator list.

The predicate indicator list , . , (A/N, PI-n) indicates the
procedure whose identifier is A and whose arity is N, and,
if PI-n is not the empty list, all the procedures indicated
by PI-n.

NOTE - A predicate indicator list , . , (Pl/Al , , . ' (P2 /AZ ,
[])) is normally written as [Pl/Al , P2 /A2] .

7.2 Term Order

An ordering term-precedes (3.181) defines whether or
not a term x term-precedes a term Y.

If x and Y are identical terms then x term-precedes Y
and Y term-precedes x are both false.

If x and Y have different types: x term-precedes Y iff the
type of x precedes the type of Y in the following Order:
variable precedes floating Point precedes integer
precedes atom precedes compound.

NOTE - Built-in predicates which test the ordering of terms
are defined in 8.4.

30

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISOIIEC 132114 : 1995(E)

7.2.1 Variable 1) if, for all I less than N, xi is the Ith argument
of x and Yi is the Ith argument of Y then f ==’ (Xi,
Yi), and If x and Y are variables which are not identical then

x term-precedes Y shall be implementation dependent
except that during the creation of a sorted list (7.1.6.5,
8.10.3.1 j) the ordering shall remain constant.

NOTE - If x and Y are both anonymous variables then they
are not identical terms (see 6.1.2 a).

2) if XN is the Nth argument of x and YN the Nth
argument of Y and XN term-precedes YN.

7.3 Unification

Unification is a basic feature of Prolog which affects the
success or failure of goals, and Causes the i nstantiation 7.2.2 Floating Point

of variables. It
abstract Syntax.

is defined on terms as specified by their
If x and Y are floating Point values then x term-precedes
Y iff 1~’ (x, Y).

Built-in predicates
defined in 8.2.

which unify two explicitly are

7.2.3 Integer

If x and Y are integers then x term-precedes Y iff Y I (x, 7.3.1 The mathematical definition

A Substitution 0 is a unifier of two terms if the instances
of these terms by the Substitution are identical. Formally,
0 is a unifier of t 1 and t2 iff tp and tp are identical.
It is also a solution of the equation tl = t2, which by
analogy is called the unifier of the equation. The notion
of unifier extends straightforwardly to several terms or
equations. Terms or equations are said to be unifiable if
there exists a unifier for them. They are not uni’able
otherwise.

7.2.4 Atom

If x and Y are atoms then x term-precede s Y iff:

a> x is the null atom and Y is not the null atom, or

b) the value in the collating sequence (6.6) of the first
name of x (6.1.2 b) is less than the Character of the

value in the collating sequence of the first
the name of Y, or

Character of

c) the value in the collating sequence of the first
Character of the name of x is equal to the value in the
collating sequence of the first Character of the name of
Y, and XT term-precedes YT where XT is the atom

A unifier is a most general unifier MGU of terms if any
unifier of these terms is an instance of it. A most general
unifier always exists for terms if they are unifiable. There
are infinitely many equivalent unifiers through renaming.
A Substitution is idempotent if successive application to
itself yields the same Substitution (it is equivalent to say
that no variable of its domain occurs in the resulting
terms). There is only one most general idempotent unifier
for terms, whose domain is limited to the variables of the
terms, up to a renaming. It is sometimes called the unique
most general unifier.

whose name
of the name
obtained by
Y.

is obtained by d .eleting th .e first Character
of X, and YT is the atom whose name is

deleting the first Character of the name of

NOTE - The collating sequence 6.6 is implementation defined.

7.3.2 Herbrand algorithm
7.2.5 Compound

A non-deterministic algorithm, called the “Herbrand algo-
rithm”, computes the unique most general unifier MGU of
a set of equations.

If x and Y are compound terms then x term-precedes Y

iff:

It is given with the sole purpose to define the concepts
(NSTO, STO) presented in 7.3.3. Conforming processors
are not required to implement this algorithm.

a) The arity of x is less than the arity of Y, or

b) x and Y have the same arity, and the functor name
of X is FX, and the functor name of Y is FY, and FX

term-precedes FY or The Herbrand algorithm is:

Given a set of equations of the form t 1 = t2 appl
Order one of the following non-exclusi .ve Steps:

y in any c) x and Y have the same functor name
there is a positive integer N such that:

and arity, and

31

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

a) If there is an equation of the form:

1) f = g where f and g are different atomic terms,
or

2) f = g where f is an atomic term and g is a
compound term, or f is a compound term and g is
an atomic term, or

3) f(...) = g(...) where f and g are different
functors, or

4) f(a17 a2, . ..aiv) = f(h) b2, . . .bM) where N and
M are different.

then exit with failure (not uniJiable).

b) If there is an equation of the form X = X, X
being a variable, then remove it.

c) If there is an equation of the form c = c, c being
an atomic term, then remove it.

d) If there is an equation of the form f (ai , a2, . . .aN) =
f (h 7 b2, . . .bN) then replace it by the set of equations
ai - - b;.

e) If there is an equation of the form t = X, X being
a variable and t a non-variable term, then replace it by
the equation X = t,

f) If there is an equation of the form X = t where:

1) X is a variable and t a term in which the variable
X does not occur, and

2) the variable X occurs in some other equation,

then Substitute in all other equations every occurrence
of the variable X by the term t.

g) If there is an equation of the form X = t such
that X is a variable and t is a non-variable term
which contains this variable, then exit with failure (not
unifiable, positive occurs-check).

h) If no other step is applicable, then exit with success
(uniJiable).

This algorithm always terminates. If it terminates with
success (uniJiabZe) the remaining set of equations

h = tl, v2 = t2, VN = tru>

defines an MGU

(211 -) tl, 212 - t2, ---, VN - &‘V}

Examples in table 8 show the Operation of the algorithm.
The final two examples show that the result of the
algorithm is not necessarily unique.

Table 8 - Unification examples

Step The set of equations

3=3
(7.3.2 c)
(7.3.2 h) success (unijiable)

MGU= { }

X=Y
(7.3.2 h) success (unifiable)

MGU= {X -+ Y} or
MGU= {Y - X}

3=4
(7.3.2 al) failure (not unifiable)

3 = f(X)
(7.3.2 a2) failure (not unijiable)

f(X) = g(x)
(7.3.2 a3) failure (not unijiablej

f(K) = f(g(x), 1)
(7.3.2 a4) failure (not unzj5able)

f(X) = f(X)
(7.3.2 d) X = X
(7.3.2 b)
(7.3.2 h) success (unifiable)

MGU= { }

f(X, y) = f(g(Y), 4
(7.3.2 d) X = g(Y), Y = a
(7.3.2 f) X = g(a), Y = a
(7.3.2 h) success (unifiable)

MGU- {X - g(a), Y - a}

f(X, x x> = .f(Y, g(y), a)
(7.3.2 d) X = Y, X = g(Y), X = a
(7.3.2 f> a = Y, a = g(Y), X = a
(7.3.2 e) Y = a, a = g(Y), X = a
(7.3.2 f) Y = a, a = g(a), X = a

(7.3.2 a2) failure (not unifiable)

f (K x, x> = f (Y g(Y), 4
(7.3.2 d) X = Y, X = g(Y), X = a
(7.3.2 f) X = Y, Y = g(Y), Y = a
(7.3.2 g) failure (not unifiable, positive occurs-check)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

7.3.3 Subject to occurs-check (STO) and not subject
to occurs-check (NSTO)

A set of equations (or two terms) is “subject to occurs-
check” (STO) iff there exists a way to proceed through
the Steps of the Herbrand Algorithm such that 7.3.2 g
happens.

A set of equations (or two terms) is “not subject to
occurs-check” (NSTO) iff there exists no way to proceed
through the Steps of the Herbrand Algorithm such that
7.3.2 g happens.

A Prolog text (including goals) is NSTO if and only if
all unifications during its execution are NSTO. It is STO
otherwise.

7.3.4 Normal unification in Prolog

Unification of two terms is defined in Prolog as:

a) If two terms are STO then the result is undefined.

b) If two terms are NSTO and the two terms are
unifiable, then the result is an MGU.

c) If two terms are NSTO and the two terrns are not
unifiable, then the result is failure.

This definition of unification applies both to the normal
unification built-in predicate (=) / 2 (8.2.1) and also when
unification is invoked implicitly in this part of ISO/IEC
13211.

It is the responsibility of the programmer to ensure that
Prolog text will be NSTO when executed on a standard-
conforming processor. Programs are standard-conforming
with respect to unification iff:

a) they are NSTO on a standard-conforming processor
0 r,

b) all unifications which are STO are made using the
built-in predicate unify-with_occurs_check/2 (8.2.2).

NOTES

1 When a built-in predicate tan be called in a way which
is undefined by this part of ISO/IEC 13211 because there is
implicit unification of two terms which are STO, the examples
accompanying the definition of the built-in predicate often
include one such example.

2 A standard-conforming processor might consistently succeed,
loop, or fail for a unification that is formally undefined by this
part of ISO/IEC 13211.

3 Most implernentations do not include the occurs-check test
for efficiency reasons, and are compatible with this definition of
unification. In the undefined cases, their unification algorithm
may or may not terminate. But most practical programs are
NSTO, and for those that are STO, existing implernentations
often have the same behaviour. This is why (=) /2 is not
defined when its arguments are STO.

4 STO and iVST0 are decidable properties for a Single
unification. However processors are not required to include such
a test.

5 The property STO (or NSTO) for a program is not decidable.
However there are tests which guarantee that for a given
processor, a program is NSTO. These tests are just sufficient
condi tions.

6 Although the NS70 property is undecidable, it is possible
to avoid testing for it by using explicitly a unification with
occurs-check in a program. This will guarantee that the
execution of a program remains defined by this part of ISOLEC
13211. It is thus possible to apply explicitly unification with
occurs-check whenever it is needed by calling the built-in
predicate unify_with_occurs_check/2 whose semantics is:

a> If two terms are unifiable, then the result is an 1MGU.

b) If two terms are not unifiable, then the result is failure.

7.3.4.1 Example

The built-in predicate unify-with-occurs-check/2 en-
ables the programmer to avoid Unsafe unifications whether
they are explicit (replacing calls of (=) /2) or implicit,
for example when seeing which clause heads are unifiable
with a goal. But in the latter case, care is needed, for
example consider the user-defined procedure append/ 3
defined by the clauses:

appendU1, L, IJ :-
is-list(L).

append([HILl], L2, [HIL12]) :-
append(L1, L2, L12).

The goals
append([l, L b(L3)

and
appendUfW,Y,X)l, [l, [f(g(XLg(~LYW

are STO. If there might be such a call, and the programmer
wishes to ensure that execution is standard-conforrning,
then calls of append/3 must be replaced by calls of
safe_append/3 which is defined as:

Safe-append([J, Ll, L2) :-
unify-with-occurs-check(L1, L2),
isJist(L1).

Safe-append([HlILl], L2, [H21Ll2]) :-
unify-with-occurs-check(H1, H2),
Safe-append(L1, L2, L12).

7.4 Prolog text

Prolog text specifies directives and user-defined procedures
in a textual form.

33

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

NOTES 7.4.2.1 dynamic/l

A directive dynamic
a predicate indicator
specifies that each u
is dynamic.

(PI > where PI is a predicate indicator,
b sequence, or a predicate indicator list
.ser-defined procedure indicated by PI

1 The concrete and abstract Syntax for Prolog text is defined
in 6.2 and 6.2.1.

2 Preparing a Prolog text for execution is defined in 7.51.

No procedure indicated
or built-in predicate.

by PI shall be a control construct
7.4.1 Undefined features

The first directive dynamic (PI) that specifies a user-
defined procedure P to be dynamic shall precede all clauses
for P. Further, if P is defined to be a dynamic procedure in
one Prolog text, then a directive dynamic (PI) indicating
P shall occur in every Prolog text which contains clauses
for P.

This part of ISO/IEC 13211 leaves undefined:

a) The mechanisms for converting clause-terms and
directive-terms of Prolog text into procedures of the
database,

b) The complete rules for combining Prolog text
occurring in more than one text unit into a Single
equivalent sequence of Prolog text, and

NOTE - More than one directive dynamic (PI) may specify
a user-defined procedure P to be dynamic in a Prolog text.

7.4.2.2 multifile/l
c) The action to be taken if the read-terms forming
Prolog text do not conform to the requirements of this
part of ISO/IEC 13211. A directive multifile(~~) where PI is a predicate

indicator, a predicate indicator sequence, or a predicate
indicator list specifies that the clauses for each user-defined
procedure indicated by PI may be read-terms of more
than one Prolog text.

NOTE - This part of ISO/IEC 13211 does not define a built-in
predicate consul t / 1, nor any similar built-in predicate.

No procedure indicated by PI shall be a control construct
or built-in predicate.

7.4.2 Directives

The characters of a directive-term in Prolog text (6.2.1.1)
shall satisfy the same constraints as those required to input
a read-term during a successful execution of the built-in
predicate read-term/ 3 (8.14.1). The principal functor
shall be (: -) /l, and its argument shall be a directive.

Esch Prolog text that contains clauses for the user-defined
procedure P shall contain a directive multifile (PI) indi-
cating the procedure P. The first directive multif ile (PI)
indicating procedure P shall precede all clauses for the
procedure P.

A directive in Prolog text (6.2.1.1) specifies: NOTE
specify

More than one directive multifile(P1)
ser-defined procedure P to be multifile. au

a>
or

properties of the procedures defined in Prolog text,

7.4.2.3 discontiguous/l

b)
or

the format and Syntax of read-terms in Prolog text, A directive discontiguous (PI) where PI is a predicate
indicator, a predicate indicator sequence, or a predicate
indicator list specifies that each user-defined procedure
indicated by PI may be defined by clauses which are not
consecutive read-terms of the Prolog text.

C> a goal to be executed after the Prolog text has been
prepared for execution, or

No procedure indicated by di scontigu
a control construct or built-in predicate.

ous (PI) shall be d) another text unit of Prolog text which is to be
prepared for execution.

If Prolog text contains a directive discontiguous (PI 1,
then that directive may occur any number of times in
that Prolog text. The first directive discontiguous (PI)
indicating procedure P shall precede all clauses for the
procedure P.

A processor shall support correctly any directive
directive indicator is specified in subclause 7.4.2.~.

whose

NOTE - The usage and semantics of directives may be altered
in Part 2 (Modules) of ISO/IEC 13211.

34

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

NOTE - More than one directive discontiguous (PI)
may specify the clauses of the user-defined procedure P to be
discontiguous.

7.4.2.4 op / 3

A directive op(Priority, Op-specifier, Operator)
enables the Operator table (see 6.3.4.4 and table 7) to be
al tered.

The arguments Priority, Op-specifier, and Operator
shall satisfy the same constraints as those required for a
successful execution of the built-in predicate op/3 (8.14.3),
and the Operator table shall be altered in the same way.

It shall be implementation defined whether or not an opera-
tor defined in a directive op(Priority, Op-specifier,
Operator) shall affect the Syntax of read-terms in other
Prolog texts or during execution.

7.4.2.5 char-conversiorU2

A directive char-conversion(In_char, Out,char) en-
ables Convc, the Character-conversion mapping (3.46), to
be altered.

The arguments In-char and Out-char shall satisfy the
same constraints as those required for a successful execution
of the built-in predicate char,conversion/ 2 (8.14.5), and
Convc shall be altered in the same way.

It shall be implementation defined whether or not
the Character-conversion mapping defined in a direc-
tive char-conversion(In_char, Out-char) shall affect
Convc in other Prolog texts or during execution.

7.4.2.6 initialization/l

A directive initialization (T) converts the term T to
a goal G and includes it in a set of goals which shall
be executed immediately after the Prolog text has been
prepared for execution. The Order in which any such goals
will be executed shall be implementation defined.

7.4.2.7 include/l

If F is an implementation defined ground term designating
a Prolog text unit, then Prolog text Pl which contains
a directive include (F) is identical to a Prolog text P2
obtained by replacing the directive include (F) in Pl by
the Prolog text denoted by F.

7.4.2.8 ensure-loaded/l

A directive ensure-loaded (P-text) specifies that the
Prolog text being prepared for execution shall include
the Prolog text denoted by P-text where P-text is an
implementation defined ground term designating a Prolog
text unit.

When multiple directives ensure-loaded (P- text) exist
for the same Prolog text, that Prolog text is included in
the Prolog text prepared for execution only once. The
Position where it is included is implementation defined.

7.4.2.9 set_prolog_flag/2

A directive set-prolog-flag (Flag, Value) enables the
value associated with a Prolog flag to be altered.

The arguments Flag and Value shall satisfy the same
constraints as those required for a successful execution of
the built-in predicate set_prolog_flag/2 (8.17.1), and
Value shall be associated with flag Flag in the same
way.

It shall be implementation defined whether or not a
directive set-prolog-flag (Flag, Value) shall affect
the values associated with flags in other Prolog texts or
during execution.

7.4.3 Clauses

A clause-term in Prolog text (6.2.1.2) enables a clause
a user-defined procedure to be added to the database.

of

The characters of a clause-term shall satisfy the same
constraints as those required to read a read-term during a
successful execution of the built-in predicate read-term/ 3
(8.14.1).

A clause Clause of a clause-term Clause. shall satisfy
the same constraints as those required for a successful
execution of the built-in predicate assertz (Clause)
(8.9.2), except that no error shall occur because Clause
refers to a static procedure, and Clause shall be converted
to a clause c and added to the database in the same way.

The predicate indicator P/N of the head of Clause shall
not be the predicate indicator of a built-in predicate or a
control construct.

If no clauses are defined for a procedure indicated by
a directive with directive indicator dynamic / 1 (7.4.2.1),
multi..file/l (7.4.2.2), or discontiguous/l (7.4.2.3),
then the procedure shall exist but have no clauses.

35

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

All the clauses for a user-defined procedure P shall be
read-terms of a Single Prolog text unless there is a directive
multifile (VP) where UP indicates P in each Prolog text
in which there are clauses for P.

The means by which a Prolog processor is asked to prepare
standard-conforming Prolog texts (6.2) for execution shall
be implementation defined. The manner in which a Prolog
processor prepares standard-conforming Prolog texts for
execution shall be implementation dependent. This process
converts the read-terms in a Prolog text to the clauses of
user-defined procedures in the database.

All the clauses for a user-defined procedure P shall be
consecutive read-terms of a Single Prolog text unless there
is a directive discontiguous (VP) directive indicating P
in that Prolog text. All clauses of a procedure are ordered for execution

according to the textual (or temporal) Order of these
clauses as they were prepared for execution.

7.5 Database
Any effects of reordering, adding or removing clauses by
directives during preparation for execution are implemen-
tation defined.

The database is the set of user-defined procedures which
curren .tly exist during execution.

The clauses of different procedures have no temporal or
spatial correlation.

The complete database is the collection of procedures with
respect to which execu tion is performed. Esch procedure
1s:

The effect of directives while preparing a Prolog text for
execution is defined in (7.4.2). a> a control construct, or

b) a built-in predicate, or 7.5.2 Static and dynamic procedures

C> a user-defined procedure. Esch procedure is either dynamic or static. Esch built-in
predicate and control construct shall be static, and a
user-defined procedure shall be either dynamic or static. Esch procedure is identified by a unique predicate indicator

(3.131).
By default a user-defined procedure shall be static, but (1)
a directive with directive indicator dynamic/ 1 in Prolog
text overrides the default, and (2) asserting a clause of a
non-existent procedure shall create a dynamic procedure.

Built-in predicates and control constructs are provided by
the processor. They have properties which are defined by
the clauses in this part of ISO/IEC 13211. In particular,
they cannot be altered or deleted during execution (see
7.5.2). A

of
clause of a dynamic procedure tan be altered, a clause
a static proced ure cannot be altered.

A user- .defined procedure is a sequence of (Zero or
prepared for executi on.

more)
clauses

NOTES

Attempts to perform invalid operations on the
database Cause a Permission error (7.12.2 e).

complete

NOTES

1 There is a differente between a procedure which does not
exist, and one which exists but has no clauses, for example see
7.7.7, 8.9.4.

2 The restriction that only dynamic procedures tan be altered
enables “partial evaluation” to be performed on any procedure
which is static.

2 A procedure may have no clauses if (1) it is specified in a
directive but no clauses are defined for it, or (2) it is dynamic
and all clauses have been retracted.

3 The distinction between static and dynamic is also important
for users, for example, when developing a library, procedures
tan be dynamic during development, but then be made static
for users of the library.

7.5.1 Preparing a Prolog text for execution
7.5.3 Private and public procedures

Preparing a Prolog text for execution shall result in the
complete database and processor being in an initial state
of execution.

Esch procedure is either pu blic or private. A dynamic
procedure shall be public. Esch built-in pred icate and

36

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

control construct shall be private, and
procedure shall be private by default.

a static user-defined Table 9 - Principal functors and control constructs

Principal functor Control construct

(‘1 I) /2 Conjunction
(; > 12 Disjunction

(4 12 If- then
!/O Cut

call/l Cal1
true/O True
fail/O Fail

catch/3 Catch
throw/l Throw

A clause of a public procedure tan be inspected,
of a private procedure cannot be inspected.

a clause

NOTE - An additional directive public/ 1 that specifies some
user-defined procedures to be public would be an extension.

7.5.4 A logical database update

Any Change in the database that occurs as the result of
executing a goal (for example, when the activator of a
subgoal is a cal1 of assertz/ 1 or retractll) shall affect
only an activation whose execution begins afterwards. The
Change shall not affect any activation that is currently
being executed.

7.6.2 Converting a term to the body of a clause

A term T tan be converted to a goal G which is the body
of a clause:

NOTE - Thus the database is frozen during the execution of
a goal, and the list of clauses defining a predication is fixed at
the moment of its execution (see 7.7.7 e). a) If T is a variable then G is the control construct

cal1 (7.8.3), whose argument is T.

b) If T is a term whose principal functor appears in
table 9 then G is the corresponding control construct.
If the principal functor of T is call/ 1 or catch/3 or
throwll then the arguments of T and G are identical,
else if the principal functor of T is (’ , ’) /2 or (;) /2
or (->) / 2 then each argument of T shall also be
converted to a goal.

76 . Converting a term to a clause, and a clause
to a term

Prolog provides the ability to convert Prolog data to
and from Code. But an argument of a goal is a term,
while the complete database contains procedures with the
user-defined procedures being formed from clauses. Some
built-in predicates (for example asserta/l) convert a
term to a corresponding clause, and others (for example
clause/2) convert a clause to a corresponding term.

c) If T is an atom or compound term whose principal
functor FT does not appear in table 9 then G is a
predication whose predicate indicator is FT, and the
arguments, if any, of T and G are identical.

NOTES

1 Convertin g a term
non -identical term T ' .

T to a body B and back may result in NOTES

1 A
bodies

variable x and a term cal1 (x) are converted to identical
2 Part 2 (Modules) of ISO/IEC 13211 may require additional
operations when converting a term to a body.

2 If T is a number then there is no goal which corresponds
to T.

7.6.1 Converting a term to the head of a clause

A term T tan be converted
head H of a clause:

to a predication which 7.6.3 Converting the head of a clause to a term

A
to

head H with predicate indicator
T:

P/N tan be converted
a) If T is a compound term whose functor name is
FT then the predicate name PH of H is FT, and the
arguments of T and H are identical. a> If N is zero then T is the atom P.

b) If T is an atom den oted by the iden tifier A then the
is A, and H has no argumen ts. b) If N is non-Zero then T is a renamed copy (7.1.6.2)

of TT where TT is the compound term whose principal
functor is P/N and the arguments of H and TT are
identical.

predicate name PH of H

NOTE - If T is a
converted to a head.

number or variable, then T cannot be

37

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

7.6.4 Converting the body of a clause to a term

A goal G which is a predication with predicate indicator
P/N tan be converted to a term T:

b) To satisfy the initial goal (that is, to give a positive
answer in an implementation defined form) with respect
to the complete database, and perhaps instantiating some
or all of the variables of the initial goal.

a) If N is zero then T is the atom P.
7.7.2 Data types for the execution model

b) If N is non-Zero then T is a renamed copy (7.1.6.2)
of TT where TT is the compound term whose principal
functor is P/N and the arguments of G and TT are
identical.

The execution model of Prolog is based on a execution
Stack S of execution states ES.

c) If G is a control construct which appears in table
9 then T is a term with the corresponding principal
functor. If the principal functor of T is cal1 / 1 or
catch/3 or throw/l then the arguments of G and T are
identical, else if the principal functor of T is (’ , ’ > /2
or (; > / 2 or (-> > / 2 then each argument of G shall also
be converted to a term.

-!LS’ is a structured data type with components:

S-index - A value defined by the current number of
components of S.

decsglstk - A Stack of decorated subgoals which
defines a sequence of activators that might be activated
during execution.

7.7 Executing a Prolog goal

This subclause defines the flow of control through Prolog
clauses as a goal is executed.

s21bst - A Substitution which defines the state of the
instantiations of the variables.

BI - Backtrack Information: a value which defines
how to re-execute a goal.

NOTES
The choicepoint for the execution state ,!L$+l is FS;.

1 This description is consistent with the formal definition in
annex A.

A decorated subgoal DS is a structured data type with
components:

2 This subclause does not define:

a) The meaning of each built-in predicate,

activator - A predication prepared for execution
which must be executed successfully in Order to satisfy
the goal.

b) The Checks to see whether or not an error condition is
satisfied,

c) Side effects, for example database updates, input/output.

cutparent - A pointer to a deeper execution state
that indicates where control is resumed should a tut be
re-executed (see 7.8.4.1).

3 The execution model described here is based on a Stack
(4.2) of execution states.

currstate, the current execution state, is top(S). It
contains:

7.7.1 Execution a) An index which identifies its Position in S, and

Execution is a sequence of activations which attempt to
satisfy a goal. Side effects (7.7.9) may occur during
execution.

b) The current decorated subgoal Stack (i.e. the current
goal), and

c) The current Substitution, and
Esch execution step is represented by a sequence of
execution states. d) Backtracking information.

Execution may or may not terminate. If it does, the result
shall be to realize side effects during execution and:

currdecsgl, the current decorated subgoal, is
top(decsglstb) of currstate. It contains:

a) To fail the initial goal (that is, to give a negative
answer in an implementation defined form) with respect
to the complete database, or

a) The current activator, curract, and

b) its cutparent.

38

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

Table 10 - The execution Stack after initialization

S-
index

Decorated
subgoal Stack

Substi- BI
tution

1 ((goal, 0)~ newstackDS > {} nil

newstackEs

BI has a value:

nil - Its initial value, or

Table 11 - The goal succeeds

S -
index

N

. . .

Decorated
subgoal Stack

(newstackos)

Substi- BI
tution

c nil

1 ((goal, 0), newstackgs) {} . . .

newstackss

Table 12 - The goal fails
ctrl - The procedure is a control construct, or

bip - The activated procedure is a built-in predicate,
or

wp(CL) - CL is a list of the clauses of a user-defined
procedure whose predicate is identical to curract, and
which are still to be executed.

NOTES

1 Thus the data structures are:

S = (ESN, ESN-1, ESN-2, . . . ES], newstackES)

ES; = (Si, currentgoal;, suOS%i, BI;)

currstate = top(S) = ESN

currentgonl = (decoratedsubgoalJ, . . . decoratedsubgoali,
newstackDS)

currdecsgl = decoratedsubgoalJ

AS- Decorated Substi- BI
index subgoal Stack tution

newstackES

NOTE - A processor may support the concept of a query, that
is a goal given as interactive input to the top level. But this
part of ISO/IEC 13211 does not define a means of delivering a
goal to the processor except that Prolog text may include a set
of goals to be executed immediately after it has been prepared
for execution (7.4.2.6).

Nor does this part of ISO/IEC 13211 define a means of
instructing a processor to find multiple solutions for a goal.

7.7.4 A goal succeeds

A goal is satisfied, i.e. execution succeeds when the
decorated subgoal Stack of currstate is empty, as in Table
11. A Solution for the goal goal is represented by the
Substitution C.

decoratedsubgoalj = (activator,, cutparent,)

curract is the activator of currdecsgl.
7.7.5 A goal fails

2 The concept of a Stack is defined in 4.2.
Execution fails when the execution Stack S is empty, as
in table 12.

7.7.3 Initialization

The method by which a user delivers a goal to the Prolog
processor shall be implementation defined.

A goal is prepared for execution by converting it into an
activator.

Table 10 Shows the execution Stack after it has been
initialized and is ready to execute goal after it has been
converted into an activator.

7.7.6 Re-executing a goal

After satisfying an initial goal, execution may continue by
trying to satisfy it again.

Procedurally,

a) Pop currstate from S.

Execution tan then begin (7.7.7). b) Continue execution at 7.7.8.

39 l

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

7.7.7 Selecting a clause for execution NOTES

1 The control constructs true, fail and throw tan never be
re-executed because they are removed from currstate as they
are executed.

Execution proceeds in a succession of Steps:

a) The processor searches in the complete database
for a procedure p whose predicate indicator corresponds
with the functor and arity of curract.

2 The control constructs call, tut, conjunction, disjunction,
if-then, and catch are all re-executed in this semantic model
of Prolog so that S Shows more clearly the history of the
execution. However they all fail immediately when they are
re-executed.

b) If no procedure has a functor and arity agreeing
with the functor and arity of curruct, then action
depends on the value of the flag unknown (7.11.2.4):

3 The control construct if-then-else is re-executed
;f fails) so that the eise tan be executed.

(after the

error - There shall be an error
existente-error(procedure, PF)

where PF is the predicate indicator of curract, or
4 Step 7.7.8 e happens after the
I ;'(either, or) has failed.

either branch of a disjunction

warning - an implementation dependent warning
shall be generated, and curract replaced by the
control construct fail, or

7.7.9 Side effects

Side effects that occur during the execution of a goal shall
not be undone if the program subsequently backtracks over
the goal. Examples include:

fail - curruct shall be replaced by the control
construct fail.

c) If p is a control construct (true, fail, call, tut,
conjunction, disjunction, if-then, if-then-else, catch,
throw), then BI is set to ctrl and continue execution
according to the rules defined in 7.8,

a) Changes to the database, for example by execut-
ing the built-in predicates abolish/l, asserta/l,
assertz/l, retract/l.

b) Changes to the Operator table (see 6.3.4.4) by
executing the built-in predicate op / 3, d) If p is a built-in predicate BP, BI is set to bip,

and continue execution at 7.7.12,

c) Changes to the values associated with Pro-
log flags (7.11) by executing the built-in predicate
set-prolog-flag/2,

e) If p is a user-defined procedure, BI is set to
up(CL) where CL is a list of the current clauses of p
and continue execution at 7.7.10.

d) Changes to Convc, the Character-conversion
mapping by executing the built-in predicate
char_conversion/2 (8.14.5),

7.7.8 Backtracking

The processor backtracks (1) if a goal has failed, or (2)
if the initial goal has been satisfied, and the processor is
asked to re-execute it.

e) Inputioutput, for example, stream selection and
control, Character, byte, and term inputioutput (8.11,
8.12, 8.13, 8.14).

Procedurally, backtracking shall be executed as follows:

7.7.10 Executing a user-defined procedure a> Examine the value of BI for the new currstute.

Procedurally,
as follows:

a user-defined procedure shall be executed b) If BI is up(CL) then p is a user-defined procedure,
remove the head of CL and continue execution at 7.7.10.

a) If there are no (more) clauses for p, BI has the
value up([]) and continue execution at 7.7.11.

c) If BI is bip then p is a built-in predicate, and
continue execution at 7.7.12 b.

b) Else consider clause c where BI has the value
UP@ICTl)~

d) If BI is ctrl then p is a control construct, and the
effect of re-executing it is defined in 7.8.

e) If BI is nd, then the new curruct has not yet
been executed, and continue execution at 7.7.7.

C> If c and curruct are unifiable, then it is selected
for execution and continue execution at 7.7.10 e,

40

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

d) Else BI is replaced by a value up(CT) and continue
execution at 7.7.10 a.

e) Let c’ be a renamed copy (7.162) of the clause c
of UP(kl-1)

f) Unify the head of c’ and curract producing a most
general unifier MGU.

g) Apply the Substitution hilGU to the body of cr.

h) Make a copy CCS of currstate. It contains a
copy of the current goal which is called CCG.

i) Apply the Substitution MGU to CCG (so that
variables of CCG which are variables of curract
become instantiated).

j) Replace the current activator of CCG by the MGU-
modified body of c’.

k) Set BI of CCS to nil.

1) Set the Substitution of CCS to a composition of the
Substitution of currstate and MGU.

m) Set cutparent of the new first subgoal of the decor-
ated subgoal Stack of CCS to the current choicepoint.
Note that the cutparent of the other decorated subgoals
are unaltered.

n) Push CCS on to S. It becomes the new currstate,
and the previous currstate becomes its choicepoint.

0) Continue execution at 7.7.7.

NOTES

1 BI has the value u.p([1) when (a) all the clauses of p have
been examined to see if their head and curract are unifiable,
or (b) p has no clauses at all.

2 choicepoint will be re-executed if backtracking becomes
necessary (7.7.8).

3 The choicepoint is the next execution state, but cutparent
Points to the execution state below choicepoint because
backtracking a tut removes the total activation of a procedure
including its activator and choicepoint.

4 When the clause which is selected for execution is a fact,
then its body is true with an activator true whose activation
is described in (7.8.1.1).

Table 13 - Before executing a rule p (x, Y >

S-
index

Decorated
subgoal Stack

Substi-
tution

BI

N ((P(X, y), CP), c ?JP([Pl I PT])
>

7.7.10.1 Example - A user-defined rule

If the first clause Pl of the user-defined procedure p/2
~0% W) :- m(M), f(W).

then the body of this clause in the database will be
conjunction:

(p(M, W), ‘,‘h(M), f(W)))

is

a

and Table 13 Shows the execution Stack ready to execute
a currnct p (x, Y) using this clause.

The actions to execute this subgoal:

a) c’ = (p(MM, wW>, ‘,‘(m(MW, f(WW) >

b) MGU={X+MM,Y+WW}

c) Applying MGU to the c’ body, ’ , ’ (m(m) , f (WW))

d) Make a copy CCS of currstate,
ces = ((P (x, y) , CP), -0.), c, Up([pl IPT])

e) Apply MGU to CCS

f) Replace the activator by the body of c’

g) Set BI to nil

h) Set cutparent of subgoal to the current choicepoint
so that now
CCS =((','(m(MM), f(WW)), N-l),...),
{ X --+ MM, Y --+ WW } o C, nil

i) Push CCS on to S.

Table 14 Shows the execution Stack after executing the
subgoal p(x, Y) using the clause (p(M, W) , I , ' (m(M) ,
f(W)) L

7.7.10.2 Example - A user-defined fact

If the first clause Mr of the user-defined procedure m/l is
m(pete).

then the body of this clause in the database will be true
because the clause is a fact. Table 15 Shows the execution
Stack ready to execute a curract m(x) using this clause.

The actions to execute this subgoal:

41

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

Table 14 - After executing a rule p (x, Y)

c
S- Decorated Substi- BI

index subgoal Stack tution

N + 1 ((‘, ’ (m(m) I {X -) MM, nil
fmm, N- l>, Y-ww)

. . . > OC

c UP([pl IpT3)

Table 15 - Before executing a fact m (pe te)

S- Decorated Substi- BI
index subgoal Stack tution

N ((m(X), CP), C tlP([Ml IMT])

(f W), CP),

. . . >

. . .

a) clause-copy = (m(pete), true)

b) MGU = {X - pete}

c) Applying MGU to the clause-copy body, true

d) Make a copy CCS of currstate,
CCS = ((m(X), CP), (f(W), CP), . . .), C, nil

e) Apply MGU to CCS

f) Replace the activator by the body of clause-copy

g) Set BI to nil

h) Set cutparent of subgoal to the current choicepoint
so that now
CCS = ((true, N - l), (f(w), CP), . . .),
{ X - pete } 0 C, nil

i) Push CCS on to S.

Table 16 Shows the execution Stack after executing the
subgoal m(x) using the clause (m(pete) , true).

7.7.11 Executing a user-defined procedure with no
more clauses

When a user-defined procedure has been selected for
execution (7.7.7) but has no more clauses, i.e. BI has a

Table 16 - After executing a fact m (pete)

S -
index

Decorated
subgoal Stack

Substi-
tution

BI

N + 1 ((true, N - l), {X + pete} nd
(f No, CP), OC

. . . >

N ((m(X) 9 ~0, c uP([Ml IMT])

(f(W), CP),

. . . >

. . .

value up([]), it shall be executed as follows:

a) Pop currstate from S.

b) Continue execution at 7.7.8.

NOTE - The current substitution (whatever was contributed by
the current MGU) is thereby lost forever.

Execution has failed completely when S is empty (see 7.7.5).

7.7.12 Executing a built-in predicate

A built-in predicate BP shall be executed as follows:

a) Unify curract and the callable term representing
the built-in predicate BP producing a most general
unifier MGU.

b) Make a copy CCS of currstate. It contains a
copy of the current goal which is called CCG.

c) Push CCS on to S. It becomes the new currstate,
and the previous currstate becomes its choicepoint if
backtracking becomes necessary (7.7.8).

d) Execute, or re-execute after backtracking (7.7.8),
curract and perform any side effects according to the
rules for BP (see 8) This sometimes leads to a further
instantiation of variables in the activator; if so the
Substitution is applied to the appropriate variables of the
current goal.

e) If the activation of BP succeeds, then replace the
current activator of CCG by an activator true whose
activation is described in (7.8.1.1).

f) Else if the activation of BP fails, then replace the
current activator of CCG by an activator fail whose
activation is described in (7.8.2).

42

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

NOTE - Strictly speaking a new Stack entry is needed only
if the built-in predicate is designated as re-executable. Then
its activator could lead to re-activation of that built-in predicate
and thereby to different substitutions.

7.8 Control constructs

This definition of each control construct gives its logical
meaning, the procedural effect of satisfying it (by describing
the changes on the execution Stack S), the effect of re-
executing it, and some examples.

The format and notation of the definition of each control
construct is consistent with that used for built-in predicates
(8.1) except that a mode goal indicates that the argument
is a goal rather than a term.

NOTES

1 A control construct is static.

2 The control constructs are defined formally in subclause
AM.

7.8.1 true/O

7.8.1.1 Description

true is true.

Procedurally, a control construct true, denoted by true,
shall be executed as follows:

a) Pop currdecsql, i.e. (true, CP), from currentgoal L
of currstate.

b) Set BI to nil indicating that a new activation of
the new curract is to take place.

c) Continue execution at 7.7.7.

NOTES

1 No new execution Stack entry is created, and the current
substitution remains unchanged.

2 Execution is complete when all activators have been replaced
by true and deleted so that the decorated subgoal Stack becomes
empty (see 7.7.4).

7.8.1.2 Template and modes

true

Table 17 - Before executing true

S-
index

Decorated
subgoal Stack

Substi- BI
tution

N ((true, N - 2), c ctrl
(f (w), CP),

. . .)

. . .

Table 18 - After executing true

AS- Decorated Substi- BI
index subgoal Stack tution

N ((wo, CP), c nil
. . . >

. . .

7.8.1.3

None.

7.8.1.4

Errors

Examples

Tables 17 and 18 show the execution Stack before and
after executing the control construct true.

true.
Succeeds.

7.8.2 fail/O

7.8.2.1 Description

fail is false.

Procedurally, a control construct fail, denoted by fail,

shall be executed as follows:

a) Pop currstate from S.

b) Continue execution at 7.7.8.

NOTES

1 The current substitution (whatever was contributed by the
current MGU) is thereby lost forever.

2 Execution has failed completely when S is empty (see
7.7.5).

43

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1: 1995(E)

Table 19 - Before executing fail

S - Decorated Substi- BI
index subrroal Stack tution

N + 1 ((fail, CP>,
. . . >

C ctrz

N ((f(Y), CP>, c V([Fl IFT])
. . . >

. . .

Table 20 - After executing fail

S- Decorated Substi- BI
index subgoal Stack tution

N ((f(Y), CP), c 2”P([Fl l hl)
. .

. . .

. >

7.8.2.2 Template and modes

fail

7.8.2.3 Errors

None.

7.8.2.4 Examples

Tables 19 and 20 show the execution Stack before and
after executing the control construct fail.

fail.
Fails.

7.8.3 call/l

7.8.3.1 Description

cal1 (G) is true iff G represents a goal which is true.

When G contains ! as a subgoal, the effect of ! shall not
extend outside G.

Procedurally, a control construct call, denoted by cal1 (G) ,
shall be executed as follows:

a) Make a copy CCS of currstate.

bj Set BI of CCS to nil.

cj Pop currdecsgl (= (cal1 (G), CP)> from
cwrentgoal of CCS.

dj If the terrn G is a variable, there shall be an
instantiation error (7.12.2 aj,

e) Else if the term G is a number, there shall be a
type error (7.12.2 b),

fj Else convert the term G to a goal goaZ (7.6.2).

gj Let NN be the S-index of the choicepoint of
currstate.

hj Push (yoa.Z, NN) on to currentgoal of CCS. c

ij Push CCS on to S.

jj Continue execution at 7.7.7.

kj Pop currstate from S.

lj Continue execution at 7.7.8.

cal1 (G) is re-executable. On backtracking, continue at
7.8.3.1 k.

NOTE - Executing a cal1 has the effect that:

a) If gonl should fail, then the cal1 will fail, and

b) goal tan be re-executed, and

c) Any tut inside goal is local to goal because the
cutparent for goai’ is the choicepoint for the call.

7.8.3.2 Template and modes

call(+callable-term)

7.8.3.3 Errors

a) G is a variable
- instantiation-error.

b) G is neither a variable nor a callable term
- type-errorkallable, G).

c) G cannot be converted to a goal
- type-errorkallable, G).

44

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

Table 21 - Before executing cal1 (G)

S-
index

Decorated
subgoal Stack

Substi- BI
tution

N

. . .

((ca11 (GI, CP>,
. . . >

C ctrl

Table 22 - After executing cal1 (G)

s 1 -

index
Decorated

subgoal Stack
Substi- BI
tution

N+1 (6% N - lj, c nil
. . . >

N ((call(G), CP>, C ctrl
. . >

7.8.3.4 Examples

Tables 21 and 22 show the execution Stack before and
after executing the control construct cal1 (G) .

The examples defined in this subclause assume the database
has been created from the following Prolog text:

b(X) :-
Y = (write(X), X),
call(Y).

a(l).
a(2).

call(!) .
Succeeds.

call(fai1).
Fails.

call((fail,X)).
Fails.

call((fail, call(1))).
Fails.

bL).
Outputs characters representing a variable,
then instantiation-error.

b(3) -
Outputs '3', then
type-error(callable, 3).

z = !, call((Z=!, a(X), Z> >.
Succeeds, unifying X with 1, and Z with !.
On re-execution, fails.

call((Z=!, a(X), Z)).
Succeeds, unifying X with 1, and Z with !.
On re-execution, succeeds, unifying X with 2,

and Z with !.
On re-execution, fails.
[This behaviour arises because the
argument of call/l is converted to a goal
before it is executed, and 'Z' becomes the
goal 'call(Z)', and is executed as 'call(!)'
which is equivalent to true.]

call((write(3), X)).
Outputs '3', then
instantiation-error.

call((write(3), call(1)).
Outputs '3', then
type-error(callable, 1).

call(X).
instantiation-error.

call(1).
type-error(callable, 1).

call((fai1, 1)).
type-error(callable, (fail, 1)).

call((write(3>, 1)).
type-error(callable, (write(3), 1)).

call((l;true)).
type-error(callable, (1;true)).

7.8.4 !/O - tut

7.8.4.1 Description

! is true.

Procedurally, a control construct tut, denoted by !, shall
be executed as follows:

a) Make a copy CCS of currstate.

bj Set BI of CCS to niZ.

cj Replace the curract, ! , of CCS by true.

dj Push CCS on to S.

ej Continue execution at 7.7.7.

f) Make a copy tut of cutparent of currstate.

g) Pop currstate from S.

hj If tut = S-index of top(S) then top(S) becomes
the new currstate, and continue execution by back-
tracking at 7.7.8.

ij Else continue execution at 7.8.4.1 g.

! is re-executable. On backtracking, continue at 7.8.4.1 f.

45

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1: 1995(E) @ ISO/IEC 1995

Table 23 - Before executing tut

7

AS- Decorated Substi- BI
index subgoal Stack tution

N

. . .

((!, CP>,
. . . >

c ctrl

NOTES

1 Executing a tut has the effect that:

a) A tut always succeeds, but

b) No attempts are made to re-execute the goals on S
between the tut and its cutparent.

c) Re-executing a tut always fails, but unlike fail where
the choicepoint for currstate is then re-executed, elements
of S are popped until the cutparent associated with the tut
equals the 5’~index for currstate.

2 The execution states between a current execution state which
has a tut as current activator, and the cutparent of the current
decorated subgoal, could be removed as soon as the tut is
executed because they tan never be reached by backtracking.
But these (dead) execution states are left on S so that it always
indicates how the current state of execution has been reached.

7.8.4.2 Template and modes

7.8.4.3 Errors

None.

7.8.4.4 Examples

Tables 23 and 24 show the execution Stack before and
after executing the control construct !.

Tables 25 and 26 show the effect of re-executing a tut.

The following examples assume the database contains the
following clauses:

Table 24 - After executing tut

s - Decorated Substi- BI
index subeoal Stack tution

N+ 1 ((true, CP>, C nil

N

. . . >

((!, CP>, c ctrl
. . . >

Table 25 - Before re-executing tut

S -
index

Decorated
subgoal Stack

Substi-
tution

BI

N ((! 7 CO,
. . . >

c ctrZ

CP ((POL W, c.0, fl uP(P1 PT])
. . . >

Table 26 - After re-executing tut

S-
index

Decorated
subgoal Stack

Substi-
tution

BI

CP ((POL n, CP>, 0 uPw PT])
. . . >

twice(!) :- write('C ').
twice(true) :- write('Moss '1.

goal((twice(-), !)).
goal(write('Three ')).

46

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

0 ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

d) Push CCS on to S. 1 . .

Succeeds.

e) Continue execution at 7.7.7.
(L fail; true).

Fails.
f) Pop currstate from S.

(call(!), fail; true).
Succeeds. g) Continue execution at 7.7.8.

twice(-), !, write('Forwards '), fail.
Outputs "C Forwards ",
Fails.

f , , (First, Second) is re-executable. On backtracking,
continue at 7.8.5.1 f.

(! ; write('No '>), write('Cut disjunction '),

NOTES fail.
Outputs "Cut disjunction ",
Fails. 1 Step 7.8.5.1 d makes CCS the new currstate, and the

previous currstate becomes its choicepoint. first becomes
the new cumxt, if it succeeds second shall be executed. twice(-1, (write('No '); !), write('Cut '), fail.

Outputs "C No Cut Cut ",
Fails.

The cutparent of the new first subgoal of the decorated subgoal
Stack of CCS is the same as the previous choicepoint because
a conjunction is transparent to tut.

2 Executing a conjunction has the effect that:

twice(-), (!, fail; write('No ')).
Outputs "c ",
Fails.

twice(X), call(X), write('Forwards '), fail.
Outputs "C Forwards Moss Forwards ",
Fails.

a) The activator f irst must succeed, and then the activator
second must succeed for the conjunction to effectively
succeed, and

goal(X), call(X), write('Forwards '>, fail.
Outputs "C Forwards Three Forwards ",
Fails. b) Conjunction is transparent to tut because the cutpurent

for first and second are the same as that for the conjunction.

twice(-1, \+(\+(!N,
write('Forwards '), fail.

Outputs "C Forwards Moss Forwards ",
Fails.

7.8.5.2 Template and modes

I
I '(goal, goal)

NOTE - ‘,’ is a predefined infix Operator.

twice(-), once(!),
write('Forwards '), fail.

Outputs "C Forwards Moss Forwards ",
Fails.

7.8.5.3 Errors twice(-), call(!),
write('Forwards '), fail.

Outputs "C Forwards Moss Forwards ",
Fails.

None.

7.8.5.4 Examples 7.8.5 (‘,‘)/2 - conjunction

Tables 27 and 28 show the execution Stack before and after
executing the control construct , , , (First, second) .

f , ' (X=l, Var(X)).
Fails.

7.8.5.1 Description

f ,'(First, Second) is true iff First is true and
Second is true.

f ,'(Var(X), X=l) .
Succeeds, unifying X with 1.

, ,,(X = true, call(X)).
Succeeds, unifying X with true.

Procedurally, a control construct conjunction of two
activators f irst and second denoted by , , , (First,
Second), shall be executed as follows:

a) Make a copy CCS of currstate. It contains a
copy of the current goal which is called CCG.

7.8.6 (;)/2 - disjunction

b) Replace the current activator of CCG by a pair of
activators f irst and second. A disjunction control construct whose first activator is an

if-then control construct (7.8.7) shall be an if-then-else
control construct, see 7.8.8. c) Set BI of CCS to nil.

47

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

Table 27 - Before executing a conjunction Table 29 - Before executing a disjunction

S -
index

Decorated
subgoal Stack

Substi- BI
tution

AS-
index

Decorated
subgoal Stack

Substi- BI
tution

N ((f ,'(First, c ctrl N ((f ;' (Either, c ctrl
Second), CP), 0x1, CP),

. . . > . . . >

. . .

Table 28 - After executing a conjunction

S- Decorated Substi- BI
in,dex subgoal Stack tution

N+l ((First, CP), c nil
(Second, CP),

. . . >

N u I ,' (First, c ctrl
Second), CP),

. . . >

. . .

NOTES

1 Step 7.8.6.1 f makes CCGl the new currstute and the
execution state CCG2 is now a choicepoint of execution state
CCGI.

2 Executing a disjunction has the effect that:

a) If either should fail, then OT will be executed on
backtracking, and

b) Disjunction is transparent to tut because the cutpurent
for either and OT are the same as that for the disjunction.

7.8.6.2 Template and modes

7.8.6.1 Description f . f l (goal, goal)

I ;'(Either, Or) is true iff Either is true or Or 1s
true.

NOTE - ’ ; ’ is a predefined infix Operator.

Procedurally, a control construct disjunction of two activa-
tors either and or, denoted by f ; f (Either, Or) , shall
be executed as follows:

7.8.6.3 Errors

None.

a) Make two copies CCSl and CCS2 of currstate.
7.8.6.4 Examples

b) Set BI of CCSl and CCS2 to nil.

Tables 29 and 30 show the execution Stack before and
after executing the control construct ' ; ' (Either , Or) .

c) Replace the current activator curract of CCG2 by
or.

';' (true, fail).
Succeeds. d) Push CCG2 on to S.

e) Replace the current activator curract of CCGl by
either.

';'((!, fail), true).
Fails.
[Equivalent to C!, fail). 1

f) Push CCGl on to S.
‘;‘(!, call(3)).

Succeeds.
[Equivalent to !.l g) Continue execution at 7.7.7.

h) Pop currstate from S.

i) Continue execution at 7.7.8.

'-'((X = 1, !), x = 2). I
Succeeds, unifying X with 1.

I
I’ (‘; '(X=l, X=2), ';'(true, !)).

Succeeds, unifying X with 1.
On re-execution, succeeds, unifying X with 1.
On re-execution, fails.

I ;'(Either, Or) is re-executable. On backtracking,
continue at 7.8.6.1 h.

48

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995

Table 30 - After executing a disjunction

S- Decorated
index subgoal Stack

Substi- BI
tution

N+2 ((Either, CP), c nil
. . . >

N+l (@L CP), c nil
. . . >

N u f ;'(Either, c ctrl
033, CP),

>

7.8.7 (->)/2 - if-then

An if-then control construct which is the first activator of
a disjunction control construct (7.8.6) shall be part of an
if-then-else control construct, see 7.8.8.

7.8.7.1 Description

'+' (If, Then) is true iff (1) If is true, and (2) Then
is true for the first Solution of If.

Procedurally, a control construct if-then of two activators
if and then, denoted by '-Y (~f, Then), shall be
executed as follows:

ISO/IEC 132114 : 1995(E)

Table 31 - Before executing an if-then

S- Decorated Substi- BI
index subgoal Stack tution

N (('->'(If, c ctrl
Then), CP),

. . . >

. . .

NOTES

1 Executing an if-then has the effect that:

a) If if should fail, then the if-then will fail, and

b) If if should succeed, then then will be executed, and

c) If if should succeed and then later fails, the if will not
be re-executed because of the tut which has been executed,
and

d) The if in an if-then is not transparent to tut because
the cutparent for if is the choicepoint for the if-then
condi tional.

e) A tut in then is transparent to if-then because its
cutpurent is the same as that for the if-then.

7.8.7.2 Template and modes

'->'(goal, goal)
a) Make a copy CCS of currstate.

NOTE - ‘->’ is a predefined infix Operator.
b) Set BI of CCS to nil.

c) Pop currdecsgl (= (' ->' (If, Then) , CP)) from
currentgoal of CCS.

7.8.7.3 Errors

None.
d) Let NN be the S-index of the choicepoint of
currstate.

e) Push (then, CP) on to currentgoal of CCS.

f) Push (!, NN) on to currentgoal of CCS.

g) Push (if, NN) on to currentgoal of CCS.

h) Push CCS on to S.

i) Continue execution at 7.7.7.

j) Pop currstate from S.

k) Continue execution at 7.7.8.

'->'(If, Then) is re-executable. On backtracking,
continue at 7.8.7.1 j.

7.8.7.4 Examples

Tables 31 and 32 show the execution Stack before and
after executing the control construct ' -> ' (1 f , Then) .

'-S(true, true).
Succeeds.

'-9 (true, fail) .
Fails.

f ->'(fail, true).
Fails.

,+,(true, X=l).
Succeeds, unifying X with 1.
On re-execution, fails.

l

l
l

49 l

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

Table 32 - After executing an if-then

S- Decorated Substi- BI
index subgoal Stack tution

N+l ((If, N-l), C nd

(L N - U
(Then, CP),

. . . >

N ((I ->'(If, c ctrl
Then), CP),

. . . >

. . .

‘->‘(‘; ' (X=l, X=2), true).
Succeeds, unifying X with 1.
On re-execution, fails.

,->'(true, ';'(X=l, X=2)).
Succeeds, unifying X with 1.
On re-execution, succeeds, unifying X with 2.
On re-execution, fails.

7.8.8 (;)/2 - if-then-else

NOTE - (;) / 2 serves two different functions depending on
whether or not the first argument is a compound term with
functor (->) /2.

See (7.8.6) for the use of (;) /2 for disjunctive goals, that
is when the first argument of , ; , (-, -) does not unify with
I ->’ (-, -).

7.8.8.1 Description

I ;’ (’ ->,(If, Then), Else) iS true iff (Ia) If is true,
and (Ib) Then is true for the first Solution of If, or (2)
If is false and Else is true.

Procedurally, a control construct if-then-else of three
activators if, then and eise, denoted by , ; , (, -Y (If ,
Then), Else), shall be executed as follows:

a) Make a copy CCS of currstate.

b) Set BI of CCS to nd.

c) Pep currdecsgl (,;,(,->, (If, Then), Else),
CP) from currentgoal of CCS.

d) Let N be the 5’~index of currstate.

e) Let NN be the 5’~index of the choicepoint of
currstate.

f) Push (then, CP) on to currentgoal of CCS.

g) Push (!, NN) on to currentgoal of CCS.

h) Push (if, N) on to cwrentgoal of CCS.

i) Push CCS on to S.

j) Continue execution at 7.7.7.

k) Make a copy CCS of currstate.

1) Set BI of CCS to GZ.

m) Pep currdecsgl (,;' (,+,(If, Then), Else),
CP) from currentgoal of CCS.

n) Push (eise, CP) on to currentgoal of CCS.

o) Push (! , NN) on to currentqoal of CCS. L

p) Push CCS on to S.

q) Continue execution at 7.7.7.

I ;'('+'(If, Then), Else) is re-executable. On
backtracking, continue at 7.881 k.

The tut (7.8.8.1 o) prevents an if-then-else from being
re-executed a second time.

NOTES

1 Executing an if-then-else has the effect that:

a) If ;f should fail, then the if-then-else will be re-executed,
and

b) If ;f should succeed, then then will be executed, and

c) If ;f should succeed and then later fails, the if-then-else
will not be re-executed because of the tut which has been
executed, and

d) The ;f in an if-then-else is not transparent to tut because
the cutpnrent for ;f is the S-indez for the if-then-else.

e) A tut in then is transparent to then because its
cutparent is the cutparent for the if-then-else.

2 Re-executing an if-then-else has the effect that:

a) The eise will be executed, and

b) If eise later fails, the if-then-else will not be re-executed
again because of the tut which has been executed, and

c) A tut in eise is transparent to ehe because its cutpurent
is the cutpnrent for the if-then-else.

50

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

0 ISO/IEC 1995 w

Table 33 - Before executing an if-then-else

S-
index

Decorated
subgoal Stack

Substi- BI
tution

N u I ;'('->'(If, c ctrl
Then), Else),

CP>,
. . . >

Table 34 - After executing an if-then-else

S-
index

Decorated
subgoal Stack

Substi- BI
tution

N+l ((If, N), c nil
(L N - u

(Then, CP),
. . . >

N u f ;'('->'(If, c ctrl
Then), Else),

CP>,
. . . >

. . .

7.8.8.2 Template and modes

I ;‘(‘->’ (goal, goal), goal)

NOTE- ‘;’ and ‘-->’ are predefined infix Operators so that
m -> Then ; Else)

is parsed as
I ;‘(‘->’ (If, Then), Else) .

7.8.8.3 Errors

None.

7.8.8.4 Examples

Tables 33 and 34 show the execution Stack before and after
executing the control construct ' ; ' (' -> ' (If , Then) ,
Else).

Table 35 Shows what happens after (, ; f (f -> f (If ,
Then), Else) is re-executed because rf failed.

'.'('->'(true, true), fail). I
Succeeds.

' . ' , (' -9 (fail, true), true).

ISO/IEC 132114 : 1995(E)

Table 35 - After re-executing an if-then-else because
I f failed.

S- Decorated Substi- BI
index subgoal Stack tution

N-d ((L N- l), c nil
(eise (W), CP),

. . . >

N u I ;‘(’ ->'(If, c ctrl
Then), Else),

CP),
. . . >

. . .

Succeeds.

'-'('+'(true, fail), fail). ,
Fails.

';'('->'(fail, true), fail).
Fails.

';,('->'(true, X=l), X=2).
Succeeds, unifying X with 1.

,;'('-Y(fai1, X = l), X = 2).
Succeeds, unifying X with 2.

,-,(,->'(true, ,;,(X=l, X=2)), true). ,
Succeeds, unifying X with 1.
On re-execution, succeeds, unifying X with 2.

I.'('->'('; I '(X=l, X=2), true), true).
Succeeds, unifying X with 1.

'('-->'(!,fail), true), true).
Succeeds.

I 23.9 catch/3

The catch and throw (7.8.10) control constructs enable
execution to continue after an error without intervention
from the User.

catch(Goa1, Catcher, Recovery) is similar to
call(Goal), however when throw (Ball) is called,
the current flow of control is interrupted, and control
returns to a cal1 of catch/3 that is being executed. This
tan happen in one of two ways:

a) Implicitly, when one or more of the error conditions
for a built-in predicate are satisfied, and

b) Explicitly, when the program executes a cal1 of
throw/l because the program wishes to abandon the
current processing, and instead to take alternative action.

51

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

Table 36 - Before executing catch (G, C, R) NOTES

1 The names of the arguments have been Chosen because
throw/l behaves as though it is throwing a ball to be caught
by an active cal1 of catch/3.

2 There are several advantages for this method of error
recovery:

a) The programmer tan localise such code at Points where
it is convenient,

b) The trap is placed round a goal, rather than being simply
switched on by asserting clauses into an error handler. Thus
there is much less Chance of a program looping because
unanticipated errors are trapped,

c) Unforeseen errors in an application embedded in Prolog
need no longer suddenly print Prolog error messages and
diagnostics to a mystified User.

3 One use of this mechanism is error handling. Typically
a simple interactive program might have a top level looking
something like:

S- Decorated
index subgoal Stack

Substi- BI
tution

N ((catch(G, C, R), CP), c ctrl
. . . >

. . .

Table 37 - After executing catch (G, C, R)

S-
index

Decorated
subgoal Stack

Substi- BI
tution

N+l ((cal1 (GL CP>, c nil
. . . >

N ((catch(G, C, R), CP), c ctrl
. . .)

. . .
main :-

repeat,
catch(run, Fault, recover(Fault)
fail.

7.8.9.1 Description

catch(G, c, R) is true iff (1) cal1 (G) is true, or (2)
the cal1 of G is interrupted by a cal1 of throw/l whose
argument unifies with C, and cal1 (R) is true.

7.8.9.3 Errors

a) G is a variable
- instantiation-error.

b) G is neither a variable nor a callable term
- type-errorkallable, G).

Procedurally, a control construct catch, denoted by
catch(G, C, R) , shall be executed as follows: 7.8.9.4 Examples

Tables 36 and 37 show the execution Stack before and
after executing the control construct catch (G, c, R) .

a) Make a copy CCS of currstate.

b) Replace curract of C’CS by cal1 (G).
The following examples assume the database contains the
following clauses: c) Set BI to nil.

foo(X) :-
Y is X * 2, throw(test(Y)). d) Push CCS on to S.

e) Continue execution at 7.7.7. bar(X) :-
x = Y, throw(Y) .

f> Pop currstate from S. coo(X) :-
throw(X).

g) Continue execution at 7.7.8.
car(X) :-

x = 1, throw(X).
catch(G, C, R) is re-executable. On backtracking,
continue at 7.8.9.1 f. g :-

catch(p, B, write(h2)),
coo(c>.

7.8.9.2 Template and modes
P-
p :-

throw(b). catch(?callable-term, ?term, ?term)

52

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

catch(foo(5), test(Y), true).
Succeeds, unifying Y with 10.

catch(bar(3), Z, true).
Succeeds, unifying Z with 3.

catch(true, -, 3).
Succeeds.

catch(true, C, write(demoen)), throw(bla).
system-error.

catch(car(X), Y, true).
Succeeds, unifying Y with 1.

catch(number-chars(X, ['l', 'a', 'O']),
error(syntax-error(-), J, fail).

Fails -- number-chars raises a Syntax error.

catch(g, C, write(h1)).
Succeeds, unifying C with c and writing hl.
On re-execution, fails.

catch(coo(X), Y, true).
Succeeds, unifying Y with

error(instantiation-error, Imp-def)
where '~rnp-def' is an implementation defined
term.
['throw(X)' is Causes a goal
throw(error(instantiation_error, Imp-def))
to be executed].

7.8.10 throw/l

7.8.10.1 Description

throw (B) is a control construct that is neither true nor
false. It exists only for its procedural effect of causing
the normal flow of control to be transferred back to an
existing cal1 of catch/3 (see 7.8.9).

Procedurally, a control construct throw, denoted by
throw (B) , shall be executed as follows:

a) Make a renamed copy CA of cur~act, and a copy
CP of cutparent.

b) Pop currstate from 5’.

c) It shall be a System error (7.12.2 j) if S is now
empty,

d) Else if (1) the new curract is a cal1 of the control
construct catch/3, and (2) the argument of CA unifies
with the second argument c of the catch with most
general unifier MGU, and (3) the cutparent for the new
curract is less than CP, then continue at 7.8.10.1 f.

e) Else replace CP by the cutparent for the new
curract, and continue at 7.8.10.1 b.

f) Apply MGU to currentgoal.

Table 38 - Before executing throw (B)

S-
index

N+M

. . .

Decorated
subgoal Stack

((throw(B), cf'2),
. . . >

Substi- BI
tution

c ctrl

N

. . .

((catch(G, C, R), CPl),
. . . >

a ctrl

g) Replace curract by cal1 (R).

h) Set BI to nil.

i) Continue execution at 7.7.7.

NOTE - Executing a catch and throw has the effect that:

a) A catch is initially the same as a cal1 of its first
argument, and

b) A throw (or error), like a tut, pops execution states from
S until a particular condition is satisfied. No attempts are
made to re-execute the goals on S between the throw and
the first suitable catch, which is then replaced by a cal1 of
its third argument.

7.8.10.2 Template and modes

throw(+nonvar)

7.8.10.3 Errors

a) B is a variable
- instantiation-error.

b) B does not unify with the c argument of any cal1
of catch/3
- system-error.

7.8.10.4 Examples

Tables 38 and 39 show the execution Stack before and
after executing the control construct throw (B) , assuming
1-1 is the Substitution which resulted from unifying B and
C.

See also 7.8.9.4.

53

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

Table 39 - After executing throw (B)

AS-
index

Decorated
subgoal Stack

Substi- BI
tution

N ((cal1 (R), CPl), p o cr nil 1

. . .

7.9 Evaluating an expression

This subclause
an expression.

defines the evaluation of a Prolog term as

7.9.1 Description

Procedurally, a Prolog term T is evaluated as an expression
as follows:

a) If T is an integer or floating Point value with value
R, then proceeds to 7.9.1 e,

b) If T is a compound term, then evaluates, in an
implementation dependent Order, each argument Ai of
T as an expression giving a value Vi,

c) Selects the
able functor of

Operation F corresponding to the evalu-
types of K, T and the

d) Computes the value R of the Operation F with
operands (3.121) L$,

e> The value of the expression is R.

NOTES

1 An error occurs if T is an atom or variable.

2 The built-in predicates for arithmetic evaluation (8.6) and
arithmetic comparison (8.7) evaluate terms as expressions.

3 The evaluable functors supported by this part of ISO/IEC
13211 are defined in subclause 9.

7.9.2 Errors

The following errors may occur during the evaluation of
an expression E:

a) E is a variable
- instantiation-error.

b) E is a compound term and an argument of E is a
variable
- instantiation-error.

c) E is an atom or compound term and the principal
functor F/N of E is not an evaluable functor
- type-error(evaluable, F/N).

d) The value of an expression is float-Overflow
- evaluation-error(float_overflow).

e) The value of an expression is int_overfIow
- evaluation-error(int_overflow).

f) The value of an expression is underflow
- evaluation-error(underf1ow).

g) The value of an expression is Zero-divisor
- evaluation-error(zero-divisor).

h) The value of an expression is undefined
- evaluation-error(undefined).

7.10 InputJoutput

7.10.1 Sources and sinks

A source/sink (3.161) is a fundamental notion. A program
tan output results to a sink or input Prolog data from a
Source.

A source/sink always has a beginning, but has an end only
if it is finite.

A source/sink may be a file, the user’s terminal, or
other implementation defined possibility permitted by the
processor.

Esch source/sink is associated with a finite or potentially
infinite sequence of bytes or characters.

A source/sink is specified as an implementation defined
ground term in a cal1 of open/ 4 (8.11 S). All subsequent
references to the source/sink are made by referring to a
stream-term (7.10.2) or alias (7.10.2.2).

The effect of opening a source/sink more than once is
undefined in this part of ISO/IEC 13211.

7.10.1.1 Input/output modes

An input/output mode is an atom which defines in a
cal1 of open/4 the input/output operations that may be
performed on a source/sink. A processor shall support the
input/output modes:

54

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

read - Input. The source/sink is a Source. If it is
a file, it shall already exist and input shall Start at the
beginning of that Source.

NOTES

A stream may be associated with more than one alias.

2 All built-in predicates which have a stream-term as an
input argument also accept a stream alias as that argument.
However, built-in predicates which (tan) return a stream-term
do not retum or allow a stream alias. For example, a goal
current-input(some-alias) tan never succeed because
current-inputll unifies its argument with a stream-term.

write - Output. The source/sink is a sink. If the
sink already exists then it shall be emptied, and output
shall Start at the beginning of that sink, else an empty
sink shall be created.

append - Output. The source/sink is a sink. If the
sink already exists then output shall Start at the end of
that sink, else an empty sink shall be created. 7.10.2.3 Standard streams

Two streams are predefined and open during the execution
of every goal: the Standard input stream has the alias
user-input and the Standard output stream has the alias
User-output.

NOTES

1 If the sink is a file which already exists, and the
mode is write, the initial contents are lost.

input/ou .tput

The stream-term for these
dependent.

streams shall be i mplementation 2 A processor may support additional input/output modes, such
as a mode for both inputting and outputting.

7.10.2 Streams NOTES

1 Table 40 defines the proper-Ges of the Standard streams. A stream provides a logical view of a source/sink.

2 A goal which attempts to close either Standard
succeeds, but does not close the stream (see 8.11.6).

s tream
7.10.2.1 Stream-term

A stream-term identifies a stream during a cal1 of an
input/output built-in predicate. It is an implementation
dependent ground term which is created as a result of
opening a source/sink by a cal1 of open/4 (8.11 S). A
stream-term shall not be an atom.

7.10.2.4 Current streams

During execution there shall be a current input stream
and a current output stream. By default, the current
input and output streams shall be the Standard input and
output streams, but the built-in predicates set-input / 1
and set-output/l tan be used to Change them.

A standard-conforming program shall make no assumptions
about the form of the stream-term, except that:

When the current input stream is closed, the Standard input
stream shall become the current input stream. When the
current output stream is closed, the Standard output stream
shall become the current output stream.

a> It is a ground term.

W It is not an atom.

C> It uniquely identifies a particular s tream during the
NOTE - The Standard input and output streams cannot be
closed, and so the current input and output streams are always
open s treams.

time that the stream is open.

It is implementation dependent whether or not the pro-
cessor uses the same stream-term to represent different
source/sinks at different times. 7.10.2.5 Target stream

NOTE - A s tream-term
distinguished from an alias.

is not an atom so that it tan be The input/output built-in predicates defined in subclauses
8.12, 8.13, and 8.14 shall input from or output to a target
stream which is:

7.10.2.2 Stream aliases
a) the stream associated with S-or-a when a built-
in predicate has an argument S-or-a whose mode is
@stream_or-alias,

Any stream may be associated with a stream alias which
is an atom which may be used to refer to that stream.
The association is created when a stream is opened, and
automatically ends when the stream is closed. A particular
alias shall refer to at most one stream at any one time.

b) the current
predicate has no

input stream when an input built-in
explicit stream or alias argument,

55

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

C> the current output stream when an output built-in
argument,

input shall be identical to those output, except that an
implementation defined number of Zero-valued bytes may
be appended to the end of the data input.

predicate has no explicit stream or alias

The target stream is identified in the error terms for these
built-in predicates as TS which denotes: NOTE - get_byte/l inputs data from a binary

retums a byte.
s tream

a> S-or-a when a built-in predicate has an
is @streamor-a lias,

argument
S,or,a whose mode

7.10.2.8 Stream positions

b) current-input-stream when an input built-in
predicate has no explicit stream or alias The stream Position of a stream identifies an absolute

Position of the source/sink to which the stream is connected
and defines where in the source/sink the next input or output
will take place. It shall be implementation defined whether
or not the stream Position of a particular source/sink tan
be arbitrarily changed during execution of a Prolog goal.
If it tan, then:

argument,

C) current-output-stream when an output built-in
predicate has no explicit stream or alias argument.

7.10.2.6 Text streams

It shall be implementation defined
streams, no n-record-based s treams,

W hether record-based
both are supported.

4 A stream Position is an implementation dependent
or ground term.

A text stream is a sequence of characters where each
Character is a member of C (7.1.4.1). A text stream is
also regarded as a sequence of lines where each line is
a possibly empty sequence of characters followed by an
implementation dependent new line Character (6.5, 6.5.4).

b) At any time, the
calling set- stream-po

stream tan be repos
/2 (8.1 9 . .

itioned by
sition

A standard-con formi ng program shall make no assumpt
about the form of a stream posi tion term, except that:

ion

A processor may add or remove space characters at the
ends of lines in Order to conform to the conventions for
representing text streams in the operating System. Any
such alterations to the stream shall be implementation
defined.

a> It is a ground term.

b) It uniquely identifies a particular Position in
source/sink to which the stream is connected during the
time that the stream is open.

It shall be implementation defined whether the last line in
a text stream is followed by a new line Character. If so,
closing a stream which is a sink shall Cause a new line
Character to be output if the stream does not already end
with one.

When an output stream is repositioned, further
overwrite the existing contents of the sink.

output shall

When an input stream is repositioned, the contents of the
stream shall be unaltered, and tan be re-input.

The effect of outputting a control Character
text stream shall be implementation defined.

(6.4.2.1) to a

7.10.2.9 End Position of a stream

When all a stream s has been input (for example by
get-byte/2 or read_term/3) s has a stream Position
end-of-stream. At this stream Position a goal to input more
data shall return a specific value to indicate that end of
stream has been reached. When one of these terminating
values has been input, the stream has a stream Position
past-end-of-stream.

NOTES

When a stream is connected to a record-based stream,
ord is regarded as a line duri J% Prolog execution.

2 get-char/2 inputs data from a text stream and retums a
one-char atom denoting a Character. get-Code/2 inputs data
from a text stream and retums a Character Code.

When a stream has stream property reposition (true) ,
the terms P denoting stream positions end-of-stream and
past-end-of-stream in stream property pos i t ion (P) shall
be implementation defined.

7.10.2.7 Binary streams

A binary stream is a sequence of bytes (7.1.2.1).

If bytes are
input from

output to a sink via a binary stream, and then
via a binary stream, then the bytes

NOTE - A stream need not have an end, in which case
stream Position is never end-of-stream o Ir past-end-of-stream. that sink

56

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

7.10.2.10 Flushing an output stream

Output to a stream may not be sent to the sink connected
to that stream immediately. When it is necessary to be
certain that output has been delivered, this tan be done by
executing the built-in predicate f lush-output / 1 (8.11.7).

NOTES

1 Output is normally buffered, and flush-output will be
necessary when, for example, the program has output a question
which a user is required to answer.

2 A stream is always flushed when it is closed (8.11.6.1 b).

7.10.2.11 Options on stream creation

A stream-Options list is a list of stream-Options which
define properties of a stream created with open/4 (8.11.5).

The stream-Options supported shall include:

type(T) - Specifies whether the stream is a text
stream or a binary stream. T shall be:

text - the stream is a text stream, or

binary - the stream is a binary stream.

When no type (T) stream-Option is specified, the stream
shall be a text stream.

reposition(Boo1) - If 13001 (7.1.4.2) is true then
it shall be possible to reposition the stream, else if Bool
is false it shall be implementation defined whether or
not it is possible to reposition the stream.

alias(A) - Specifies that the atom A is to be an
alias for the stream.

eof-action(Action) - The effect of attempting to
input from a stream whose stream Position is past-end-
of-stream shall be specified by the value of the atom
Action:

error - There shall be a Permission Error
(7.12.2 e) signifying that no more input exists in
this stream.

eof-code - The result of input shall be as if the
stream Position is end-of-stream (7.10.2.9).

reset - The stream Position shall be reset so that
it is not past-end-of-stream, and another attempt is
made to input from it. This is likely to be useful when
inputting from a Source such as a terminal. There
may also be an implementation dependent Operation
to reset the Source to which the stream is attached.

It shall be implementation defined which eof,action
is the default.

If the stream-Options list contains contradictory stream-
Options, the rightmost stream-Option is the one which
applies.

A processor may support one or more additional
Options as an implementation specific feature.

stream-

NOTES

1 It depends on the particular source/sink whether or not
repositioning is possible, for example, it is impossible when the
source/sink is a terminal.

2 It is an error (8.11.5.3) when reposition(true) is
specified for a particular source/sink and repositioning it is not
possible.

7.10.2.12 Options on stream closure

A close-Option modifies the behaviour of close/X (8.11.6)
if an error condition is satisfied while trying to close a
stream.

The close-Options supported shall include:

force(false) - This is the default. If an error
condition is satisfied, the stream is not closed.

force(true) - If a Resource Error condition
(7.12.2 h) or System Error condition (7.12.2 j) is
satisfied, there shall be no error; instead the stream is
closed and the goal succeeds.

A processor may support one or more additional close-
Options as an implementation specific feature.

NOTE - A forte (true) close-Option closes the stream but
data and results may be lost, and the stream may be left in an
inconsistent state. The purpose of forte/ 1 Option is to allow
an error handling routine to do its best to reclaim resources.

7.10.2.13 Stream properties

The properties of streams tan be found using the built-
in predicate streamproperty(Stream, Property)
(8.11 .S). The stream properties supported shall include:

file-name(F) - When the stream is connected to a
source/sink which is a file, F shall be an implementation
defined term which identifies the file which is the
source/sink for the stream.

mode(M) - M is unified with the input/output mode
(7.10.1.1) which was specified when the source/sink was
opened.

57

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

Table 40 - Properties of the Standard streams

user-input User-output

mode(read)
input

alias(user-input)
eof-action(reset)
reposition(false)

type(text)

input -

output -

l mode(append)
output

alias(user-output)
eof-action(reset)
reposition(false)

type(text)

This stream is connected to a Source.

This stream is connected to a sink.

alias(A) -
be that alias.

If the stream has an alias, then A shall NOTES

Position(P) - If the stream has a reposition prop-
erty, P shall be the current stream Position (7.10.2.8) of
the stream.

end-of-stream(E) - If the stream Position is end-
of-stream then E is unified with at else if the stream
Position is past-end-of-stream then E is unified with
past else E is unified with not.

eof-action(A) - If a stream-Option (7.10.2.11)
eof-action (Action) was specified when the stream
was opened, then A is unified with Action, ehe A is
unified with the implementation defined action which is
associated with that stream.

reposition(Boo1) - If repositioning is possible on
this stream then 13001 is unified with true else Bool
is unified with false.

type(T) - The value of T defines whether the stream
is a text stream (T == text) or a binary stream (T ==
binary).

Table 40 defines the properties of the Standard streams.

A processor
properties as

may support one or more
an implementation specific

addi tional
feature.

stream

7.10.3 Read-Options list

A read-Options list is a list of read-Options which af-
fects read,term/3 (8.14.1) and its bootstrapped built-in
predicates. The read-Options supported shall include:

variables(vars) - After inputting a term, vars
shall be a list of the variables in the term input, in
left-to-right traversal Order.

variable.names(vN-list) - After inputting a
term, VN-list shall be unified with a list of ele-
ments where: (1) each element is a term A = V, and
(2) v is a named variable of the term, and (3) A is an
atom whose name is the characters of v.

singletons(VN-list) - After inputting a term,
VN-list shall be unified with a list of elements
where: (1) each element is a term A = V, and (2) v is
a named variable which occurs only once in the term,
and (3) A is an atom whose name is the characters of V.

A processor may support one or more additional read-
Options as an implementation specific feature.

1 Anonymous variables (6.4.3) are included in a list vars.
Anonymous variables are not included in a list VN-lis t.

2 The process of inputting a term and the effect of a Syntax
error are defined in 7.4.3 and 8.14.1.

7.10.4 Write-Options list

A write-Options list is a list of write-Options which
affects write-term/3 (8.14.2) and its bootstrapped built-
in predicates. The write-Options supported shall include:

quoted(Boo1) - Iff Bool (7.1.4.2) is true each
atom and functor is quoted if this would be necessary
for the term to be input by read-term/3.

ignore-ops(Boo1) - Iff Bool (7.1.4.2) is true
each compound term is output in functional notation
(6.3.3). Neither Operator (6.3.4.3) notation nor list
notation (6.3.5) is used when this write-Option is in
forte.

numbervars(Boo1) - Iff ~001 (7.1.4.2) is true a
term of the form I $VAR' (N) , where N is an integer, is
output as a variable name consisting of a capital letter
possibly followed by an integer. The capital letter is
the (i+l) th letter of the alphabet (see the Syntax rule
for capital letter char, 6.5.2), and the integer is
j, where

i = N mod 26
j = N // 26

The integer j is omitted if it is Zero. For example,

'$VAR'(O) is written as A
'$VAR'(l) is written as B

'&kR'(25) is written as Z
'$VAR'(26) is written as Al
'$VAR'(27) is written as Bl

. . .

58

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

A processor may support one or more addi ti
implementation speci fit feature.

onal wri te- f) Else if Term has a principal functor which is not
a current Operator, or if there is an effective write-
Option ignore-ops (true) , then the term is output in
canonical form, that is:

Options as an

If the write-Options list contains contradictory write-Options,
the rightmost write-Option is the one which applies.

1) The atom of the principal functor is output.
NOTE - The current Operators do not affect output when
there is a write-Option numbervars (true). This write-
Option is provided so that the built-in predicates write/l and
writeq/ 1 (8.14.2) are compatible with existing practice, but
this write-Option is more useful when the processor provides
the built-in predicate numbervars / 3 as an extension.

2) ((open char) is output.

3) Esch argument of the term is output by
aPPlYing these rules.

recursi vely

4) I (comma char) is output between each successive
7.10.5 Writing a term pair of arguments.

5)) (close char) is output. When a term Term is output using write-term/3 (8.14.2)
the action which is taken is defined by the rules below:

g) Else if Term has the form ' . ' (Head, Tail) , and
there is an effective write-Option ignore-ops (false) ,
then Term is output using list notation, that is:

a) If Term is a variable, a Character sequence repre-
senting that variable is output. The sequence begins
with - (underscore) and the remaining characters are
implementation dependent. The Same Character sequence
is used for each occurrence of a particular variable in
Term. A different Character sequence is used for each
distinct variable in Term.

1) [(open list char) is output.

2) Head is output by recursively applying these
rules.

3) If Tail has the form ’ . I (H,T) then , (comma
char) i s outp ut, Set Head:=H, Tail: =T, and goto (2).

b) If Term is an integer with value NI, a Character
sequence representing Nr shall be output. The first
Character shall be - if the value of Nr is negative. The
other characters shall be a sequence of decimal digit
chars (6.5.2). The first decimal digit char shall be 0 iff
the value of Term is Zero.

4) If Tail is [] then a closing bracket] (close list
char) is output,

5) Else a 1 (head tail separator char) is output,
Tail is output by recursively applying these rules,
and finally,] (close list char) is output.

c) If Term is a float with value Fr, a Character
sequence representing Ft shall be output. The first
Character shall be - if the value of Fr is negative. The
other characters shall be an implementation dependent
sequence of characters which conform to the Syntax for
floating Point numbers (6.4.5).

h) If Term has a principal functor which is an
Operator, and there is an effective write-Option
ignore-ops (false) , then the term is output in Operator
form, that is:

If there is an effective write-Option quoted (true) , then
the characters output shall be such that if they form a
number with value Fz in a term input by read-term/ 3,
then

Fl = Fz

1) The atom of the principal functor is output
in front of its argument (prefix Operator), between
its arguments (infix Operator), or after its argument
(postfix Operator). In all cases, a space is output
to separate an Operator from its argument(s) if any
ambiguity could otherwise arise.

d) If Term is an atom then if (1) there is an effective
write-Option quoted(true) and (2) the sequence of
characters forming the atom could not be input as a
valid atom without quoting, then Term is output as a
quoted token, else Term is output as the sequence of
characters defined by the Syntax for the atom (6.1.2 b,
6.4.2).

2) Esch argument of the term is output by recursively
applying these rules. When an argument is itself
to be output in Operator form, it is preceded by (
(open char) and followed by) (close char) if: (i) the
principal functor is an Operator whose priority is so
high that the term could not be re-input correctly with
Same set of current Operators, or (ii) the argument is
an atom which is a current Operator. e) If Term has the form ’ $VAR’ (N) for some pos-

itive integer N, and there is an effective write-Option
numbervars(true), a variable name as defined in
subclause 7.10.4 is output,

NOTE - A processor may output the floating Point value 1.5
as ” 1.5” or ” 1 SE+OO” or “0.15el”.

59

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

Table 41 - Flags defining I Parameters Default value: implementation defined

1 Parameter Flag I Changeable: No

Description: If the value of this flag is true, integer
arithmetic is performed correctly only if the operands
(3.121) and mathematically correct result all lie in the
closed interval (min-integer, max-integer).

Table 42 - Further flags for 1

If the value of this flag is false, inte-
ger arithmetic is always performed correctly (ex-
cept when there is a systemerror), and a
goal current-prolog-flag(max_integer, N) or
current-prolog-flag(min_integer, N) Will fail.

1 Feature Flag I

rndr integer-rounding-function

7.11 Flags

7.11.1.2 Flag: maxinteger
A flag is an atom which is associated with a value that is
either implementation defined or defined by the User. Possible value: The default value only

Esch flag has a permitted range of values; any other
value is a Domain Error (7.12.2 c). The range of values
associated with some flags tan be extended with additional
implementation specific values.

Default value: implementation defined

Changeable: No

Description: If the value of flag bounded is true then
the value of this flag is the largest integer such that
integer arithmetic is performed correctly if the operands
and mathematically correct result all lie in the closed
interval (min-integer, max-integer).

The definition of each flag indicates whether or not its
value is changeable during execution.

NOTE -A built-in predicate current-prolog-flag(Flag,
Value) (8.17.2) enables a program to discover all the flags
supported by a processor and their current values.

7.11.1.3 Flag: mininteger A built-in predicate set-prolog-flag(Flag, Value)
(8.17.1) enables a program to Change the current value of
a flag whose value is changeable. Possible value: The default value only

Default value: implementation defined 7.11.1 Flags defining integer type 1

Changeable: No The properties of the arithmetic type 1 which are provided
by the processor are available to the program as values
associated with various flags.

Description: If the value of flag bounded is true then
the value of this flag is the smallest integer such that
integer arithmetic is performed correctly if the operands
and mathematically correct result all lie in the closed
interval (min-integer, max-integer).

Table 41 identifies the Parameters which define the integer
type 1 (see 7.1.2) with the corresponding flags.

Table 42 identifies the ISO/IEC 10967- 1 - Language
Independent Arithmetic (LIA) integer rounding function
(see 9.1.3.1) with the flag whose value indicates the precise
methods adopted by the processor.

NOTE - The possible values are required to be -M or - (M+l)
where M is the value of the flag max-integer.

7.11.1.4 Flag: integer-roundingfunction
NOTE - The value of these flags is fixed and imple-
mentation defined. But it might be possible to set the
values of some flags before execution begins, for example,
integer-rounding-function. This possibility would be
an extension.

Possible values: down, toward-zero

Default value: implementation defined

Changeable: No
7.11.1.1 Flag: bounded

Description: The value of this flag determines the precise
definition of integer division (/ /) / 2 and integer remainder Possible value: true, false

60

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

(rem) /2 (9.1.3.1). A value down indicates that the
rounding function is l~j, and a value toward-zero
indicates that it is tr(z).

7.11.2.4 Flag: unknown

Possible values: error, fail, warning

Default value: error
7.11.2 Other flags

Changeable: Yes
7.11.2.1 Flag: char-conversion

Description: Defines the effect of attempting to execute a
procedure which does not exist in the complete database
(see 7.5, 7.7.7 b).

Possible values: on, of f

Default value: on

7.11.2.5 Flag: double-quotes Changeable: Yes

Possible values: chars, Codes, atom Description: If the value is on, (1) unquoted characters
in Prolog texts being prepared for execution are converted
according to the mapping ConvC (3.46) defined by
previous executions of the directive char-convers ion/ 2
(7.4.2.5), and (2) unquoted characters in Prolog read-
terms are converted according to the mapping Convc
defined by previous executions of the built-in predicate
char-conversion/2 (8.14.5).

Default value: implementation defined

Changeable: Yes

Description: This flag determines the abstract Syntax of
a double quoted list token appearing in a Prolog text or
in a term input by read-term/3 (8.14.1). When value is
chars, a double quoted list is input as a list of one-char
atoms; when value is Codes, a double quoted list is input

If the value is
and read-terms

o f f , unquoted characters in Prolog texts
are not converted.

as a list of Character Codes; when
is input as an atom.

value is atom, a double
quoted list NOTE - It is implementation defined whether or not Convc

during execution is affected by Convc created while Prolog
text is prepared for execution (see 7.4.2.5).

7.12 Errors

An error is a special
execution

circumstance which Causes the normal 7.11.2.2 Flag: debug
process of to be interrrupted.

Possible values: on, of f
The error conditions for each control construct and built-in
predicate are specified in the clauses defining them. Default value: of f

Other error conditions are defined in this part of ISO/IEC
13211 where it states: “It shall be an error if . ..“.

Changeable: Yes

Description: When the value is Off, procedures have the
meaning defined by this part of ISO/IEC 13211; when
the value is on, the effect of executing any goal shall be
implementation defined.

When more than one error condition is satisfied, the error
that is reported by the Prolog processor is implementation
dependent.

NOTE - Errors may also occur if:

7.11.2.3 Flag: maxarity a) There is an attempt to execute a goal for which there is
no procedure (see 7.7.7 b, 7.11.2.4).

Possible values: The default value only
b) The processor is too small, or execution requires too
many resources (see 7.12.2 h). Default value: implementation defined

c) Execution cannot be completed because of some event
outside the Prolog processor, for example a disc Crash or
interrupt (see 7.12.2 j).

Changeable: No

Description: The maximum arity allowed for any com-
pound term, or unbounded when the processor has no
limit for the number of arguments for a compound term.

d) The value of an evaluable functor is one of the exceptional
values (9.1.2).

61

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

7.12.1 The effect of an error

When an error occurs, the current goal shall be replaced by
a goal throw(error(Error-term, Imp-def)) where:

Error-term - is a term that supplies information
about the error, and

Imp-def - is an implementation defined term.

NOTE - This part of ISOAEC 13211 defines features for
continuing execution in a manner specified by the User, see the
control construct catch/ 3 (7.8.9).

7.12.2 Error classification

Errors are classified according to the form of Error-term:

a) There shall be an Instantiation Error when an
argument or one of its components is a variable, and an
instantiated argument or component is required. It has
the ferm instantiation-error.

b) There shall be a Type Error when the type of an
argument or one of its components is incorrect, but not
a variable. It has the form type-error(ValidType,
Culprit) where

ValidType E {
atom,
atomic,
byte,
callable,
Character,
compound,
evaluable,
inbyte,
in-Character,
integer,
list,
number,
predicate-indicator,
variable

> .

and Culprit is the argument or one of its components
which caused the error.

C> There shall be a Domain Error when the type of an
argument is correct but the value is outside the domain

It has the form for which the procedure is defined.
domain-error(ValidDomain, Culprit) where

ValidDomain E {
charactercode-list,
close-Option,
flag-value,

iomode,
non-empty-list,
not-less-thanzero,
operator-priority,
operator-specifier,
prolog-flag,
read-Option,
Source-sink,
stream,
stream-Option,
stream-or-alias,
stream-Position,
stream-property,
write-Option

and Culprit is the argument
which caused the error.

or one of its components

d) There shall be an Existente Error when the Object
on which an Operation is to be performed does not
exist. Ithasthe form existente-error(ObjectType,
Culprit) where

ObjectType E {
procedure,
sourcesink,
stream

and Culprit is the argument or one of its components
which caused the error.

e) There shall be a Permission Error when it is not
permitted to perform a specific Operation. It has the form
Permission-error(Operation, PermissionType,
Culprit) where

Operation E {
access,
create,
input,
modify,
open,
output,
reposition

Pe rmissionType E {
binary-stream
flag,
Operator,
past-end-of-stream,
private-procedure,
static-procedure,

62

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

sourcesink,
stream,
text-stream

1 7

and Culprit is the argument or one of its components
which caused the error.

f) There shall be a Representation Error when an
implementation defined limit has been breached. It has
the form representation-error(Flag) where

Flag E {
Character,
charactercode,
in-Character-Code,
max-arity,
max-integer,
min-integer

1 .

g) There shall be a Evaluation Error when the operands
(3.121) of an evaluable functor are such that the
Operation has an exceptional value (9.1.2). It has the
form evaluation-error(Error) where

Error E {
float-overfl
int-Overflow
undefined,
underflow,
Zero-divisor

1 .

h) There shall be a Resource Error at any Stage
of execution when the processor has insufficient re-
sources to complete execution. It has the form
resource-error(Resource) where Resource is an
implementation dependent atom.

i) There shall be a Syntax Error when a sequence
of characters which are being input as a read-term
do not conform to the Syntax. It has the form
Syntax-error(imp-dep-atom) where imp-dep-atom
denotes an implementation dependent atom.

j) There may be a System Error at any Stage of
execution. The conditions in which there shall be a
System error, and the action taken by a processor after
a System error are implementation dependent. It has the
form systemerror.

NOTES

1 A Type Error occurs when a value does not belong to
one the types defined in this part of ISO/IEC 13211 and a
Domain Error occurs when the value is not a member of an
implementation defined or implementation dependent set.

2 Most errors defined in this part of ISO/IEC 13211 occur
because the arguments of the goal fail to satisfy a particular
condition; they are thus detected before execution of the goal
begins, and no side effects will have taken place. The
exceptional cases are: Syntax Errors, Resource Errors, and
System Errors.

3 A Resource Error may happen for example when a calculation
on unbounded integers has a value which is too large.

4 A System Error may happen for example (a) in interactions
with the operating System (for example, a disc Crash or interrupt),
or (b) when a goal throw (T) has been executed and there is
no active goal catch/3.

8 Built-in predicates

A built-in predi cate is a procedure which is provided
automatical 1Y bY a standard-conforming processor.

NOTES

1 A built-in
in 7.7.12.

predicate is static, and its execution is described

2 The built-in predicates described in subclause 8.x are defined
formally in subclause A.5.x.

3 The use of any built-in predicate (and particularly those
concemed with input/output - 8.11, 8.12, 8.13, 8.14) may Cause
a Resource Error (7.12.2 h) because, for example, the program
has opened too many streams, or a file or disk is full. The
use of these built-in predicates may also Cause a System Error
(7.12.2 j) because the operating System is reporting a Problem.

The precise reason for such errors, and the ways they tan be
circumvented is not specified in this part of ISO/IEC 13211.

8.1 The format of built-in predicate definitions

These subclauses
built-in predicates.

define the format of the definitions of

8.1.1 Description

The description of the built-in predicate assumes that no
error condition is satisfied, and is in two Parts: (1) the
logical condition for the built-in predicate to be true, and
(2) a procedural description of what happens as a goal is
executed and whether the goal succeeds or fails.

Most built-in predicates are not re-executable;
tion mentions the exceptional cases explicitly.

the descrip-

63

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

S.l.2 Template and modes iomode - an input/output mode (7.10.1. l),

list - as terminology, A specification for both the type of arguments and which
of them shall be instantiated for the built-in predicate to
be satisfied. The cases form a mutually exclusive set. nonvar - an atomic term or compound term,

number - as terminology, When appropriate, a “Template and modes” subclause
includes a note that the predicate name is a predefined
Operator (see 6.3.4.4, table 7). operatorspecifier - one of the atoms: xf, yf,

xfx, xfy, yfx, fx, fy,

8.1.2.1 Type of an argument predicate-indicator - us terminology,

The type of each
following atoms:

argument is defined by one of the read-options-list - a read-Options list (7.10.3),

Source-sink - as terminology,
atom - an atom (3.12),

stream - as terminology,
atomar-atom-list - an atom or a list of atoms,

stream-Options - a list of stream Options
(7.10.2.1 l), atomic - an atomic term (3.15),

byte - a byte (7.1.2.1), streamor-alias - a stream or an alias (7.10.2.2),

callable-term - as terminology, stream-Position - a stream Position (7.10.2.8),

Character - a one-char atom, streamproperty - a stream property (7.10.2.13),

Character-Code - a Character code (7.1.2.2), term - as terminology,

Character-code-list - a list of Character Codes
(7.1.2.2),

write-options-list - a write-Options list (7.10.4,
7.1.4.2).

Character-list - a list of one-char atoms,
8.1.2.2 Mode of an argument

clause - us terminology,
The mode of each argument defines whether or not an
argument shall be instantiated when the built-in predicate
is executed. The mode is one of the following atoms:

close-Options - a list of close Options (8.11.6),

compound.term - as terminology,
+- the argument shall be instantiated,

evaluable - an expression (3.69),
?- the argument shall be instantiated or a variable,

flag -
7.1 l),

an atom associated with a Prolog flag (see
CL-- the argument shall remain unaltered,

-- the argument shall be a
instantiated iff the goal succeeds.

variable that will be head - as terminology,

in-byte - a byte or the integer -1,
NOTE - When the argument is an atomic term, there is no
differente between the modes + and @. The mode @ is therefore
used only when the argument may be a compound term. in-Character - a one-char atom or the atom

end-of-file,

S.l.3 Errors in-Character-Code - a Character code or the integer
-1,

associated error A list of the error conditions and
for the built-in predicate. integer - an integer,

64

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISOAEC 132114 : 1995(E)

NOTES 8.2.1 (=)/2 - Prolog unify

When the type of an argument is term, the argumen t
any term and no error is associated with this argument.

tan 8.2.1.1 Description
be

If x and Y are NSTO (7.3.3) then I =’ (x, Y) is true iff x
and Y are unifiable (7.3).

2 The effect of an error condition
subclause 7.12.

being satisfied is defined in

3 When a built-in predicate has a Single mode and template,
an argument whose type is not term and whose mode is + or @
is always associated with two error conditions: an instantiation
error when the argument is a variable, and a type error when
the argument is neither a variable nor of the correct type.

Procedurally, ’ = I (x, Y) is executed as follows:

a) If the two terms x and Y are STO (7.3.3), the goal
is undefined,

4 When a built-in predicate has a Single mode and template,
an argument whose mode is ?, and type is not term is always
associated with an error condition: a type error when the
argument is neither a variable nor of the correct type.

b) Else if the two terms x and Y are NSTO and
unifiable, computes and applies a most general unifier
of x and Y, and the goal succeeds,

c) Else if the two terms x and Y are NSTO and not
unifiable, the goal fails.

5 When a built-in predicate has a Single mode and template,
an argument whose mode is - is always associated with an error
condition: a type error when the argument is not a variable.

NOTE - This built-in predicate tan be implemented much more
efficiently than unify-with-occurs-check(X, Y) and in
practice it is easy for programmers to avoid accidental use of
the undefined cases.

6 When a built-in predicate has more than one mode and
template, an argument whose mode is either - or + is always
associated with an error condition: a type error when the
argument is neither a variable nor of the correct type.

8.2.1.2 Template and modes 8.1.4 Examples

'=' (?term, ?term) An example is normally a predication executing the built-
in predicate as a goal, together with a Statement saying
whether the goal succeeds or fails or there is an error. The
Statement also describes any side effect and unification
that occurs.

NOTE - = is a predefined infix Operator (see 6.3.4.4).

8.2.1.3 Errors

Sometimes
in which it

the examples Start by defining an environment None.
is assumed the goal appears.

8.2.1.4 Examples
8.1.5 Bootstrapped built-in predicates

'='(l, 1).
Succeeds. Sometimes several built-in predicates have similar func-

tionality. In such cases, one or more bootstrapped built-in
predicates are defined as special cases of a more general
built-in predicate.

'='(X, 1).
Succeeds, unifying X with 1.

‘=’ (X, Y).
Succeeds, unifying X with Y. The description of a bootstrapped built-in predicate states

how it relates to the general built-in predicate, usually
followed by a definition in Prolog that defines the logical
and procedural behaviour of the bootstrapped built-in
predicate when no error conditions are satisfied.

‘=‘ (2 -) -
Succeeds.

'=' (X, Y), '='(X, abc).
Succeeds, unifying X with abc, and Y with abc.

The error conditions and examples for a bootstrapped
built-in predicate are included in the appropriate clauses
of the general built-in predicate.

'='(f(X, def), f(def, Y)).
Succeeds, unifying X with def, and Y with def.

'='(l, 2).
Fails.

8.2 Term unification
'='(l, 1.0).

Fails.
These built-in predicates are concerned with the unification
of two terms as defined in 7.3. ‘=’ (g(X) I

65

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

f(fW) 1.
Fails.

'='(f(X, l),
f(aW) 1 1.

Fails.

'='(f(X, Y, x),
f(a(X), a(Y), Y, 2) 1.

Fails.

'='(x,
a(X) 1.

Undefined.

'='(f(X, l),
fb(W, 2) 1.

Undefined.

'='(f(1, x, l),
f(2, a(X), 2)).

Undefined.

'='(f(1, x),
f(2, a(X)) 1.

Undefined.

'='(f(X, Y, x, l),
f(a(X), a(Y), Y, 2)).

Undefined.

8.2.2 unify-with-occurs-check/2 - unify

unify-with-occurs-check(X, Y) attempts to compute
and apply a most general unifier of the two terms x and
Y.

8.2.2.1 Description

unify-with-occurs-check(X, Y) is true iffx and Y are
unifiable (7.3).

Procedurally, unify-with-occurs-check(X, Y) is exe-
cuted as follows:

a) If x and Y are unifiable, computes and applies a
most general unifier of x and Y, and the goal succeeds.

b) Else if x and Y are not unifiable, the goal fails.

NOTE -Foranyarguments unify-with-occurs-check(X,
Y) always succeeds or fails; there is never an error or an
undefined result.

This built-in predicate tan be implemented much less efficiently
than (=) /2 (8.2.1). In practice it is easy for programmers to
avoid accidental use of the undefined cases.

8.2.2.2 Template and modes

8.2.2.3 Errors

None.

8.2.2.4 Examples

unify-with-occurs-check(1, 1).
Succeeds.

unify-with-occurs-check(X, 1).
Succeeds, unifying X with 1.

unify-with-occurs-check(X, Y).
Succeeds, unifying X with Y.

unify-with-occurs-check(-, -) .
Succeeds.

unify-with-occurs-check(X, Y),
unify-with-occurs-check(X, abc).

Succeeds, unifying X with abc, and Y with abc.

unify-with-occurs-check(f(X, def), f(def, Y)).
Succeeds, unifying X with def, and Y with def.

unify-with-occurs-check(1, 2).
Fails.

unify-with-occurs_check(l, 1.0).
Fails.

unify-with-occurs-check(g(X),
f(fW) 1.

Fails.

unify-with-occurs-check(f(X, l),
fb(X) 1 1.

Fails.

unify-with-occurs-check(f(X, Y, x L
f(a(X), a(Y), Y, 2)).

Fails.

unify-with-occurs-check(X,
a(X) 1.

Fails.

unify-with-occurs-check(f(X, 11,
f(aW), 2)) -

Fails.

unify-with-occurs-check(f(1, X, 11,
f(2, a(X), 2)).

Fails.

unify-with-occurs-check(f(1, X),
f(2, a(X)) 1.

Fails.

unify-with-occurs-check(f(X, Y, x, 1)'
f(a(X), a(Y), Y, 2)).

Fails.
unify-with-occurs-check(?term, ?term)

66

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

8.2.3 (\=)/2 - not Prolog unifiable \=(fW/ 1)’
f(a(X) 1).

Succeeds.
8.2.3.1 Description

‘\\=’ (fm, y, x > I
fb(XL a(Y), Y, 2) 1.

Succeeds.
If x and Y are NSTO (7.3.3) then \= (x, Y) is true iff x
and Y are not unifiable (7.3).

\=(x,
a(X) 1.

Undefined.
Procedurally, \= (x, Y) is executed as follows:

a) If the two terms x and Y are STO, the goal is
undefined,

‘\\=‘(f(X, 1)’
fb(XL 2) 1.

Undefined.
b) Else if the two terms x and Y are NSTO and
unifiable, the goal fails, '\\='(f(1, x, 1)'

f(2, a(X), 2)).
Undefined.

c) Else if the two terms x and Y are NSTO and not
unifiable, the goal succeeds. \=(fcL w,

f(2, a(X))).
Undefined.

8.2.3.2 Template and modes ‘\\=‘(f(X, Y, XI 1)’
fb(XL a(Y), Y, 2) 1.

Undefined. '\\=' (@term, Qterm)

8.3 Type testing NOTES

1 \= is a predefined infix Operator (see 6.3.4.4). These built-in predicates test the type associated with a
term as defined in 7.1.

2 The quoted atom ’ \ \= ’ is identical to the unquoted atom
\= (see 6.4.2.1).

A goal executing any of these built-in predicates simply
succeeds or fails; there is no side effect, unification, or

8.2.3.3 Errors error.

None.
8.3.1 var/l

8.3.1.1 Description 8.2.3.4 Examples

var (x) is true iff x is a member of the set V (7.1.1). f \\=’ (1, 1) -
Fails.

\=(X, 1) -
Fails. 8.3.1.2 Template and modes

‘\\=’ (X, Y) .
Fails.

var(@term)

\= (2 -1 *
Fails. 8.3.1.3 Errors

\=(f(x, def), f(def, Y)).
Fails.

None.

f \\=’ (1, 2) -
Succeeds. 8.3.1.4 Examples

var(fo0). \=(l, 1.0).
Succeeds. Fails.

(Foo).
Succeeds.

‘\\=’ (g(X),
f(f(XH L

Succeeds.
foo=Foo, var(Foo).

67

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E)

Fails.

Var(-) -
Succeeds.

8.3.2 atomll

8.3.2.1 Description

atom(x) is true iff x is a member of the set A (7.1.4).

8.3.2.2 Template and modes

atom(@term)

8.3.2.3 Errors

8.3.3.4 Examples

integer(3).
Succeeds.

integer(-3).
Succeeds.

integer(3.3).
Fails.

integer(X).
Fails.

integer(atom).
Fails.

8.3.4 floatil

8.3.4.1 Description

@ ISO/IEC 1995

f lost (x) is true iff x is a member of the set F (7.1.3).
None.

8.3.4.2 Template and modes
8.3.2.4 Examples

float(@term)
atom(atom) .

Succeeds.

atom('string').
Succeeds.

atom(a(b)).
Fails.

atom(Var).
Fails.

atom([l).
Succeeds.

atom(6).
Fails.

atom(3.3).
Fails.

8.3.3 integer/1

8.3.4.3 Errors

None.

8.3.4.4 Examples

float(3.3).
Succeeds.

float(-3.3).
Succeeds.

float(3).
Fails.

float(atom).
Fails.

float(X).
Fails.

8.3.3.1 Description

8.3.5 atomic/l
integer (x) is true iff x is a member of the set I (7.1.2).

8.3.5.1 Description

8.3.3.2 Template and modes

integer(@term)

8.3.3.3 Errors

atomic (x) is true if x is a member of the set A or 1 or
F (7.1.4, 7.1.2, 7.1.3) and is false if x is a member of
the set V or CT (7.1.1, 7.1.5).

8.3.5.2 Template and modes

None. atomic(@term)

68

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

8.3.5.3 Errors 8.3.7 nonvar/l

None. 8.3.7.1 Description

nonvar (x) is true iff x is not a member of the set V
(7.1.1).

8.3.5.4 Examples

atomic(atom).
Succeeds.

8.3.7.2 Template and modes atomic(a(b)).
Fails.

nonvar(@term) atomic(Var) .
Fails.

atomic(6).
Succeeds. 8.3.7.3 Errors

atomic(3.3).
Succeeds. None.

8.3.6 compound/l
8.3.7.4 Examples

8.3.6.1 Description
nonvar(33.3).

Succeeds.

nonvar(fo0).
Succeeds.

nonvar(Foo).
Fails.

foo = Foo, nonvar(Foo) .
Succeeds.

nonvar(->.
Fails.

nonvar(a(b)).
Succeeds.

compound (x) is true iff x is a member of the set CT
(7.1 S).

8.3.6.2 Template and modes

compound(@term)

8.3.6.3 Errors

None.

8.3.6.4 Examples

8.3.8 number/l

8.3.8.1 Description

compound(33.3).
Fails.

compound(-33.3).
Fails.

number (X > is true iff x is a member of the set 1 or F
(7.1.2, 7.1.3) and is false if x is a member of the set V,
A or CT (7.1.1, 7.1.4, 7.1.5).

compound(-a).
Succeeds.

compound(-).
Fails.

8.3.8.2 Template and modes compound(a).
Fails.

nurriber(@term) compound(a(b)).
Succeeds.

compound([]) .
Fails. 8.3.8.3 Errors

None.
compound([a]).

Succeeds.

69

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

8.4.1.4 Examples 8.3.8.4 Examples

'@=<'(l.O, 1).
Succeeds.

number(3).
Succeeds.

'@<'(l.O, 1).
Succeeds.

number(3.3).
Succeeds.

'\\=='(l, 1).
Faiks.

number(-3).
Succeeds.

'@=<,(aardvark, Zebra).
Succeeds.

number(a).
Fails.

,@=<' (short, short) .
Succeeds.

number(X).
Fails.

'@=<'(short, shorter).
Succeeds. 8.4 Term comparison

'@>='(short, shorter).
Fails. These built-in predicates test the ordering of two terms as

defined in 7.2.
,@<,(foo(a, b), north(a)).

Fails. A goal executing any of these built-in predicates simply
succeeds or fails; there is no side effect, unification, or
error.

,@>,(foo(b), foo(a)).
Succeeds.

'@<'(foo(a, X), foo(b, Y)).
Succeeds. 8.4.1 (CG=<)/2 - term less than or equal, (==)/2 - term

identical, (\==)/2 - term not identical, (CG<)/2
- term less than, (@>)/2 - term greater than,
(CS>=)/2 - term greater than or equal

'@<'(foo(X, a), foo(Y, b)).
Implementation dependent.

‘@=<’ (X, X).
Succeeds. 8.4.1.1 Description

‘==’ (X, X).
Succeeds. f @=<l (x, Y) is true iff x term-precedes Y (7.2), or x

and Y are identical terms (3.87).
‘Cl=<’ (X, Y) .

Implementation dependent.
Procedurally, ’ Q=< I (x, Y) is executed as follows:

'==' (X, Y) .
Fails. a) If x and Y are identical, the goal succeeds.

\== L, -1 -
Succeeds.

b) Else if x term-precedes Y, the goal succeeds,

c) Else the goal fails. ‘==’ (-, -).
Fails.

8.4.1.2 Template and modes ‘ca=< (-, -).
Implementation dependent.

'@=<' (Qterm, Qterm)
'=='(@term, Qterm)
' \\z' (Gterm, Qterm)
'Ck' (Werm, Qterm)
'@>' (Qterm, Qterm)
'@>=' (Qterm, Qterm)

,@=<,(foo(~, a), foo(Y, b)).
Implementation dependent.

8.4.1.5 Bootstrapped built-in predicates

The built-in predicates (==) /2 (term identical), (\ \==) /2
(term not identical), (FC) /2 (term less than), (@>) /2
(term greater than), and (CJ>=) /2 (term greater than or
equal) also test the identity and term-precedence of their
arguments:

NOTE - @=<, ==, \==, W, @>, and @>= are predefined infix
Operators (see 6.3.4.4).

8.4.1.3 Errors

The goals ‘==‘(X, y), ‘\\==‘(X, Y), ‘@<‘W’ YL None.

70

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

i) Else if Name is an atom and Arity is an integer
greater than Zero, then instantiates Term with a term that
has functor with identifier Name and arity Arity, and
Arity distinct fresh variables, and the goal succeeds,

f~>f (x, Y), and r@>=r (x, Y) are defined as follows:

a> f == f (x, Y) is true iff x and Y are identical terms
(3*87),

b) ‘\\z’ (x, Y) is true iff x and Y are not identical
terms,

j) Else the goal fails.

8.5.1.2 Template and modes C> f @-< f (x, Y) is true iff x term-precedes Y (7.2),

d) f Q> f (x, Y) is true iff Y term-precedes X, functor(-nonvar, +atomic, +integer)
functor(+nonvar, ?atomic, ?integer)

e>
and

‘(a>& (x, Y) is true iff Y term-precedes x, or x
Y are identical terms.

8.5.1.3 Errors

a> Term and Name are both variables 85 . Term creation and decomposition
instantiation-error.

These built-in predicates enable a term to be assembled
from its component Parts, or Split into its component Parts,
or copied.

b) Term and Arity are both variables
- instantiation-error.

c) Term is a variable and Name is neither a variable
nor an atomic term
- type-error(atomic, Name).

8.5.1 functor/3

8.5.1.1 Description

d) Term is a variable and Arity is neither a variable
nor an integer
- type-error(integer, Arity).

functor(Term, Name, Arity) is true iff:

- Term is a compound term with a functor whose
identifier is Name and arity Arity, or

e> Term is a variable, Name is a constant but not an
atom, and Ari ty is greater than zero
- type-error(atom, Name). - Term is an atomic term equal to Name and Arity

is 0.

f-l Term is a variable and Ari ty is an integer greater
than the implementation defined integer max-ar i ty
- representation-error(max_arity).

Procedurally, functor(Term, Name, Arity) is executed
as follows:

a> If Term is an atomic term, then proceeds to 8.5.1.1 d, g) Term is a variable and Arity is an integer that is
less than zero
- domain-error(not-less-than-Zero, Arity). b) If Term is a compound term, then proceeds to

8.5.1.1 f,

c) If Term is a variable, then proceeds to 8.5.1 .l h, 8.5.1.4 Examples

d) If
0, the

Name unifies with Term, and Arity unifies with functor(fo0
Succeeds

ta, b, d, foo, 3).

goal succeeds.

functor(foo(a, b, c), X, Y).
Succeeds, unifying X with foo, and Y with 3. e) Else the goal fails.

f) If Name unifies with the identifier of the functor of
Term, and Ari ty unifies with the arity of the functor
of Term, the goal succeeds,

functor(X, foo, 3).
Succeeds, unifying X with foo(-, -, J.

functor(X, foo, 0).
Succeeds, unifying X with foo.

g) Else the goal fails.
functor(mats(A, B), A, B).

Succeeds, unifying A with 'mats',
and B with 2). h) If Name is an atomic term and Ari ty is

unifies Term with Name, and the goal succeeds,
0, then

71

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

b) Term is a variable
- instantiation-error.

functor(foo(a), foo, 2).
Faik.

functor(foo(a), fo, 1).
Fails. c) N is neither a variable nor an integer

- type-error(integer, N).
functor(1, X, Y).

Succeeds, unifying X with 1, and Y with 0.
d) Term is neither a variable nor a compound term
- type-error(compound, Term). functor(X, 1.1, 0).

Succeeds, unifying X with 1.1.

e) N is an integer less than zero
- domain-error(not-less-than-Zero, N).

functor([JJ, '.', 2).
Succeeds.

functorU1, 11, 0).
Succeeds. 8.5.2.4 Examples

functor(X, Y, 3).
instantiation-error. arg(1, foo(a, b), a).

Succeeds.
functor(X, foo, N).

instantiation-error. arg(1, foo(a, b), X) -
Succeeds, unifying X with a.

functor(X, foo, a).
type-error(integer, a). arg& foo(X, b), a).

Succeeds, unifying X with a.
functor(F, 1.5, 1).

type-error(atom, 1.5). arg(l, foo(X, b), Y).
Succeeds, unifying X with Y.

functor(F, foo(a), 1).
type-error(atomic, foo(a)). arg(1, foo(a, b), b).

Fails.
current_prolog-flag(max_arity, A),

X is A + 1,
functor(T, foo, X).

representation-error(max_arity).

arg(0, foo(a, b), foo).
Fails.

arg(3, foo(3, 4)' N).
Fails. Minus-l is 0 - 1,

functor(F, foo, Minus-l).
domain-error(notJess_than_zero, -1). arg(X, foo(a, b), a).

instantiation-error.

arg(1, X, a).
instantiation-error.

8.5.2 arg13

8.5.2.1 Description arg(0, atom, A).
type-error(compound, atom).

arg (N, Term, Arg) is true iff the Nth argument of Term
iS Arg. argto, 3, Al-

type-error(compound, 3).

Procedurally, arg (N, Term, Arg) is executed as follows: argtl, foo(X), u(X) 1.
Undefined.

a) If Arg unifies with the N-th argument (7.1.5) of
compound term Term, then the goal succeeds,

8.5.3 (=..)/2 - univ
b) Else the goal fails.

8.5.3.1 Description

8.5.2.2 Template and modes
‘-

-. . ' (Term, List) is true iff:

arg(+integer, +compound-term, ?term)
- Term is an atomic term and List is the list whose
Only &IIWIt iS Term, or

8.5.2.3 Errors
- Term is a compound term and List is the list
whose head is the functor name of Term and whose tail
is a list of the arguments of Term.

4 N is a variable
- instantiation-error.

72

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

Procedurally, I = . . ’ (Term, List) is executed as follows: e> List is a list whose head H is a compound term,
and whose tail is the empty list
- type-error(atomic, H). a) If Term is an atomic term, then proceeds to 8.5.3.1 d,

Term is a variable and List is the empty
domain-error(non-empty-list, List).

list b) If Term is a compound term, then proceeds to
8.5.3.1 f,

g) Term is a variable and the tail of List has a
length greater than the implementation defined integer
max-arity
- representation-error(max_arity).

c) If Term is a variable, then proceeds to 8.5.3.1 h,

d) If
Term,

List unifies with a list whose only element is
succeeds. then the goal

8.5.3.4 Examples e) Else the goal fails.
I- - . . ’ (foob, b),

Succeeds.
[foo, a, bl).

f) If List unifies with a list whose head is the functor
name of Term and whose tail is a list of the arguments
of Term, then the goal succeeds,

I- - . . ’ UL [fm, a, bl 1.
Succeeds, unifying X with foo(a, b).

g) Else the goal fails. I- - . . '(foo(a
Succeeds

I b),

, uni
L) *

fying L with [foo, a, bl.

h) If List is a list whose only element is an atomic
term, then instantiates Term with the Single element of
List, and the goal succeeds,

t- - . . '(foo(X
Succeeds

, b), [foo, a, YI).
1 unifying X with a, and Y with b.

I- - . . ’ (1, [ll) -
Succeeds.

i) Else if List is a list and there exists a compound
term CT such that the functor name of CT is the head
of List and a list of the arguments of CT is the tail
of List, then instantiates Term with CT, and the goal
succeeds,

I-
-. . '(foo(a, b), [foo, b, al).

Fails.

t- -. . ’ CL Y) -
instantiation-error.

I-
-. . '(X, [foo

instantiat

I- - . . '(X, [foo
type-error

I a 1 YI).
ion-error. j) Else the goal fails.

Ibarl).
(list, [foolbar]). 8.5.3.2 Template and modes

t- -. . ’ UL [Foo,
instantiati

bar]).
on-error. I-

-. . '(+nonvar, ?list)
I- -. . '(-nonvar, +list) t- - . . 'UL [3, 11) *

type-error(atom, 3).
NOTE-=.. is a predefined infix Operator (see 6.3.4.4).

f- - . . '(X, [l-l, foo]).
type-error(atom, 1.1).

8.5.3.3 Errors
I-

-. . I (XI [a(b), 11).
type-er ,ror(atom, a(b)).

a> Term is a variable and List is a partial list
instantiation-error. I- - . . 'UL 4) *

type-error(list, 4).

b) List is neither a partial list nor a list
- type-error(list, List).

‘- - . . '(f(X), EL uWl>.
Undefined.

c) Term is a variable and List is a list whose head
is a variable
- instantiation-error.

8.54 copy-term/2

8.5.4.1 Description

d) List is a list whose head H is neither an atom nor
a variable, and whose tail is not the empty list
- type-error(atom, H).

copy-term(Term-1, Term-2) k true iff Term-2 Unifies
with a term T which is a renamed copy (7.1.6.2) of
Term-l.

73

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

8.6.1 (is)/2 - evaluate expression Procedurally, copy-term(Term-1, Term-2) is executed
as follows:

8.6.1.1 Description

a> Let T be a renamed copy (7.1.6.2) of Term-l.
'is' (Result,
evaluating Expr

Expression) is true iff the value of
eXpreSSiOn iS Result. *ession as an b) If Term-2 unifies with T, then the goal succeeds,

is' (Result, Procedurally, ’
as follows:

Expression) is executed c) Else the goal fails.

NOTE - If the variable sets of Term-1 and Term-2 are
disjoint, then even if the goal succeeds, Term-1 will be
unaltered, and the variable sets of both arguments will remain
disjoint.

a> Evaluates Express ion as an expression (7.9) to
produce a value C,

W If Result unifies with C, then the goal succeeds,

8.5.4.2 Template and modes c) Else the goal fails.

copy-term(?term, ?term)
8.6.1.2 Template and modes

8.5.4.3 Errors is(?term, Qevaluable)

NOTE - is is a predefined infix Operator (see 6.3.4.4). None.

8.6.1.3 Errors 8.5.4.4 Examples

a) Expression is a variable
- instantiation-error.

NOTE - The evaluation of Expression may also result in
errors (see 7.9.2).

copy-term(X, Y).
Succeeds.

C opy-term(X, 3).
Succeeds.

copy_termL, a) .
Succeeds.

8.6.1.4 Examples
copy-t

suc
erm(a+ x, x+b).

unifying X with a 'is'(Result, 3+11.0).
Succeeds, unifying Result with 14.0.

X = 1+2, Y is X * 3.
Succeeds, unifying X with 1+2, and Y with 9.

'is'(3, 3).
Succeeds.

'is'(3, 3.0).
Fails.

'is'(fo0, 77).
Fails.

ceeds,

copy_termL, -1 .
Succeeds.

copy-term(X+X+Y, A+B+B) .
fying A with B Succeeds, uni

copy-term(a, b).
Fails.

copy-term(a+X, X+b),
copy-term(a+X, X+b).

Fails.

f (Y)) 'is'(77, N).
instantiation-error.

copy-te rm(demo
Unde fined.

XI I demoen(Y,

NOTE - No unifications
unless explicitly described.

take place in the examples above
8.7 Arithmetic comparison

These buil t-in
evaluated (7.9)

predicates Cause two expressions to be
and their values to be compared. 8.6 Arithmetic evaluation

Esch arithmetic comparison bu
to an Operation which depends

i lt-in predicate corresponds
on the types of the values

This built-in predicate Causes an expression to be evaluated
(7.9) and a value to be unified with a term.

74

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

which are obtained
built-in predicate.

by evaluating the argument(s) of the

The following table identifies the integer or floating
operations corresponding to each built-in predicate:

predicate indicator Operation
(=: =) 12
(=\=) /2
(4 /2
(=4 /2
(>) /2
b=) /2

eq19 eqFy eqFL eqIF

neqI9 neqF9 neqFI, neqIF

h, l=F, lssF1, l%IF
1eq19 hF 9 &FL EeqIF

gtrI 3 @F 3 @FI, @IF

geq19 geqF9 geqFI, geqIF

The following operations are specified:

eqF:

eqr:

eqFI:

eqIF 1

neqF:

neqI:
neqFI:

neqIF 1
/ssF:

lssr:
&‘I:
!ssIF:
leqF:
leqi:
hFI:

kIF1
gtrF:

gtrI:
@FI:

@IF:

geqF:

geqi 1

geqFI 1

geqIF 1

F x F -+ Boolean
IXI -+ Boolean
F x I --+ Boolean U {float-overflow}
I x F --+ Boolean U {float-overflow}
F x F ---+ Boolean
IXI --+ Boolean
F x I --+ Boolean U {float-overflow}
I x F -+ Boolean U {float-overflow}
F x F --+ Boolean
IXI --+ Boolean
F x I ---+ Boolean U {float-Overflow}
I x F -+ Boolean U {float-overflow}
F x F --+ Boolean
IXI -+ Boolean
F x I -+ Boolean U {float-Overflow}
I x F ---+ Boolean U {float-overflow}
F x F ---+ Boolean
IXI + Boolean
F x I --+ Boolean U {float-Overflow}
I x F -f Boolean U {float-Overflow}
F x F --+ Boolean
IXI --+ Boolean
F x I -+ Boolean U {float-Overflow}
I x F --+ Boolean U {float-overflow}

following axioms For all z, y E F, and UZ, 12 E 1 the
shall apply:

eqF(x, Y> = true e x = y

Point

nw(m, n) = true U m# n

neqFI(x,n) = neqF(x, .floatI-+F(,>>

if f loat&F(n) E F
= float -Overflow

if fht&F(n) $Z F

neqIF(n, Y) = neqFI(Y, n)

l=F (2, Y) = true <=> 2 < y

lssr (m, n) = true e m < n

l=FI (x, n) = IssF (& f loab+F (n>>

if f ht&F(n) E F
= float -Overflow

if fhi&F(n) 4 F

bF(% 9) = geqFI(% n)

bF(x, 2/> = true 0 x < y -

klr (m, n> = true <=> m < n -

leqFr(z,n) = leqF(x, fioatI+F(n))

if f bat&F(n) E F
= float -0verflow

if fht&+F(?2) 4 F

hIF(n, Y) = gtrFI(y, n)

@F(x, Y> = true a x > y

gtrr(m, iz> = true (m> n

@FI(x, n) = @F(x, float,-F(n))

if fht&+F(n) E F
= float -Overflow

if fht&+F(n) e F

@rIF(n, Y> = hFI(y, n)

g’%+? Y) = true (x > y -

eqr (m, n) = true <=> m = n

eqFI(x, n) = eqF(x, flo&-F(n))

if fht&+F(n) E F
= float -0verflow

if f ht&+F(n) $ F

F?lI (T n> = true (m > n -

geqFI(x, 12) = geqF (x, f loatI-F (n))

if fht&+F(n) E F
= float -Overflow

if fbat&+F(n) 6 F

g’?!IF(n, Y) = lssFr(y, n)

eqIF(n, Y) = eqFI(y, 12>

fxeqF(x, Y) = true <> x # y
NOTES

75

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1: 1995(E) @ ISO/IEC 1995

1 The arithmetic evaluable functors are defined in 9.1.1.

2 An Evaluation error (float-Overflow) occurs when an Operand
(3.121) which is a large integer cannot be converted to a floating
Point value (see fZout~-+~, 9.1.6).

8.7.1 (=:=)/2 - arithmetic equal, (=\=)/2 - arithmetic
not equal, (C)/2 - arithmetic less than, (=<)/2 -
arithmetic less than or equal, (>)/2 - arithmetic
greater than, (>=)/2 - arithmetic greater than or
equal

8.7.1.1 Description

The following requirements are true for all P where

p cg { =:=, =\=, <, =<, >, >= }

'P'(E1, E2) is true iff evaluating El and E2 as
expressions and performing the corresponding arithmetic
Operation on their values is true.

Procedurally, ’ PI (~1, ~2) is executed as follows:

a) Eva1 uates ~1 and ~2 as an expression (7.9) to
produce values EV1 and EV2,

b) If
to valu

the result
es EV1 an

0 f applying the arith metic Operation P
,d EV2 is true, then the goal succeeds,

c) Else the goal fails.

8.7.1.2 Template and modes

I-.- -.-- ' (Qevaluable, eevaluable)
'=\\=' (Gevaluable, Qevaluable)
'~(Qevaluable, Qevaluable)
I- --c (Qevaluable, Gevaluable)
'~(Gevaluable, Qevaluable)
l>=' (Qevaluable, Qevaluable)

NOTE - =: =, =\=, <, =<, >, and x
Operators (see 6.3.4.4).

8.7.1.3 Errors

a) ~1 is a variable
- instantiation-error.

b) ~2 is a variable
- instantiation-error.

NOTE - The evaluation of El and E2
(7.9.2).

= are predefined infix

may result in errors

8.7.1.4 Examples

I- -:= ’ (0, 1) -
Fails.

'=\\='(O, 1).
Succeeds.

'<'(O, 1).
Succeeds.

'>'(O, 1).
Fails.

'>=‘(O, 1).
Fails.

I- -<'(O, 1).
Succeeds.

I- - :='(l.O, 1).
Succeeds.

=\=(l.O, 1).
Fails.

'C'(1.0, 1).
Fails.

'P(1.0, 1).
Faik.

'>='(l.O, 1).
Succeeds.

'=<'(l.O, 1).
Succeeds.

I- -:= '(3*2, 7-l).
Succeeds.

'=\\='(3*2, 7-l).
Fails.

'<'(3*2, 7-l).
Fails.

'>'(3*2, 7-l).
Fails.

'>='(3*2, 7-l).
Succeeds.

'=<'(3*2, 7-l).
Succeeds.

1-.-t -.- (XI 5) f
instantiation-error.

=\=(X, 5).
instantiation-error.

'<' (X, 5).
instantiation-error.

'>'(X, 5).
instantiation-error.

'>='(X, 5).
instantiation-error.

76

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

‘- -<'(X, 5).
instantiati

d) Chooses
succeeds.

the first element of the list L, and the goal
on-error.

e) If all the elements of the list L have been Chosen,
then the goal fails,

f) Else chooses the first element of the list L which
has not already been Chosen, and the goal succeeds.

SS . Clause retrieval and information

These built-in predicates enable the contents of the database
(7.5) to be inspected during execution.

The examples provided
the database has been
text:

for these built-in predicates assume
created from the following Prolog

clause(Head, Body) is re-executable. On backtracking,
continue at 8.8.1.1 e.

NOTE - The process of converting a clause to a term
(7.6.3, 7.6.4) produces a renamed copy of the term H : - B
corresponding to the clause.

.- dynamic(cat/O). .
tat.

m- dynamic(dog .
dog :- true.

Ku.

8.8.1.2 Template and modes

elk(X) :- moose(X).
clause(+head, ?callable-term)

.- dynamic(legs/2). .
legs(A, 6) :- insect(A).
legs(A, 7) :- A, call(A). 8.8.1.3 Errors

a- dynamic(insect/l). .
insect(ant).
insect(bee).

a) Head is a variable
- instantiation-error.

b) Head is neither a variable nor a predication
- type-error(callable, Head). 8.8.1 clause/2

8.8.1.1 Description c) The predicate indicator Pred of Head is that of a
private procedure
- Permission-error(access,

private-procedure, Pred).

clause(Head, Body) is true iff:

- The predicate of Head is public, and
d) Body is neither a variable nor a callable term
- type-error(callable, Body). - There is a clause in the database which corresponds

t0 a term H : - B which unifies with Head : - Body.

8.8.1.4 Examples Procedurally,
lows:

clause(Head, Body) is executed as fol-

These examples assume the d atabase has been created
from the Prolog text defi ned at the beg inning of 8.8. a) Searches sequentially through each public user-

defined procedure in the database and creates a list L
of all the terms clause (H, B) such that clause(cat,

Succeeds.

1) the database contains a clause whose head tan
be converted to a term H (7.6.3) and whose body tan
be converted to a term B (7.6.4) and

clause(dog, true).
Succeeds.

clause(legs(1, 6), Body).
Succeeds, unifying Body with insect(1).

2) H unifies with Head, and
clause(legs(C, 7), Body) .

Succeeds, unifying Body with (call(C), call(C)).
3) B unifies with Body.

C lause(insect(I), T).
Succeeds, unifying 1 with ant, and T with true.
On re-execution,
succeeds, unifying 1 with bee, and T with true.

b) If a non-empty list is found, then proceeds to
83.1 .l d,

c) Else the goal fails. clause(x, Body).

77

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

8.8.2.2 Template and modes Fails.

clause(-, B) .
instantiation-error. current-predicate(?predicate-indicator)

clause(4, X).
type-error(callable, 4). 8.8.2.3 Errors

clause(elk(N), Body).
permission-error(access,

privatesrocedure, elk/l).

a) PI is neither a variable nor a predicate indicator
- WP e-error(pr bedicate-indicator, PI).

clause(atom(-), Body) .
permission-error(access,

privatesrocedure, atom/l).
8.8.2.4 Examples

These examples assume the database has been created
from the Prolog text defined at the beginning of 8.8.

Cl ause(1 egs UL
Undef ined.

6) / insect(f(A))).

current_predicate(dog/O) .
Succeeds. 8.8.2 current-predicate/l

current_predicate(current_predicate/l).
Fails.

current_predicate(elk/Arity).
Succeeds, unifying Arity with 1.

8.8.2.1 Description

current-predicate (PI) is true iff PI is a predicate
indicator for one of the user-defined procedures in the
database. currentsredicate(foo/A).

Fails.

Procedurally, current-predicate (PI) is executed as
follows:

current=predicate(Name/l).
Succeeds, unifying Name with elk.
On re-execution, succeeds,
unifying Name with insect.
[The Order of solutions is

implementation dependent]

a) Searches the database and creates a set Set AN of
all the terms A/N such that (1) the database contains a
user-defined procedure whose predicate has identifier A
and arity N, and (2) A/N unifies with PI, currentpredi cate(4).

type-error (predicate-indicator, 4).

b) If a non-empty set is found, then proceeds to
8.8.2.1 d,

8.9 Clause creation and destruction
c) Else the goal fails.

These built-in predicates enable the database (7.5) to be
altered during execution. 4 Chooses a member of SetAN and the goal succeeds.

NOTE - This part of ISO/IEC 13211 requires a “logical
database update”, see 7.5.4. e) If all the members of SetAN have been Chosen,

then the goal fails,

Else chooses a member of SetAN which has not 8.9.1 asserta/l
already been Chosen, and the goal succeeds.

8.9.1.1 Description
On back- current-predicate (PI) is re-executable.

tracking, continue at 8.8.2.1 e. asserta(Clause) is true.

The Order in which predi cate indicators are found by
curr .ent-predicate(PI) is implementati .on d .ependent.

Procedurally, asserta Klause) is executed as follows:

a) If Clause unifies with ,:-, (Head, Body), then
proceeds to 8.9.1 .l c, user-defined NOTE - All

or dynamic.
procedures are found, whether static

b) Else unifies Head with Clause and true with
Body,

procedure is also found even when it has no A user-defined
clauses.

c) Converts (7.6.1) the term Head to a head H, A user-defined procedure is not found if it has been abolished.

78

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

d) Converts (7.6.2) the term Body to a goal G,
asserta((atom(-) :- true)).

permission-error(modify,
static_procedure, atom/l). e> Constructs the clause with head H and body B,

f) Adds that clause before all existing clauses of the
procedure whose predicate is equal to the functor of
Head,

After these examples the database
from the following Prolog text:

could have been created

*- dynamic(legs/2). .
legs(A, 4) :- animal(
legs(octopus, 8).
legs(A, 6) :- insect(A).

g) The goal succeeds.

8.9.1.2 Template and modes -- dynamic(insect/l). .
insect(ant).
insect(bee).

*- dynamic(foo/l). .
foo(X) :- call(X), call(X).

asserta(@clause)

8.9.1.3 Errors

Head is a variable a>
8.9.2 assertzll instantiation-error.

b) Head is neither a variable nor tan be converted to
a predication
- type-errorkallable, Head).

8.9.2.1 Description

assertz(Clause) is true.

Procedurally, assertz (Clause) is executed as follows: Body cannot be converted to a goal
type-errorkallable, Body).

C>

a) If Clause unifies with ':-'(Head, Body), then
proceeds to 8.9.2.1 c, d) The predicate indicator Pred of Head is that of a

static procedure
- permission-error(modify,

static-procedure, Pred).
b) Else unifies Head with Clause and true with
Body,

c) Converts (7.6.1) the term Head to a head H,
8.9.1.4 Examples

d) Converts (7.6.2) the term Body to a goal G,
The examples defined i n thi s subclause assume the
has been created from the following Prolog text:

d
e> Constructs the clause with head H and body B,

f) Adds that clause after all existing clauses of the
procedure whose predicate is equal to the functor of
Head,

-- dynamic(legs/2). .
legs(A, 6) :- insect(A).

.- dynamic(insect/l). .
insect (ant).
insect(bee). g) The goal succeeds.

serta(legs(octopus, 8)).
Succeeds. 8.9.2.2 Template and modes

asserta((legs(A, 4) :- animal().
Succeeds. assertz(@clause)

asserta((foo(X) :- X, call(X))).
Succeeds. 8.9.2.3 Errors

asserta(-) .
instantiation-error. Head is a variable

instantiation-error.
asserta(4).

ty-pe-error(callable, 4). b) Head is neither a variable nor tan be converted to
a predication
- type-errorkallable, Head).

asserta((foo :- 4)).
type-errorkallable, 4).

79

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

C> Body cannot be converted to a
lable, Body)

goal 8.9.3 retractil
type-error(ca1

8.9.3.1 Description
d) The predicate indicator Pred of Head is that of a
static procedure
- permission-error(modify,

static-procedure, Pred).

retract (Clause) is true iff the database contains at
least one dynamic procedure with a clause Clause which
unifies with Head :- Body.

Procedurally, retract (Clause) is executed as follows: 8.9.2.4 Examples

The
has

examples defined i
been created from

n th
the

is subclause assume the d
following Prolog text:

atabase a) If Clause unifies with ' :-' (Head, Body), then
proceeds to 8.9.3.1 c,

*- dynamic(legs/l) . .
legs(A, 4) :- animal(
legs(octopus, 8).
legs(A, 6) :- insect(A).

b) Else unifies Head with Clause and true with
Body,

c) Searches sequentially through each dynamic user-
defined procedure in the database and creates a list L
of all the terms clause(H, B) such that

-- dynamic(insect/l). .
insect(ant).
insect(bee).

*- dynamic(foo/l). .
foo(X) :- call(X>, call(X>. 1) the database contains a clause whose head tan

be converted to a term H (7.6.3) and whose body tan
be converted to a term B (7.6.4) and assertz(legs(spider, 8)).

Succeeds.

2) H unifies with Head, and
assertz ((legs(B, 2)

succ eeds.
.- bird(B)) >. .

3 B unifies with Body.
assertz((foo(X) :- X -> call(X>)).

Succeeds.

d) If a non-empty list is found, then proceeds to
8.9.3.1 f,

assertz(J.
instantiation-error.

ertz(4).
type-error(callable, 4). e) Else the goal fails.

assertz((foo :- 4)).
type-error(callable, 4).

f) Chooses the first element of the list L, removes the
clause corresponding to it from the database, and the
goal succeeds. assertz((atom(J :- true)).

permission-error(modify,
static_procedure, atom/l).

g) If all the elements of the list L have been Chosen,
then the goal fails, After these examples the database could have been created

from the following Prolog text:
h) Else chooses the first element of the list L which
has not already been Chosen, removes the clause, if it
exists, corresponding to it from the database and the
goal succeeds.

-- dynamic(legs/l).
;egs(A, 4) :- animal(
legs(octopus, 8).
legs(A, 6) :- insect(A).
legs(spider, 8).
legs(B, 2) :- bird(B).

retract(Clause) is re-executable. On backtracking,
continue at 8.9.3.1 g. -- dynamic(insect/l). .

insect(ant).
insect(bee).

8.9.3.2 Template and modes -- dynamic(foo/l). .
foo(X) :- call(X>, call(X).
foo(X) :- call(X> -> call(X).

retract(+clause)

80

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

8.9.3.3 Errors

a) Head is a variable
- instantiation-error.

b) Head is neither a variable nor tan be converted to
a predication
- type-error(callable, Head).

c) The predicate indicator Pred of Head is that of a
static procedure
-permission-error(access,

static-procedure, Pred).

8.9.3.4 Examples

The examples defined in this subclause assume the database
has been created from the following Prolog text:

-- . dynamic(legs/2).
legs(A, 4) :- animal(
legs(octopus, 8).
legs(A, 6) :- insect(A).
legs(spider, 8).
legs(B, 2) :- bird(B).

-- dynamic(insect/l). .
insect(ant).
insect(bee).

*- dynamic(foo/l). .
foo(X) :- call(X), call(X).
foo(X) :- call(X) -> call(X).

retract(legs(octopus, 8)).
Succeeds, retracting the clause

'legs(octopus, 8)'.

retract(legs(spider, 6)).
Fails.

retract((legs(X, 2) :- T)).
Succeeds, unifying T with bird(X),

and retracting the clause
'legs(B, 2) :- bird(B)'.

retract((legs(X, Y) :- Z)).
Succeeds, unifying Y with 4,

and Z with animal(
noting the list of clauses to be retracted

= [(legs(A, 4) :- animal(A
(legs(A, 6) :- insect(A)),
(legs(spider, 8) :- true) 1,

and retracting the clause
'legs(A, 4) :- animal(A

On re-execution, succeeds,
unifying Y with 6, and Z with insect(X),
and retracting the clause

'legs(A, 6) :- insect(A)'.
On re-execution, succeeds, unifying Y with 8,

and X with Spider, and Z with true,
and retracting the clause

'legs(spider, 8) :- true'.
On re-execution, fails.

retract((legs(X, Y) :- Z)).
Fails.
[legs/2 has no clauses.]

retract(insect(I)), write(I),
retract(insect(bee)), fail.

'retract(insect(1))' succeeds,
unifying 1 with 'ant,,
noting the list of clauses to be retracted

= [insect(ant), insect(bee)],
and retracting the clause 'insect(ant)'.

'write(ant)' succeeds, outputting 'ant'.
'retract(insect(bee))' succeeds,

noting the list of clauses to be retracted
= [insect(bee)],

and retracting the clause ,insect(bee)'.
'fail' fails.
On re-execution, 'retract(insect(bee))' fails.
On re-execution, 'write(ant)' fails.
On re-execution, ,retract(insect(I))' succeeds,

unifying I with 'bee',
noting the list of clauses to be retracted

= [insect(bee)J,
[the clause 'insect(bee)' has already

been retracted.]
'write(bee)' succeeds, outputting 'bee'.
'retract(insect(bee))' fails.
On re-execution, 'write(bee)' fails.
On re-execution, 'retract(insect(1))' fails.
Fails.

retract((foo(A) :- A, call(A))).
Undefined
[An attempt to unify two terms:

---tfootA)/ (A, . call(A))) and
.-(foo(X), . (call(X), call(X)))
when examining the clause

,foo(X) :- call(X), call(X>'].

retract((foo(C) :- A -> B)).
Succeeds, unifying A and B with call(C),
and retracting the clause

'foo(X) :- call(X) -> call(X)'.

retract((X :- in-eec(Y))).
instantiation-error.

retract((4 :- X)).
type-errorkallable, 4).

retract((atom(X) :- X == '[]')).
permission-error(modify,

static>rocedure, atom/l).

8.9.4 abolish/l

8.9.4.1 Description

abolish (Pred) is true.

Procedurally, abolish (Pred) is executed as follows:

a) If the database contains a dynamic procedure whose
predicate indicator is Pred, then proceeds to 8.9.4.1 c,

b) Else the goal succeeds.

81

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

c) Removes from the database the procedure specified
by the predicate indicator A/N and all its clauses, and
the goal succeeds.

NOTE - abol ish (Pred) leaves the database in the same
state as if the procedures identified by Pred had never existed.

abolish(foo(J 1.
type-error(predicate_indicator, foo(J).

abolish(abolish/l).
permission-error(modify,

static_procedure, abolish/l).

8.9.4.2 Template and modes
8.10 All solutions

abolish(@predicate-indicator)

8.9.4.3 Errors

a) Pred is a variable
- instantiation,error.

b) Pred is a term Name/Arity
Arity is a variable
- instantiation-error.

and either Name or r

C> Pred is neither a variable nor a predicate indicator
- type-error(predicate-indicator, Pred).

d) Pr-ed is a term Name/Arity and Arity is neither
a variable nor an integer
- type-error(integer, Arity).

d Pred is a term Name/Arity and Name is neither a
variable nor an atom
- type-error(atom, Name).

0 Pred is a term Name/Arity and Arity is an
integer less than zero
- domain-error(not-less-than-Zero, Arity).

g) Pred is a term Name/Arity and Arity is an
integer greater than the implementation defined integer
max-arity
- representation-error(max-arity).

h) The predicate indicator Pred is that of a static
procedure
- permission-error(modify,

static-procedure, Pred).

8.9.4.4 Examples

abolish(foo/2).
Succeeds, also undefines foo/2 if there exists
a dynamic procedure with predicate indicator
foo/2.

abolish(foo/J.
instantiation-error.

These built-in predicates create a list of all the solutions
of a goal.

8.10.1 find alY3

8.10.1.1 Description

findall(Template, Goal, Instances) is true iff
Instances unifies with the list of values to which a
variable x not occurring in Template or Goal would be
instantiated by successive re-executions of

call(Goal), X=Template
after systematic replacement of all variables in x by new
variables.

Procedurally, findall(Template,
is executed as follows:

W

Creates an empty list L,

Executes call(Goal),

Goal, Instances)

c) If it fails, then proceeds to 8.10.1.1 g,

d) Else if it succeeds, appends the list [CL] to L
where CL is a renamed copy (7.1.6.2) of Template,

e>

0

g)

hl

i>

Re-executes cal1 (Goal) ,

Proceeds to 8.10.1.1 c,

Unifies L with Instances,

If the unification succeeds, the goal succeeds,

Else the goal fails.

8.10.1.2 Template and modes

abolish(foo).
type-error (predicate-indicator, foo). findall(?term, +callable-term, ?list)

82

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

Procedurally, bagof(Template, Goal, Instances) k
executed as follows:

8.10.1.3 Errors

a> Goal is a variable
a) Let Witness be a witness (7.1.1.2) of the free
variables set (7.1.1.4) of Goal with respect to Template,

- instantiation-error.

b) Goal is neither a variable nor a callable term
b) Let G be the iterated-goal term (7.1.6.3) of Goal, - type-error(callable, Goal).

C> Executes
G, 3,

the goal findall(Witness+Template, C) Instances is neither a partial list nor a list
- type-error(list, Instances).

d) If s is the empty list, then the goal fails,
8.10.1.4 Examples

findall(X, (X=l; X=2) SI *
Succeeds, unifying S with [l,

e) Else proceeds to step 8.10.2.1 f.

f) Chooses any element, W+T, of s. 21.

findall(X+Y
Succeeds

, (X=l), SI -
I unifying S with [l+-1. g) Let WT-list be the largest proper sublist (7.1.6.4)

of s such that, for each element WW+TT of m,lis t, ww
is a variant (7.1.6.1) of w, findall(X, fail, L).

Succeeds, unifying S with [].

h) Let T-lis t be the list such that, for each element
WW+TT of WT-list, there is a corresponding element TT
Of T-list,

findall(X, (X=l; X=l>, S).
Succeeds, unifying S with [l, 11.

findall(X,
Fails.

(X=2; X=l), u, 21).
i) Let S-next be the largest proper sublist of s such
that E is an element of Snext iff E is not an element
Of WT-list,

findall(X, (X=l;X=2), [X, YI).
Succeeds, unifying X with 1, and Y with 2.

findall& Goal, S).
instantiation-error. j> Replaces s by Snext,

k) Unifies Witness with each ww defined in 8.10.2.1 g, findall(X, 4, S).
type-error(callable, 4).

1) If T-list unifies with Instances, then the goal
succeeds,

8.10.2 bagofY3

m) Else proceeds to step 8.10.2.1 d.
bagof /3 assembles as a list the solutions of a goal for
each different instantiation of the free variables in that
goal. The elements of each list are in Order of solution,
but the Order in which each list is found is undefined.

bagof(Template, Goal, Ins tances) is re-executable.
On backtracking, continue at 8.10.2.1 d.

NOTES
8.10.2.1 Description

1 Step 8.10.2.1 f does not define which element of those
eligible will be Chosen. The Order of solutions for bagof / 3
is thus undefined. bagof(Template, Goal, Instances) is trueiff:

- Instances is a non-empty list of Template
that cal1 (G) is true where G is the iterated-goal

such 2 If the free variables set of Goal with respect to Template
is empty, and Iterated-Goal succeeds, then the goal tan
succeed only once.

term
(7.1.6.3) of Goal, and

3 The variables of Template and the variables in the exis-
tential variables set (7.1 .1.3) of Goal remain uninstantiated after
each success of bagof(Template, Goal, Instances).

- Esch element of Instances corresponds to an
instance of Witness where Witness is a witness
(7.1.1.2) of the free variables set (7.1.1.4) of Goal with
respect to Template, and

8.10.2.2 Template and modes
- The elements of Instances are in Order of Solution
of the iterated-goal term (7.1.6.3) of Goal. bagof(?term, +callable-term, ?list)

83

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

8.10.2.3 Errors

a) The iterated-goal term G of Goal is a variable
- instantiation-error.

b) The iterated-goal term G of Goal is neither a
variable nor a callable term
- type-error(callable, G).

C> Instances is neither a partial list nor a list
- type-error(list, Instances).

8.10.2.4 Examples

bagof(X, (X=l ; X=2), S).
Free variables set: 0.
Succeeds, unifying S with [1,2].

bagof(X, (X=l ; X=2), X).
Free variables set: {>.
Succeeds, unifying X with [1,21.

bagof(X, (X=Y ; X=Z), S).
Free variables set: {Y, Z}.
Succeeds, unifying S with [Y, Zl.

bagof(X, fail, S).
Free variables set: {>.
Fails.

bagof(1, (Y=l ; Y=2), L).
Free variables set: {Y}.
Succeeds, unifying L with [l],

and Y with 1.
On re-execution, succeeds, unifying L with

and Y with 2.
[The Order of solutions is undefined]

bagof(f(X, Y), (X=a ; Y=b), L).
Free variables set: 0.
Succeeds, unifying L with [f(a, -), f(-, b)].

bagof(X, Y^((X=l, Y=l) ; (X=2, Y=2)), S).
Free variables set: 0.
Succeeds, unifying S with [l, 21.

bagof(X, Y^((X=l ; Y=l) ; (X=2, Y=2)), S).
Free variables set: 0.
Succeeds, unifying S with [l, -, 21.

bagof(X, (Y^(X=l ; Y=2) ; X=3), S).
Free variables set: {Y}.
Warning: the procedure (^)/2 is undefined.
Succeeds, unifying S with [3], and Y with _.
[Assuming there is no definition for the
procedure (^)/2, and that the value associated
with flag 'unknown' is 'warning'.]

bagof(X, (X=Y ; X=Z ; Y=l), S).
Free variables set: {Y, Z}.
Succeeds, unifying S with [Y, Z].
On re-execution, succeeds, unifying S with E-1,

and Y with 1.

bagof(X, a(X, Y), L).
Clauses of a/2:

a(L ft-1 1.

CL f(J).
Free variables set: {Y}.
Succeeds, unifying L with [1, 21,

and Y with f(-).

bagof(X, b(X, Y), L).
Clauses of b/2:

b(l, 1).
bU, 1) -
b(l, 2).
b(2, 1).
bG', 2).
KL 2) -

Free variables set: {Y}.
Succeeds, unifying L with [1,1,21,

and Y with 1.
On re-execution, succeeds,

unifying L with [1,2,2], and Y with 2.
[The Order of solutions is undefined]

bagof(X, Y-Z, L).
instantiation-error.

bagof(X, 1, L).
type-error(callable, 1).

8.10.3 setof/3

setof/3 assembles as a list the solutions of a goal for
each different instantiation of the free variables in that
goal. Esch list is a sorted list, but the Order in which
each list is found is undefined.

8.10.3.1 Description

setof(Template, Goal, Instances) is true iff

- Instance-list is a MHkempty list of Template
such that cal1 (G) is true where G is the iterated-goal
term (7.1.6.3) of Goal, and

- Esch element of Ins tance-lis t corresponds to
an instance of Witness where Witness is a witness
(7.1 .1.2) of the free variables set (7.1.1.4) of Goal with
respect to Template, and

- Instances is the sorted list (7.1.6.5) of
Instance-list.

Procedurally, setof(Template, Goal, Instances) is
executed as follows:

a) Let Witness be a witness of the free variables set
(7.1.1.4) of Goal with respect to Template,

b) Let G be the iterated-goal term (7.1.6.3) of Goal,

c) Executes the goal findall(Witness+Template,
G, S),

d) If s is the empty list, the goal fails.

84

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1: 1995(E)

e) Else proceeds to step 8.10.3.1 f.

f) Chooses any element, W+T, of s.

g) Let WT-list be the largest proper sublist (7.1.6.4)
of s such that, for each element WW+TT of WT-list, ww
is a variant (7.1.6.1) of W,

h) Let T-list be the list such that, for each element
WW+TT of WT-list, there is a corresponding element TT
Of T-list,

i) Let Snext be the largest proper sublist of s such
that E is an element of S-next iff E is not an element
WT-list,

j) Let ST-list be the sorted list (7.1.6.5) of T-list,

k) Replaces s by Snext,

1) Unifies witness with each ww defined in 8.10.3.1 g,

m) If ST-list unifies with Instances, then the goal
succeeds,

n) Else proceeds to step 8.10.3.1 d.

setof(Template, Goal, Ins tances) is re-executable.
On backtracking, continue at 8.10.3.1 d.

8.10.3.2 Template and modes

setof(?term, +callable-term, ?list)

8.10.3.3 Errors

a) The iterated-goal term G of Goal is a variable
- instantiation-error.

b) The iterated-goal term G of Goal is neither a
variable nor a callable term
- type-error(callable, G).

C> Instances is neither a partial list nor a list
- type-error(list, Instances).

8.10.3.4 Examples

setof(X, (X=l; X=2), S).
Free variables set: 0.
Succeeds, unifying S with [1,2].

setof(X, (X=l; X=2), X).
Free variables set: 0.
Succeeds, unifying X with [1,21.

Free variables set: {}.
Succeeds, unifying S with [1,2].

setof(X, (X=2; X=2), S).
Free variables set: {}.
Succeeds, unifying S with [2].

setof(X, (X=Y; X=Z), S).
Free variables set: {Y, Z}.
Succeeds, unifying S with [Y, Z] or [Z, Y].
[The Solution is implementation dependent.]

setof(X, fail, S).
Free variables set: 0.
Fails.

setof(1, (Y=2 ; Y=l), L).
Free variables set: {Y}.
Succeeds, unifying L with [l], and

Y with 1.
On re-execution, succeeds,

unifying L with [l], and Y with 2.
[The Order of solutions is undefined]

setof(f(X,Y), (X=a ; Y=b), L).
Free variables set: {}.
Succeeds, unifying L with [f(-,b),f (a,-11.

setof(X, Y^((X=l, Y=l) ; (X=2, Y=2)), S).
Free variables set: 0.
Succeeds, unifying S with [1,2].

setof(X, Y*((X=l ; Y=l) ; (X=2, Y=2)), S).
Free variables set: 0.
Succeeds, unifying S with [-,1,2].

setof(X, (Y^(X=l ; Y=2) ; X=3), S).
Free variables set: {Y}.
Warning: the procedure (^)/2 is undefined.
Succeeds, unifying S with [3], and Y with _.
[Assuming there is no definition for the
procedure (^)/2, and that the value associated
with flag 'unknown' is 'warning'.]

setof(X, (X=Y ; X=Z ; Y=l), S).
Free variables set: {Y, Z}.
Succeeds, unifying S with [Y,Z] or [Z,Y].
On re-execution, succeeds, unifying S with [J,

and Y with 1.

setof(X, a(X, Y), L).
Clauses of a/2:

a(l, ft-1 1.
a(2, ft-> 1.

Free variables set: {Y}.
Succeeds, unifying L with [l, 21,

and Y with f(-).

The following examples assume that member/2
is defined with the following clauses:

member(X, [X 1 -1) *
member(X, L 1 LI) :-

member(X, L).

setof(X, member(X,[f(U,b),f(V,c)]), L).
Free variables set: {U, V}.
Implementation dependent.
Succeeds, unifying L with [f(U,b),f(V,c)] or

with [f(V,c),f(U,b)].

setof(X, member(X,[f(U,b),f(V,c)l),
setof(X, (X=2; X=l), S).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

Efb,d,fb,b)lL
Free variables set: {U, V}.
Implementation dependent.
[If the previous example succeeds,

unifying L with [f(U,b),f(V,c)],
then this example fails.

If the previous example succeeds,
unifying L with [f(V,c),f(U,b)],

then this example succeeds,
unifying U with a, and V with a).]

setof(X, member(X,[f(b,U),f(c,V)]),
[f(b,aLfk,a)lL

Free variables set: {U, V}.
Succeeds, unifying U with a, and V with a.

setof(X, member(X,[V,U,f(U),f(V)]), L).
Free variables set: (U, V}.
Succeeds, unifying L with [U,V,f(U),f(V)] or

with [V,U,f(V),f(U)].

setof(X, member(X,[V,U,f(U),f(V)]),
b,b,fbLf(bW -

Free variables set: {U, V).
Implementation dependent.
Succeeds, unifying U with a, and V with b;

or, unifying U with b, and V with a.

setof(X, member(X,[V,U,f(U),f(V)]),
[ah f (b) , f Ca) 1 > -

Free variables set: {U, V}.
Fails.

setof(X,
(exists(U,V)^member(X,[V,U,f(U),f(V)])),
[a,b,fW,fWl).

Free variables set: 0.
Succeeds.

The following examples assume that b/2 is defined
with the following clauses:

Ul, 1).
b(l, 1) -
b(l, 2) -
b(2, 1) -
KL 2) -
b(2, 2) -

setof(X, b(X, Y), L).
Free variables set: {Y}.
Succeeds, unifying L with [l, 21, and Y with 1
On re-execution, succeeds,

unifying L with [l, 21, and Y with 2.
[The Order of solutions is undefined]

setof(X-Xs,Y^setof(Y,b(X,Y),Xs),L).
Free variables set: {>.
Succeeds, unifying L with [l-[1,2],2-[1,2]].

setof(X-Xs,setof(Y,b(X,Y),Xs),L).
Free variables set: {Y>.
Succeeds, unifying L with [l-[1,2],2-[1,2]],

and Y with _.

setof (X-Xs,bagof(Y,d(X,Y),Xs) ,L).
Clauses of d/3:

d(l,l) -
d(L2).
d(l, 1) -
d(2,2).
UL 1).

d(2,2) -
Free variables set:
Succeeds,

unifying L with
and Y with _.

w -

H-L2,~1,2-[2,L211 I

8.11 Stream selection and control

These built-in predicates link an external source/sink with
a Prolog stream, its stream-term and stream alias. They
enable the source/sink to be opened and closed, and its
properties found during execution.

NOTE - Some of these built-in predicates may Cause a
Resource Error (7.12.2 11) because, for example, the program
has opened too many streams, or a file or disk is full. Some
of these built-in predicates may also Cause a System Error
(7.12.2 j) because the operating System is reporting a Problem.

The precise reasons for such errors, the side effects which have
occurred, and the way they tan be circumvented are undefined
in this part of ISO/IEC 13211.

8.11.1 current-input/l

8.11.1.1 Description

current-input(Stream) is true iff the stream-term
Stream identifies the current input stream (7.10.2.4).

Procedurally, current-input(Stream) is executed cis

follows:

a) Unifies Stream with the stream-term of the current
input stream,

b) The goal succeeds.

8.11.1.2 Template and modes

current-input(?stream)

8.11.1.3 Errors

4 Stream is neither a variable nor a stream
- domain-errorktream, Stream).

8.11.2 current-output/1

8.11.2.1 Description

current-output(Stream) is true iff the stream-term
Stream identifies the current output stream (7.10.2.4).

Procedurally, current-output(Stream) is executed as
follows:

86

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

a) Unifies Stream with the stream-term of the current
output stream,

b) The goal succeeds.

8.11.4.2 Template and modes

set-output(@stream-or-alias)

8.11.4.3 Errors

4 S-or-a is a variable
- instantiation-error.

b) S-or-a is neither a variable nor a stream-term or
alias
- domain-error(stream-or-alias, S-or-a).

8.11.2.2 Template and modes

current-output(?stream)

8.11.2.3 Errors

Stream is neither a variable nor a stream
domain-error(stream, Stream).

C> S-or-a is not associated with an open stream
- existente-error(stream, S-or,a).

d) S-or-a is an input stream
- permission-error(output, stream, S-or-a).

8.11.3 set-inputil

8.11.3.1 Description

set-input (S-or-a) is true.

8.11.5 open/4, open/3

8.1151 Description

open(Source-sink, Mode, Stream, Options) is true.

Procedurally, open(Source-sink, Mode, Stream,
Options > is executed as follows:

Procedurally, set-input (S-or-a) is executed as follows:

a) Sets the current input stream to be the stream
associated with stream-term or alias S-or-a,

b) The goal succeeds.

8.11.3.2 Template and modes

a) Opens the source/sink Source-sink for input or
output as indicated by input/output mode Mode and the
list of stream-Options Options (7.10.2.11).

b) Instantiates Stream with the stream-term which is
to be associated with this stream,

set-input(@stream-or-alias)

8.11.3.3 Errors

a> S-or-a is a variable
- instantiation-error.

C> The goal succeeds.
b) S-or-a is neither a variable nor a stream-term or
alias
- domain-error(stream-or-alias, S-or-a). 8.11.5.2 Template and modes

open(@source-sink, Qio-mode, -stream,
@streamoptions)

open(@source-sink, Qiooode, -stream)

C> S-or-a is not associated with an open stream
- existente-error(stream, S-or-a).

d) S-or-a is an output stream
- Permission-error(input, stream, S-or-a).

8.1153 Errors

a> Source-sink is a variable
- instantiation-error.

8.11.4 set-output/1

8.11.4.1 Description

b) Mode is a variable
- instantiation-error.

setz-output (S-or-a) is true.

Procedurally, Set-output (S-or-a) is executed as follows:
list with an elemen 1. c) Options is a partial list

E which is a variable a> Sets the current output stream to be the
associated with stream-term or alias S-or-a, - instantiation-error.

87

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

d) Mode is neither a variable nor an atom open('luserldave/data', read, DD, [l> *
Succeeds.
[It opens the text file '/user/dave/data'
for input, and unifies DD with a
stream-term for the stream.]

type-error(atom, Mode).

e> Options is neither a partial list nor a list
type-error(list, Options).

8.11.5.5 Bootstrapped built-in predicate 9 Stream is not a variable
- type-error(variable, Stream).

The built-in predicate open/ 3 provides similar functionality
to open/4 exceptthata goal open(Source-sink, Mode,
Stream) opens the source/sink Source-sink with an
empty list of stream-Options.

g) Source-sink is neither a variable nor a source/sink
- domain-error(source-sink, Source-sink).

h) Mode is an atom but not an input/output
Mode).

mode open(Source-sink, Mode, Stream) :-
open(Source-sink, Mode, Stream, [IJ - domain-error(io-mode,

i) An element E of the Options list is neither a
variable nor a stream-Option
- domain-error(stream-Option, E).

8.11.6 close/2, close/l

This built-in predicate closes the stream associated with
stream-term or alias S-or-a if it is open. The behaviour
of this built-in predicate may be modified by specifying a
list of close-Options (7.10.2.12) in the Options parameter.

j) The source/sink specified by Source-sink does not
exist
- existente-error(source_sink, Source-sink).

8.11.6.1 Description k) The source/sink specified by Source-sink cannot
be opened
- permission-error(open, Source-sink,

Source-sink).
close(S-or-a, Options) is true.

Procedurally, close (S-or-a,
follows:

Options) is executed as

1) An element E of the Options list is alias (A) and
A is already associated with an open stream
- permission-error(open, Source-sink,

alias(A)).

a) If there is a close-Option forte (true) , ignores
any Resource Error condition (7.12.2 h) or System Error
condition (7.12.2 j) that may be satisfied, and proceeds
to 8.11.6.1 c, m) An element E of the Options list is

reposition(true) and it is not possible to repo-
sition this stream
-permission-error(open, Source-sink,

reposition(true)).

b) Any output which is currently buffered by the
processor for the stream associated with S-or-a is sent
to that stream (7.10.2.10),

c) If the stream-term or alias S-or-a is the Standard
input stream or the Standard output stream, then proceeds
to 8.11.6.1 i,

NOTE - A permission error when Mode is write or append
means that Source-sink does not specify a sink that tan
be created, for example, a specified disk or directory does not
exist. If Mode is read then it is also possible that the file
specification is valid but the file does not exist. d) If the stream associated with S-or-a is not the

current input stream, then proceeds to 8.11.6.1 f,

e) The current input stream becomes the Standard input
stream user-input,

8.11.5.4 Examples

open('luser/rogerldata', read, D, [tyw (binaM 1)
Succeeds.
[It opens the binary file '/user/roger/data'
for input, and unifies D with a
stream-term for the stream.]

9 If the stream associated with S-or-a is not the
curren t output stream, then proceeds to 8.11.6.1 h,

g) The current output stream becomes the Standard
output stream user-output, open('/user/scowen', write, D, [alias(editor>])

Succeeds.
[It opens the text file '/user/scowen' for
output, unifies D with a stream-term for the
stream, and associates the alias 'editor'
with the stream.]

l-0 Closes the stream associated with S-or-a and
anY alias associated with that stream,

deletes

i) The goal succeeds.

88

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

8.11.6.2 Template and modes 8.11.7.2 Template and modes

close(@stream-or-alias, Qclose-Options)
close(@stream-or-alias)

flush-output(@stream-or-alias)
flush-output

8.11.6.3 Errors 8.11.7.3 Errors

a) S-or-a is a variable
- instantiation-error.

a) S-or-a is a variable
- instantiation-error.

b) Options is a partial list or a list with an element
E which is a variable
- instantiation-error.

b) S-or-a is neither a variable nor a stream-term or
alias
- domain-error(stream-or-alias, S-or,a).

C> Options is neither a partial list nor a list
type-error(list, Options).

C> S-or-a is not associated with an open stream
existente-error(stream, S-or-a).

d) S,or-a is neither a variable nor a stream-term or
alias

d) S-or-a is an input stream
- permission-error(output, stream, S-or-a).

- domain-error(stream-or-alias, S-or-a).

e) An element E of the Options list is neither a
variable nor a close-Option

8.11.7.4 Bootstrapped built-in predicates

- domain-error(close-Option, E).

f,) S-or,a is not associated with an open stream
- existente-error(stream, S-or-a).

The built-in predicate f lush-output / 0 provides similar
functionality to f lush-output/ 1 except that a goal
flush-output flushes the current output stream.

flush-output :-
current-output(S),

8.11.6.4 Bootstrapped built-in predicate
flush-output(S).

The built-in predicate close/l provides similar func-
tionality to close/2 except that a goal close(S-or-a)
closes, with an empty list of close-Options, the stream
associated with stream-term or alias S-or-a if it is open.

8.11.8 stream_property/2,
at-end-of-stream/l

8.11.8.1 Description

at-end-ofstream/O,

close(S-or-a) :-
close(S-or-a, 11) -

stream-property(Stream, Property) is true iff the
stream associated with the stream-term Stream has stream
property (7.10.2.13) Property.

Procedurally, stream-property(Stream, Property) is
executed as follows:

8.11.7 flush-output/l, flush-output/0

NOTE - Flushing an output stream is explained in 7.10.2.10.

8.11.7.1 Description
a) Creates a set Setsp of all terms (s, P) such that
s is a currently open stream which has property P,

flush-output (S-or-a) is true. b) If Setsp is empty, the goal fails,

Procedurally, f lush-output (S-or-a) is executed as fol-
lows:

c) Else, chooses a member (SS, PP) of Setsp and
removes it from the set,

a) Any output which is currently buffered by the
processor for the stream associated with stream-term or
alias S-or-a is sent to that stream,

d) Unifies SS with Stream, and PP with Property,

e) If the unification succeeds, the goal succeeds,

b) The goal succeeds. f) Else proceeds to 8.11.8.1 b.

89

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

streamproperty(Stream, Property) isre-executable.
On backtracking, continue at 8.11.8.1 b.

at-end-of-stream :-
current-input(S),
stream_property(S, end-of-stream(E)),
1
- I

The Order in which properties are found by
stream-property/ 2 is implementation dependent.

(E = at ; E = past).

at-end-of-stream (S-or-a) :-
(atom(S-or-a) ->

stream=property(S, alias(S-or-a))
;S=Sora - -

8.11.8.2 Template and modes

streamproperty(?stream, ?streamproperty)
at-end-of-stream
at-end-of-stream(@stream-or-alias)

stream_property(S, end-of-stream(E)),
I
* I

(E = at ; E = past).

8.11.9 set-stream-Position/2 8.11.8.3 Errors

8.11.9.1 Description a) S-or-a is a variable
- instantiation-error.

set-stream-position(S-or-a, Position) is true.
b) Stream is neither a variable nor a stream-term

domain-error(stream, Stream). Procedurally, set-stream-position(S-or-a,
Position) is executed as follows:

c) Property is neither a variable nor a stream property
- domain-error(stream-property, Property). a> Sets the stream Position of the stream associated

with stream-term or alias S-or-a to Position,
d) S-or-a is neither a variable nor a stream-term or
alias
- domain-error(stream-or-alias, S-or-a).

b) The goal Succeeds.

NOTE - Normally, Pos it ion will previously have been
retumed as a positionl 1 stream property of the stream. 6 S-or-a is not associated with an open

existente-error(stream, S-or-a).

8.11.9.2 Template and modes
8.11.8.4 Examples

set-streamposition(@stream-or-alias,
Gstream-Position) stream_property(S, file-name(F)).

Succeeds, unifying S with a stream-term
and F with the name of the file to which
it is connected.

On re-execution, succeeds in turn with
each stream that is connected to a file.

8.11.9.3 Errors

a) S-or-a is a variable
- instantiation-error. stream=property(S, output).

Succeeds, unifying S with a stream-term
which is open for output.

On re-execution, succeeds in turn
with each stream that is open for output.

b) Position is a variable
instantiation-error.

C> S-or-a is neither a variable nor a stream-term or
alias
- domain-error(stream-or-alias, S-or-a).

8.11.8.5 Bootstrapped built-in predicates

The built-in predicates at-end-of -s tream/ 0 and
at-end-of ,s tream/ 1 examine the Single stream-property
end-of-stream/l. d) Position is neither a variable nor a stream Position

- domain-error(stream-Position, Position).
A goal at-end-of,stream is true iff the current input
stream has a stream Position end-of-stream or past-end-of-
stream (7.10.2.9, 7.10.2.13).

e) S-or-a is not associated with an open stream
- existente-error(stream, S-or,a).

9 S-or-a has stream property reposition(false)
Permission-error(reposition, stream,
S-or-a).

A goal at,end-of-stream (S-or-a) is true iff the stream
associated with stream-term or alias S-or,a has a stream
Position end-of-stream or past-end-of-stream.

90

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

8.12 Character inpdoutput 8.12.1.3 Errors

a> S-or-a is a variable
- instantiation,error.

These built-in predicates enable a Single Character or
Character code to be input from and output to a text
stream.

b) Char is neither a variable nor an in-Character
type-error(in- Character, Char).

8.12.1 get_char/2, get-char/l, get-code/l, get-Code/2
C> Code is neither a variable nor an integer
- type-error(integer, Code).

8.12.1.1 Description

d) S-or-a is neither a variable nor a stream-term or
alias
- domain-error(stream-or-alias, S-or-a).

e> S-or-a is not associated with an open
existente-error(stream, S-or-a). Procedurally, get-char (S-or-a, Char) is executed as

follows:

fl S-or-a is an output stream
- permission-error(input, stream, S-or-a). a> If the stream Position of the target

to 8.12.1.1
stream

past-end-of-stream, then proceeds 3,
g) The target stream is associated
- Permission-error(input,
TS).

with a binary stream
b) Else if the stream Position of the target stream is
end-of-stream, then proceeds to 8.12.1.1 g,

binary-stream,

h) The target stream has stream properties
end-of-stream(past) and eof-actionterror)

(7.10.2.9, 7.10.2.11, 7.10.2.13)
- permission-error(input,

past-end-of-stream, TS).

c) Else let c be the next Character to be input from
the target stream,

d) Changes the stream Position of the target stream
take account of the Character which has been input,

i) The entity input from the stream is not a Character
(7.1.4.1)
- representation-error(character).

e> If Char unifies with a one-char atom whose name
is c, the goal succeeds,

f) Else the goal fails. j>
(7 .

Code is an
1.2.2)
representa

integer but not an in-Character code

tion-er ror(in-cha .racter-Code). g) Sets
stream,

the stream Position so that it is past-end-of-

8.12.1.4 Examples h) If the atom end-of,file unifies with Char, the
goal succeeds,

get-char(Char).
If the contents of current input stream are

qwerty . . .
Succeeds, unifying Char with 'q' and
the current input stream is left as

werty . . .

i) Else the goal fails.

j) Performs the action specified in subclause 7.10.2.11
appropriate to the value of A where the target stream
has stream property eo f -ac t ion (A) . get-code(Code).

If the contents of current input stream are
qwerty . . .

Succeeds, unifying Code with O'q and
the current input stream is left as

werty . . . 8.12.1.2 Template and modes

get-char(st-i, Char) .
If the contents of the stream associated
with st-i are

qwerty . . .
Succeeds, unifying Char with 'q' and

get-char(?in-Character)
get-char(@stream-or-alias, ?in-Character)
get-code(?in-Character-Code)
get-code(@stream-or-alias, ?in-Character-Code)

91

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

st-i is left as
werty . . .

get-code(st-i, Code).
If the contents of the stream associated
with st-i are

qwerty . . .
Succeeds, unifying Code with O'q and
st-i is left as

werty . . .

get-char(st-i, Char).
If the contents of the stream associated
with st-i. are

'qwerty' . . .
Succeeds, unifying Char with “" (the
atom containing just a Single
quote) and st-i is left as

qwerty' . . .

get-code(st-i, Code).
If the contents of the stream associated
with st-i are

'qwerty' . . .
Succeeds, unifying Code with 0"' and
st-i is left as

qwerty' . . .

get-char(st_i, p).
If the contents of the stream associated
with st-i are

qwerty . . .
Fails. The stream associated
with st-i is left as

werty . . .

get-code(st_i, 0'~).
If the contents of the stream associated
with st-i are

gwerty . . .
Fails. The stream associated
with st-i is left as

werty . . .

get-char(st-i, Char) .
If the stream Position of the

stream associated with st-i is end-of-stream
Succeeds, unifying Char with end-of-file,
and sets stream Position of st-i to
past-end-of-stream.

get-code(st-i, Code).
If the stream Position of the

stream associated with st-i is end-of-stream
Succeeds, unifying Code with -1,
and sets stream Position of st-i to
past-end-of-stream.

get-char(user-output, X).
permission-error(input, stream, user-output).

get-code(user-output, X).
permission-error(input, stream, user-output).

8.12.1.5 Bootstrapped built-in predicates

The built-in predicates get-char / 1, get-Code&
and get-Code/2 all provide similar functionality to
get-char/2.

Goals getxhar (Char) unifies Char with a one-char atom
whose name is the Character which has been input, and
get-Code (Code) and get-Code (S-or,a, Code) unify
Code with the Character code of the Character which has
been input.

get-char(Char) :-
current-input(S), get-char(S, Char).

get-code(Code) :-
current-input(S),
get-char(S, Char),
(Char = end-of-file ->

Code = -1
; char-code(Char, Code)

get-code(S, Code) :-
get-char(S, Char),
(Char = end-of-file ->

Code = -1
; char-code(Char, Code)

NOTE - The built-in predicate char-Code/2 is defined in
8.16.6.

8.12.2 peek-char/2,
peek-Code/2

peek-char/l, peekxode/l,

8.12.2.1 Description

peek-char(S-or-a, Char) is true iff Char unifies with
the next Character to be input from the target stream
(7.10.2.5).

Procedurally, peek-char(S-or-a, Char) is executed as
follows:

a) If the stream Position of the target stream is
past-end-of-stream, then proceeds to 8.12.2.1 h,

b) Else if the stream Position of the target stream is
end-of-stream, then proceeds to 8.12.2.1 f,

c) Else let c be the next Character to be input from
the target stream,

d) If Char unifies with a one-char atom whose name
is C, the goal succeeds,

e) Else the goal fails.

f> If the atom end-of-f ile unifies with Char, the
goal succeeds,

g) Else the goal fails.

h) Performs the action specified in subclause 7.10.2.11
appropriate to the value of A where the target stream
has stream property eof -ac t ion (A) .

NOTE - peek-char(S-or-a, Char) leaves unaltered the
stream Position of the target stream.

92

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

8.12.2.2 Template and modes

peek-char(?in_character)
peek-char(@stream-or-alias, ?in-Character)
peek-code(?in-Character-Code)
peek-code(@stream-or-alias, ?in-charactercode)

8.12.2.3 Errors

a> S-or-a is a variable
- instantiation-error.

b) Char is neither a variable nor an in-Character
- type-error(in-Character, Char).

c) Code is neither a variable nor an integer
- type-error(integer, Code).

d) S-or-a is neither a variable nor a stream-term or
alias
- domain-error(stream-or-alias, S,or,a).

e> S-or-a is not associated with an open stream
- existente-error(stream, S-or-a).

0 S-or-a is an output stream
- Permission-error(input, stream, S-or-a).

g) The target stream is associated with a binary stream
- Permission-error(input, binary-stream,
TS).

h) The target stream has stream properties
end-of-stream(past) and eof-actionterror)

(7.10.2.9, 7.10.2.11, 7.10.2.13)
- permission-error(input,

past-end-of-stream, TS).

i) The next entity to be input from the stream is not
a Character (7.1.4.1)
- representation-error(character).

j) Code is an integer but not an in-Character code
(7.1.2.2)
- representation-error(in_character_code).

8.12.2.4 Examples

peek-char(Char).
If the contents of current input stream are

qwerty . . .
Succeeds, unifying Char with 'q' and
the current input stream is left as

qwerty . . .

peek-code(Code) .
If the contents of current input stream are

qwerty . . .

Succeeds, unifying Code with O'q and
the current input stream is left as

qwerty . . .

peek-char(st-i, Char).
If the contents of the stream associated
with st-i are

qwerty . . .
Succeeds, unifying Char with 'q' and
st-i is left as

qwerty . . .

peek-code(st-i, Code).
If the contents of the stream associated
with st-i are

qwerty . . .
Succeeds, unifying Code with O'q and
st-i is left as

qwerty . . .

peek-char(st-i, Char).
If the contents of the stream associated
with st-i are

'qwerty' . . .
Succeeds, unifying Char with "" (the
atom containing just a Single
quote) and st-i is left as

'qwerty' . . .

peek-code(st-i, Code).
If the contents of the stream associated
with st-i are

'qwerty' . . .
Succeeds, unifying Code with 0"' and
st-i is left as

'qwerty' . . .

peek-char(st-i, p).
If the contents of the stream associated
with st-i are

qwerty . . .
Fails. The stream associated
with st-i is left as

qwerty . . .

peek-code(st-i, 0'~).
If the contents of the stream associated
with st-i are

qwerty . . .
Fails. The stream associated
with st-i is left as

qwerty . . .

peek-char(st-i, Char) .
If the stream Position of the stream

associated with st-i is end-of-stream
Succeeds, unifying Char with end-of-file, and
sets stream Position of st-i to end-of-stream.

peek-code(st-i, Code).
If the stream Position of the

stream associated with st-i is end-of-stream
Succeeds, unifying Code with -1, and
sets stream Position of st-i to end-of-stream.

peek-char(s, Char).
If the stream Position of the stream

associated with s is past-end-of-stream,
and s has stream property eof-action(error)

permission-error(input, past-end-of-stream, s).

93

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1: 1995(E) @ ISO/IEC 1995

peek-char(User-output, X).
permiss ion-error(input, stream, user-output) .

8.12.3.2 Template and modes

put-char(+character)
put-char(@stream-or-alias, +character)
put-code(+character-Code)
put-code(@stream-or-alias, +character-Code)

peek-code(user-output, X).
permission-error(input, stream, user-output).

nl
nl(@stream-or-alias) 8.12.2.5 Bootstrapped built-in predicates

The built-in predicates peek-char/l, peek-code/l,
and peek-Code/2 all provide similar functionality to
peekcharl2.

8.12.3.3 Errors

S-or-a is a variable
instantiation-error.

4

b)

C>

4

e>

f?
1’

Goals peek-char (Char) unifies Char with a one-char
atom whose name is the next Character to be input, and
peek-code (Code) and peek-code (S-or-a, Code) unify
Code with the Character code of the next Character.

Char is a variable
instantiation-error.

Code is a variable
instantiation-error. peek-char(Char) :-

current-input(S),
peek-char(S, Char).

Char is neither a variable nor a one-char atom
type-error(character, Char). peek-code(Code) :-

current-input(S),
peek-char(S, Char),
(Char = end-of file ->

Code=-1 -
* char-code(Char, Code) I

Code is neither a variable nor an integer
type-error(integer, Code).

S-or-a is neither a variable nor a stream-term or
arras
- domain-error(stream-or-alias, S-or-a).

peek-code(S, Code) :-
peek-char(S, Char),
(Char = end-of-file ->

Code = -1
* char-code(Char, Code) ,

g) S-or-a is not associated with an open stream
- existente-error(stream, S-or-a).

h) S-or-a is an input stream
- Permission-error(output, stream, S-or-a).

NOTE - The built-in predicate char-Code/2 is defined in
8.16.6.

i) The target stream is associated
- Permission-error(output,
TS) .

with a binary
binary-st

stream
ream,

8.12.3 put-char/2, put-char/l, put-code/l, put-code/2,
WO, nl/l

j) Char is neither a variable nor a Character (7.1.4.1)
- representation-errortcharacter). 8.12.3.1 Description

k) Code is an integer but not a Character code (7.1.2.2)
- representation-error(character-Code).

put-char(S-or-a, Char) is true.

Procedurally, put-char (S-or-a, Char) is executed as
follows: 8.12.3.4 Examples

put-char(t).
If the contents of current output stream are

. . . wer
Succeeds, and the current output stream
is left as

. . . qywert

a) Outputs the Character c which is the name of the
one-char atom Char to the target stream (7.10.2.5).

b) Changes the stream Position of the target
take account of the Character which has been

stream
output,

put-char(st-o, 'A').
If the contents of the stream associated
with st-o are c) The goal succeeds.

94

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISODEC 1995 ISO/IEC 132114 : 1995(E)

I . . wer
Succeeds, and the stream associated with st-o
is left as

. . . qwerA

put-code(O't).
If the contents of current output stream are

. . . qwer
Succeeds, and the current output stream
is left as

. . . qwert

put-code(st-o, O't).
If the contents of the stream associated
with st-o are

. . . qwer
Succeeds, and the stream associated with st-o
is left as

. . . gwert

nl, put-char(a).
If the contents of current output stream are

. . . qwer
Succeeds, and the current output stream
is left as

. . . wer
a

nl (st-o), put-char(st-o, a).
If the contents of the stream associated
with st-o are

. . . wer
Succeeds, and the stream associated with st-o
is left as

. . . qwer
a

putz-char(my-file, C).
instantiation-error.

put-char(st-o, 'ty').
type-error(character, ty).

put-code(my-file, C).
instantiation-error.

put-code(st-o, 'ty').
type-error(integer, ty).

nl(Str).
instantiation-error.

nl(user-input).
permission-error(output, stream, user-input).

8.12.3.5 Bootstrapped built-in predicates

The built-in predicates put-char / 1, put-code/l,
put-code/2, nl/ 0, and nl/ 1 all provide similar func-
tionality to put-char/2.

A goal putxhar (Char) Outputs the Character which is the
name of Char, put-code(Code) and putxode(S-or-a,
Code) output the Character whose Character code is
Code, and nl and nl (S-or-a) output the implementation
dependent new line Character (6.54).

put-char(Char) :-
current-output(S),
put-char(S, Char).

put-code(Code) :-
current-output(S),
char-code(Char, Code),
put-char(S, Char).

put-code(S, Code) :-
char-code(Char, Code),
put-char(S, Char).

nl :-
current-output(S),
put-char(S, '\n').

nl(S) :-
put-char(S, '\n').

NOTE - The built-in predicates nl/ 0 and nl/ 1 terminate the
current line or record. The built-in predicate char-Code/2 is
defined in 8.16.6.

8.13 Byte inpdoutput

These built-in predicates enable a Single byte to be input
from and output to a binary stream.

8.13.1 get-byte/2, get-byte/l

8.13.1.1 Description

get-byte(S-or-a, Byte) is true iff Byte unifies with
the next byte to be input from the target stream (7.10.2.5).

Procedurally, get-byte (S,or-a, Byte) is executed as
follows:

a) If the stream Position of the target stream is
past-end-of-stream, then proceeds to 8.13.1.1 k,

b) If the target stream has stream property
eof,action (A) and its stream Position is past-end-
of-stream, then performs the action appropriate to the
value of A specified in subclause 7.10.2.11.

c) Else if the stream Position of the target stream is
end-of-stream, then proceeds to 8.13.1 .l h,

d) Else let B be the next byte to be input from the
target stream,

e) Changes the stream Position of the target stream to
take account of the byte which has been input,

f-- If B unifies with Byte, the goal succeeds,

g) Else the goal fails.

95

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

h) Sets the stream Position so that it is past-end-of-
stream,

i) If the
succeeds,

integer value -1 unifies with Byte, the goal

j) Else the goal fails.

k) Performs the action specified in subclause 7.10.2.11
appropriate to the value of A where the target stream
has stream property eof-action (A) .

8.13.1.2 Template and modes
ge

get-byte(?in-byte)
get-byte(@stream-or-alias, ?in-byte)

get-byte(st-i, 114).
If the contents of the stream associated
with st-i are

[113,119,101,114,116,121 . ..]
Fails. The stream associated
with st-i is left as

[119,101,114,116,121 . ..]

get-byte(st-i, Byte).
Stream Position of st-i is end-of-stream.
Byte is unified with -1 and
stream Position of st-i is past-end-of-stream.

8.13.1.3 Errors

a> S-or-a is a variable
- instantiation-error.

b) Byte is neither a variable nor an in-byte
type-error(in-byte, Byte).

C> S,or-a is neither a variable nor a
alias

stream-term

- domain-error(stream-or-alias, S-or-a).

d) S-or,a is not associated with an open
existente-error(stream, S-or-a).

stream

e> S-or-a is an output stream
- permission-error(input, stream, S-or-a).

f) The target stream is associated with a text stream
- Permission-error(input, text-stream, 75).

g) The target stream has stream properties
end-of-stream(past) and eof-action(error)

(7.10.2.9, 7.10.2.11, 7.10.2.13)
- Permission-error(input,

past-end-of-stream, TS).

8.13.1.4 Examples

get-byte(Byte) .
If the contents of the current input stream are

[113,119,101,114, . ..]
Byte is unified with 113 and
the current input stream is left as

[119,101,114, . ..]

get-byte(st-i, Byte).
If the contents of the stream associated
with st-i are

[113,119,101,114, . ..]

Byte is unified with 113 and
st-i is left as

[119,101,114, . ..]

t-byte (User-output , w.
permi ssion-error(input, stream, user-output).

8.13.1.5 Bootstrapped built-in predicate

The built-in predicate get-byte/ 1 provides similar func-
tionality to get-byte/2.

get-byte(Byte) :-
current-inputE),
get-byte(S, Byte).

8.13.2 peek-byte/2, peek-byte/l

8.13.2.1 Description

peek-byte(S-or-a, Byte) is true iff Byte unifies with
the next byte to be input from the target stream (7.10.2.5).

Procedurally, peek-byte (S-or-a, Byte) is executed as
follows:

a> If the stream
past-end-of-stream,

W

Position of the target stream
then proceeds to 8.13.2.1 h,

is

Else if the stream Position of the target stream is
end-of-stream, then proceeds to 8.13.2.1 f,

c) Else let B be the next byte to be input from the
target stream,

d) If B unifies with Byte, the goal succeeds,

e) Else the goal fails.

If the integer value -1 unifies with Byte, the goal
succeeds,

g) Else the goal fails.

h) Performs the action specified in subclause 7.10.2.11
appropriate to the value of A where the target stream
has stream property eof-action (A) .

NOTE - peek-byte (S-or-a, Byte) leaves unaltered
s tream Position of the target stream.

the

96

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1: 1995(E)

8.13.2.2 Template and modes

peek-byte(?in-byte)
peek-byte(@stream-or-alias, ?in-byte)

8.13.2.3 Errors

a> S-or-a is a variable
- instantiation-error.

b) Byte is neither a variable nor an in-byte
- type-error(in-byte, Byte).

C> S-or-a is neither a variable nor a stream-term or
alias

d)

e>

f-l

g)

domain-error(stream-or-alias, S,or-a).

S-or-a is not associated with an open stream
existente-error(stream, S-or-a).

S-or,a is an output stream
Permission-error(input, stream, S-or-a).

The target stream is associated with a text stream
Permission-error(input, text-stream, 23).

The target stream has stream properties
end-of-stream(past) and eof.-action(error)

(7.10.2.9, 7.10.2.11, 7.10.2.13)
- permission-error(input,

past-end-of-stream, TS).

8.13.2.4 Examples

peek-byte(Byte).
If the contents of current input stream are

[113,119,101,114, . ..J
Byte is unified with 113 and
the current input stream is left as

[113,119,101,114, . ..]

peek-byte(st-i, Byte).
If the contents of the stream associated
with st-i are

[113,119,101,114, . ..]
Byte is unified with 113 and
st-i is left as

[113,119,101,114, . ..]

peek-byte(st-i, 114).
If the contents of the stream associated
with st-i are

[113,119,101,114, . ..]
Fails. The stream associated
with st-i is left as

[113,119,101,114, . ..J

peek-byte(st-i, Byte).
Stream Position of st-i is end-of-stream.
Byte is unified with -1 and
stream Position of st-i is end-of-stream.

peek-byte(user-output, X) -
permission-error(inpu L stream, user-output).

8.13.2.5 Bootstrapped built-in predicate

The built-in predicate peek-byte/ 1 provides similar func-
tionality to peek-byte/2.

peek-byte(Byte) :-
current-input(S),
peek-byte(S, Byte).

8.13.3 put-byte/2, put-byte/l

8.13.3.1 Description

put-byte (S-or-a, Byte) is true.

Procedurally, put-byte (S-or-a, Byte) is executed as
follows:

a) Outputs the byte Byte to the target stream (7.10.2.5).

b) Changes the stream Position of the target stream to
take account of the byte which has been output,

c) The goal succeeds.

8.13.3.2 Template and modes

put-byte(+byte)
put-byte(@streamor-alias, +byte)

8.13.3.3 Errors

a) S-or-a is a variable
- instantiation,error.

b) Byte is a variable
- instantiation-error.

c) Byte is neither a variable nor a byte
- type-error(byte, Byte).

d) S-or-a is neither a variable nor a stream-term or
alias
- domain-error(stream-or-alias, S-or-a).

e> S-or,a is not associated with an open stream
- existente-error(stream, S-or-a).

fl S-or-a is an input stream
- Permission-error(output, stream, S-or-a).

g) The target stream is associated with a text stream
-permission-error(output, text-stream, 53).

97

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

8.13.3.4 Examples

put-byte(84).
If the current output stream contains

[. . . , 113,119,101,114]
Succeeds, and leaves that stream

1 . . . , 113,119,101,114,116]

put-byte(st-o, 84).
If the stream associated with st-o contains

1 . . . , 113,119,101,114]
Succeeds, and leaves that stream

c . . . , 113,119,101,114,116]

put-byte(my-file, C) .
instantiation-error.

put-byte(user-output, 'ty').
type-error(byte, ty).

8.13.3.5 Bootstrapped built-in predicate

The built-in predicate put-byte/ 1 provides similar func-
tionality to put-byte/2.

put-byte(Byte) :-
current-output(S),
put-byte(S, Byte).

8.14 Term input/output

These built-in predicates enable a Prolog term to be input
from or output to a text stream. The Syntax of such terms
tan also be altered by changing the Operators, and making
some characters equivalent to one another.

8.14.1 read-termI3, read-termI2, read/l, readI2

8.14.1.1 Description

read,term(S-or-a, Term, Options) is true iff Term
unifies with T, where T. is a read-term which has been
constructed by inputting and parsing characters from the
target stream (7.10.2.5).

Procedurally, read-term(S-or-a, Term, Options) is

executed as follows:

a) Sets C-Seq to an empty sequence of characters,

b) Inputs a

c) Changes
take account

Character c from the target stream,

the stream Position of the target stream to
of the Character which has been input,

d) If the value associated with the fl%
char,conversion (7.11.2.1) is off, or C is a quoted
Character (6.4.2.1), then sets Cnext to C, and proceeds
to 8.14.1.1 f,

98

e) Else sets C-next to apply-mapping&, Convc)
(4.3) where Convc (3.46) is the Character-conversion
mapping,

f) Appends C-next to C-Seq,

g) Attempts to Parse C-Seq as a sequence of tokens
(6.4),

h) If C-Seq is too short, then proceeds to 8.14.1 .l b,

i) If C-next represents an end token (6.4.8), then
proceeds to 8.14.1.1 k,

j) Else proceeds to 8.14.1 .l b,

k) Parses C-Seq as a read-term (6.4) T.,

1) If T unifies with Term, then instantiates the argu-
ments of the read-Options (7.10.3) Options, and the
goal succeeds,

m) Else the goal fails.

NOTES

1 The two Steps 8.14.1.1 d and 8.14.1.1 e ensure that whether
or not a Character is quoted depends only on the characters of
the target stream. It is independent of the mapping Convc, or
the value associated with the flag char-conversion.

2 The number of characters which are input is undefined when
an error occurs during read-term/ 3.

8.14.1.2 Template and modes

read-term(@stream-or-alias, ?term,
+read-options-list)

8.14.1.3 Errors

a) S-or-a is a variable
- instantiation-error.

b) Options is a partial list or a list with an element
E which is a variable
- instantiation,error.

C> S-or-a is neither a variable nor a stream-term or
alias
- domain-errorktream-or-alias, S-or-a).

d) Options is neither a partial list nor a list
- type-error(list, Options).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISOAEC 132114 : 1995(E)

e) An element E of the Options list is neither a
variable nor a valid read-Option
- domain-error(read-Option, E).

fl S-or-a is not associated with an open stream
- existente-error(stream, S-or-a).

g) S-or-a is an output stream
- Permission-error(input, stream, S-or-a).

h) The target stream is associated with a binary stream
- permission-error(input, binary-stream,
TS).

i) The target stream has stream properties
end-of-stream(past) and eof-action(error)

(7.10.2.9, 7.10.2.11, 7.10.2.13)
- permission-error(input,

past-end-of-stream, TS).

j) The read-term Term breaches an implementation
defined limit specified by Flag where Flag is the Hag
/l 11) max-arity, max-integer, or min-integer

k)
be

1)

representation-error(Flag).

One or more characters were input, but they cannot
parsed as a sequence of tokens
Syntax-error(imp-dep-atom).

The sequence of tokens cannot be parsed as a term
using the current set of Operator definitions
- Syntax-error(imp-dep-atom).

8.14.1.4 Examples

read(T) .
current input stream is

terml. term2. . . .
Succeeds, unifying T with terml.
The current input stream is left as

term2. . . .

read(st-o, terml).
If the contents of the stream associated
with st-o are

terml. term2. . . .
Succeeds, and the stream associated with st-o
is left as

term2. . . .

read-term(st-o, T, [variables(VL),
variable-names(VN), singletons(VS

If the contents of the stream associated
with st-o are

foo(A+Roger, A+-). term2. . . .
Succeeds, unifying T with foo(Xl+X2, Xl+X3),
VL with [Xi, X2, X3],
VN with ['A' = Xl, 'Roger' = X2],
and VS with ['Roger' = X21.
The stream associated with st-o
is left as

term2. . . .

read(4.1).
current input stream is

3.1. term2. . . .
Fails.
The current input stream is left as

term2 . . .

read(T).
current input stream is

foo 123. term2. . . .
and foo is not a current prefix Operator.
Syntax-error(imp-dep-atom) where 'imp-dep-atom'
is an implementation dependent atom.
The current input stream is left as

term2. . . .

read(T).
current input stream is

3.1
Syntax-error(imp-dep-atom) where 'imp-dep-atom'
is an implementation dependent atom.
The current input stream is left with
Position past-end-of-stream.

8.14.1.5 Bootstrapped built-in predicates

The built-in predicates read-term/2, read/ 1, and
read/ 2 all provide similar functionality to read-term/ 3.

Goals read-term(Term, Options), read(Term), and
read(S-or-a, Term) all input characters and attempt to
Parse them as a term which unifies with Term.

Goals read(Term) and read(S-or-a, Term) input terms
using an empty read-Options list.

A goal read-term(Term, Options) instantiates the
arguments of the read-Options Options.

read-term(Term, Options) :-
current-inputE),
read-term(S, Term, Options).

read(Term) :-
current-input(S),
read-term(S, Term, [l).

read(S, Term) :-
read-term(S, Term, [I).

8.14.2 write-term/3, write-terml2, write/l,
write& writeqh, writeq/2, write-canonical/l,
write-canonicaY2

8.14.2.1 Description

write-term(S-or-a, Term, Options) iS tIlle.

Procedurally, write-term(S,or-a, Term, Options) is

executed as follows:

99

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1: 1995(E) @ ISO/IEC 1995

a) Outputs Term to the target stream (7.10.2.5) in a
form which is defined by the write-Options list (7.10.4,
7.1.4.2) Options and rules for writing a term (7.103,

b) Changes the stream Position of the target stream to
take account of the characters which have been output,

c) The goal succeeds.

8.14.2.2 Template and modes

write-term(@stream-or-alias, Werm,
Qwrite-options-list)

8.14.2.3 Errors

a> S-or-a is a variable
- instantiation-error.

b) Options is a partial list or a list with an element
E which is a variable
- instantiation-error.

C> Options is neither a partial list nor a list
- type-error(list, Options).

d) S-or-a is neither a variable nor a stream-term or
alias
- domain-error(stream-or-alias, S-or-a).

e) An element E of the Options list is neither a
variable nor a valid write-Option
- domain-error(write-Option, E).

f) S-or-a is not associated with an open stream
- existente-error(stream, S-or-a).

g) S-or-a is an input stream
- Permission-error(output, stream, S-or-a).

h) The target stream is associated with a binary stream
- Permission-error(output, binary-stream,
TS).

8.14.2.4 Examples

write-term(S, [L2,31, HL
Succeeds, outputting the characters

~2~31
to the stream associated with S.

write_canonical([l,2,3]).
Succeeds, outputting the characters

. (1, - (2, * (3,E IM>
to the current output stream.

Succeeds, outputting the characters
1<2

to the stream associated with S.

writeq(S, '1<2').
Succeeds, outputting the characters

'1<2'
to the stream associated with S.

writeq('$VAR'(O)).
Succeeds, outputting the Character

A
to the current output stream.

write-term(S, ‘$VAR'(l), [numbervars(false>]>.
Succeeds, outputting the characters

$VAR(l)
to the stream associated with S.

write-term(S, '$vAR'(~~), [numbervars(true>]>.
Succeeds, outputting the characters

Zl
to the stream associated with S.

8.14.2.5 Bootstrapped built-in predicates

The built-in predicates write_term/2, write/l,
write/2, writeq/l, writeq/2, write-canonical/l,
and write-canonical/2 all provide similar functionality
t0 write_term/3.

Goals write(Term) and write(S-or-a, Term) out-
put Term in a form which is defined by a write-
Options list [quoted(false), ignore-ops (false),
numbervars(true)].

Goals writeq(Term) and writeq(S-or-a, Term) out-
put Term in a form which is defined by a write-
Options list [quoted(true) , ignore-ops(false),
numbervars(true)].

Goals write-canonical(S-or-a, Term) and
write-canonical(Term) output Term in a form which
is defined by a write-Options list [quoted (true) ,
ignore-ops(true), numbervars(false)].

write-term(Term, Options) :-
current_output(S),
write-term(S, Term, Options).

write(Term) :-
current-output(S),
writeJerm(S, Term, [numbervars(true)]).

write(S, Term) :-
write-term(S, Term, [numbervars(true)]> .

writeq(Term) :-
current-output(S),
write-term(S, Term,

[quoted(true), numbervars(true>]>.

writeq(S, Term) :-
write-term(S, Term,

[quoted(true), numbervars(true)]). write-term(S, '1<2', [IJ.

100

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

NOTES
write-canonical(T) :-

current-output(S),
write-term(S, Term,

[q-uoted(true), ignore-ops(true)]).

write-canonical(S, Term) :-
write-term(S, Term,

[quoted(true), ignore-ops(true)]).

1 Operator notation is defined in 6.3.4. See also Operator
directives (7.4.2.4).

2 A Priori ty of zero tan be used to remove an Operator
from the Operator table.

3 It does not matter if the same atom appears more than once
in an Operator list; this is not an error and the duplicates
simply have no effect.

8.14.3 op/3
4 In general, Operators tan be removed from the Operator
table and their priority or specifier tan be changed. However,
it is an error to attempt to Change the ’ , ’ Operator from its
initial Status, see 6.3.4.3.

A goal op(Priority, Op-specifier, Operator) en-
ables the Operator table (see 6.3.4.4 and table 7) to be
altered.

8.14.3.2 Template and modes

8.14.3.1 Description op(+integer, +operator-specifier,
@atom-or-atomlist)

op(Priority, Op-specifier, Operator) is true.

8.14.3.3 Errors Procedurally, op(Priority, Op-specifier,
Operator) is executed as follows:

a) Priority is a variable
- instantiation-error.

a> If Operator is an atom, creates the set OP S

containing just that one atom,
b) Opspecifier is a variable
- instantiation-error.

b) Else if Operator is a list of atoms,
Ops consisting of all the atom s in the li

creates the set
st, C) Operator is a partial list or a list with an element

E which is a variable
- instantiation-error. c) Chooses a member

it from the set,
op in the set Ops and removes

d) Priority is neither a variable nor an integer
type-error(i .nteger, Priori ty). d) If op is not currently an Operator with the same

Operator class (prefix, infix or postfix) as Op-speci f ier,
then proceeds to 8.14.3.1 f, e> Op-specifier is neither a variable nor an atom

type-error(atom, Op-specifier)

e) The Operator property of op with the same class as
Op-specifier is removed, so that op is no longer an
Operator of that class,

f> Operator is neither a partial list nor a list nor an
atom
- type-error(list, Operator).

f) If Priority=O, then proceeds to 8.14.3.1 h, g) An element E of the Operator list is neither a
variable nor an atom
- type-error(atom, E). s) op is made an Operator

priority Priority,
withspecifier Op-specifier

and
h) Priority is not between 0 and 1200 inclusive
- domain-error(operator-priority, Priority). h) If Ops is non-empty, then proceeds to 8.14.3.1 c,

i) Op-specifier is not a valid Operator specifier
- domain-error(operator-specifier,

Op-specifier).

Else, the goal succeeds.

In the event of an error being detected in an Operator
list argument, it is undefined which, if any, of the atoms
in the list is made an Operator.

j) Operator is 1,’
- permission-error(modify, Operator, ',').

101

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1: 1995(E) @ ISO/IEC 1995

k) An element of the Operator list is , , ,
- Permission-error(modify, Operator, ',').

2) whose specifier, Spec, unifies with
Op-specifier, and

3) whose priority, P, unifies with Priority, 1) Op-specifier is a specifier such that Operator
would have an invalid set of specifiers (see 6.3.4.3)
- permission-error(create, Operator,

Operator).

b) If a non-empty set is found, then proceeds to
8.14.4.1 d,

c) Else the goal fails.
8.14.3.4 Examples

d) Chooses a member of Setop and the goal succeeds.
op(30, xfy, ++).

Succeeds, making ++ a right associative
infix Operator with priority 30.

e) If all the members of Setop have been Chosen,
then the goal fails,

opw, yfx, ++) -
Succeeds, making ++ no longer an

infix operator-
Else chooses a member of SetOp which has not

already been Chosen, and the goal succeeds.

op(max, xfy, ++).
type-error(integer, max). current-op(Priority, Op-specifier, Operator) is

re-executable. On backtracking, continue at 8.14.4.1 e.
op(-30, xfy, ++).

domain-error(operatorpriority, -30). The Order in which Operators
is implementation dependent.

are found by current_op/3

op(1201, xfy, ++).
domain-error(operatorpriority, 1201).

op(30, XFY, ++).
instantiation-error.

NOTES

1 The definition above implies that if a program calls
current-op/3 and then modifies an Operator definition
by calling op/3, and then backtracks into the cal1 to
current_op/3, then the changes are guaranteed not to affect
that current_op/3 goal. That is, current_op/3 behaves as
if it were implemented as a dynamic procedure whose clauses
are retracted and asserted when op/ 3 is called.

op(30, yfy, ++>.
domain-error(operator_specifier, yfy).

op(30, xfy, 0).
type-error(list, 0).

op(30, xfy, ++), op(40, xfx, ++).
Succeeds, making ++ a non-associative

infix Operator with priority 40. 2 An Operator Old-op which has been removed by op (0,
Op-specifier, Old-op) is not otherwise found by
current_op/3. op(30, xfy, ++), op(50, yf, ++) -

permission-error(create, Operator, ++).
[There cannot be an infix and a

postfix Operator with the same name.]
8.14.4.2 Template and modes

current-op(?integer, ?operator-specifier,
?atom)

8.14.4 current-op/3

8.14.4.1 Description

8.14.4.3 Errors
current-op(Priority, Op-specifier, Operator) is
true iff Operator is an Operator with properties defined
by specifier Op-specifier and priority Priority.

a> Priority is neither a variable nor an Operator
priori ty
- domain-error(operator-priority, Priority).

Procedurally, current-op(Priority, Op-specifier,
Operator) is executed as follows: b) Op-specif ier is neither a variable nor an Operator

specifier
- domain-error(operator_specifier,

Op-specifier).
a) Searches the current Operator definitions and creates
a set Seto, of all the triples (P, Spec , op) such that
there is an Operator:

C) Operator is neither a variable nor an atom
type-error(atom, Operator). 1) whose name, op, unifies with Operator,

102

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995

8.14.4.4 Examples

ISO/IEC 132114 : 1995(E)

8.14.5.3 Errors

current-op(P, xfy, OP).
If the Operator table has not been

altered, then
Succeeds, unifying P with 1100,

and OP with ';'.
On re-execution, succeeds unifying

P with 1050, and OP with '->'.
On re-execution, succeeds unifying

P with 1000, and OP with ','.
On re-execution, succeeds unifying

P with 200, and OP with "".
[The Order of solutions is

implementation dependent.]

8.14.5 char_conversion/2

A goal char-conversion(In-char, Outxhar) enables
Convc, the Character-conversion mapping (3.46), to be
altered.

8.14.5.1 Description

char-conversion(In,char, Out-char) is true.

Procedurally, char-conversion(In-char, Outxhar) is
executed as follows:

a) Replaces Convc, the Character-conversion
mapping (3.46), with the conversion
update-mappingc (IC, OC, Convc) (4.3) where IC
is the Character of the name of In-char, and OC is
the Character of the name of Out-char,

W The goal succeeds.

NOTES

See also Character-conversion directives (7.4.2.5).

2 The one-char atoms In-char and Out-char should be
quoted in Order to ensure that their characters have not been
converted by a Character-conversion directive when the Prolog
text is prepared for execution.

3 Convc affects only characters input by term input
(8.14). When it is necessary to convert characters in-
put by Character input/output built-in predicates (8.12), it
will be necessary to program the conversion explicitly using
currentxhar-conversiord2 (8.14.6).

4 When In ,char and Out-char are the Same, the effect on
Convc is to remove any conversion of a Character In-char.

a> In-char is a variable
instantiation-error.

b) Outxhar is a variable
- instantia ti on-error.

C> In-char is neither a variable nor a one-char atom
(7.1.4.1)
- representation-error(character).

d) Outxhar is neither a variable nor a one-char atom
(7.1.4.1)
- representation-error(character).

8.14.5.4 Examples

char-conversion('&', ,,')
Replaces Convc by

update-mapping&, l, I, Convc).
Succeeds.

char-conversion(,',, '\,')
Replaces Convc by update-mappingc (‘, / , Convc)

where ’ is a Character in an extended Character set
equivalent to the Single quote.

Succeeds.

char-conversion('a', a)
Replaces Convc by update-mappingc (a, a, Convc >

where a is a Character in an extended Character set
equivalent to the small letter Character a.

Succeeds.

After these three goals, when the value associated with flag
char-conversion is on, all occurrences of &, ‘, and a as
unquoted characters input by term input built-in predicates
are converted to , , , , and a respectively. For example,
the three characters aha are converted to the characters
a, a. However (1) the characters ’ aas’ represent an atom
t aaal because they are enclosed by the Single quotes,
and (2) the characters ‘a&a’ form an atom , a, a, .

char-conversion('&', '6~')
Replaces Convc by update-mappingc& &, Convc)

thus removing the conversion from & to , , , .
Succeeds.

8.14.6 current_char_conversion/2

8.14.6.1 Description
8.14.5.2 Template and modes

char-conversion(+character, +character)
current-char-conversion(In-char, Out-char) is
true iff (1) apply-mappingc(rC, Convc) equals OC

103

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISOLIEC 13211-1 : 1995(E) @ ISO/IEC 1995

where (a) Convc is the Character-conversion mapping
(3.46), (b) IG’ is the Character of the name of atom
In-char, and (c) OC is the Character of the name of atom
Out-char, and (2) In-char is not equal to Out-char.

8.14.6.2 Template and modes

CU .rrent-char-
?character

.conversion(?character,

Procedurally, current-char-conversion(In-char,
Out-char) is executed as follows:

8.14.6.3 Errors

a> In-char is neither a variable nor a one-char atom
- type-error(character, In-char). a> Creates a set SetConv of all the conversions (In -+

Out) in Convc such that:
b) Out-char is neither a variable nor a one-char atom
- type-error(character, Out-char). 1) IC is the Character of the name of atom In,

2) In unifies with In-char,
8.14.6.4 Examples

3) OC is the Character of the name of atom out, Assume Convc is
update-mapping&, a,
updat e-mappingc (a, a,
identit y-mappingc)).

4) Out, unifies with Out-char,

5) apply-mappingc(IC, Convc) equals OC, and
current-char-conversion(C, a)

Succeeds, unifying C with a.
On re-execution, succeeds, unifying C with a.
[The Order of solutions is

implementation dependent.]

6) In does not unify with Out,

b) If a non-empty set is found, then proceeds to
8.14.6.1 d,

c) Else the goal fails.
8.15 Logic and control

d) Chooses a member of Setconv which has not
already been Chosen, unifies In with In-char, and Out
with Out-char, and the goal succeeds.

These built-in predicates are simply derived from the
control constructs (7.8) and provide additional facilities for
affecting the control flow during execution.

e) If all the members of SetConv have been Chosen,
then the goal fails, 8.15.1 (\+)/l - not provable

8.15.1.1 Description f) Else proceeds to 8.14.6.1 d.

f \\+' (Term) is true i$fcall(Term) is fdSC current-char-conversion(In-char, Out,char) is re-
executable. On backtracking, continue at 8.14.6.1 e.

Procedurally, f \ \+ f (Term) is executed as follows:

The Order in which Character-conversions are found by
current-char-conversion/2 is implementation depen-
dent.

a) Executes call(Term),

b) If it succeeds, the goal fails,

C> Else if it fails, the goal succeeds.
NOTES

NOTE - A built-in predicate with the same meaning as
(\ +) / 1 is implemented in many existing processors with a

name (not) / 1. This name is misleading because the built-in
predicate gives negation by failure rather than true negation.

1 The definition above implies that if a program calls
current-char,conversion/2 and then modifies Convc
by calling char-conversion/ 2, and then backtracks into the
call to currentxhar-conversion/ 2, then the changes are
guaranteed not to affect that currentxharxonversiord2
goal. 8.15.1.2 Template and modes

2 A Character-conversion which has been removed by
char-conversion(C, C) is not otherwise found by
current-char_conversion/2.

,\\+, (@callable-term)

NOTE - \+ is a predefined infix Operator (see 6.3.4.4).

104

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

8.15.2.4 Examples 8.15.1.3 Errors

a) Term is a variable
- instantiation-error.

once(!) .
Succeeds (the Same as true).

once(!), (X=l; X=2).
Succeeds, unifying X with 1.
On re-execution, succeeds unifying X with 2.

b) Term is neither a variable nor a callable term
- type-error (callable, Term).

once(repeat).
Succeeds (the same as true). 8.15.1.4 Examples

once(fai1).
Fails.

‘\\+’ (true).
Fails.

once(X = f(X)).
Undefined.

\+V) *
Fails, the tut has no effect.

'\\+'((!, fail)).
Succeeds, the tut has no effect. 8.15.3 repeat/O

(X=l; X=2), \+((!, fail)).
Succeeds, unifying X with 1.
On re-execution, succeeds unifying X with 2.

8.15.3.1 Description

repeat is true.
‘\\+’ (4 = 5).

Succeeds. Procedurally, repeat is executed as follows:

\+(3).
type-errorkallable, 3). a) The goal succeeds.

repeat is re-executable. On re-execution, continue at
8.15.3.1 a above.

‘\\+’ 0).
instantiation error. -

\+(X = f(X)).
Undefined.

8.15.3.2 Template and modes

8.15.2 once/l repeat

8.15.2.1 Description
8.15.3.3 Errors

once(Term) is true ifScall(Term) is true.
None.

Procedurally, once (Term) is executed as follows:

8.15.3.4 Examples a) Executes call(Term),

repeat, write('hello '), fail.
Outputs

helle helle helle helle helle . . .
indefinitely.

b) If it succeeds, the goal succeeds,

c) Else if it fails, the goal fails.

NOTE - once(Term) behaves as call(Goal), but is not
re-executable. repeat, !, fail.

Fails, equivalent to (!, fail).

8.15.2.2 Template and modes 8.16 Atomic term processing

once(+callable-term)
These built-in predicates enable atomic terms to be
processed as a sequence of characters (7.1.4.1) and
Character Codes (7.1.2.2). Facilities exist to Split and
join atoms, to convert a Single Character to and from the
corresponding Character Code, and to convert a number to
and from a list of characters.

8.15.2.3 Errors

a) Term is a variable
- instantiation-error.

b) Term is neither a variable nor a callable term
- type-error(callable, Term).

NOTE - The characters of the name of an atom and their
numbering are defined in 6.1.2 b.

105

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

8.16.1 atomlength/2 8.16.2 atom-concatI3

8.16.1.1 Description 8.16.2.1 Description

atomlength (Atom, Length) is true iff integer Length
equals the number of characters of the name of the atom
Atom.

atom-concat (Atom-l, Atom-2, Atom-12) is true iff
characters of the name of the atom Atom-12 are the result
of concatenating the characters of the name of the atom
Atom-2 to the characters of the name of the atom Atom-l. Procedurally, atom-length (Atom, Length) is executed

as follows:
Procedurally, atom-concat(Atom-1,
is executed as follows:

Atom-2, Atom-12)
a) If Length is a variable, then instantiates Length
with an integer equal to the number of characters of the
name of the atom Atom, and the goal succeeds, a) Creates the sorted list List,, containing as elements

all the terms ac (~1, ~2, ~3) such that b) Else if Length is an integer, and Length unifies
with the number of characters of the name of the atom
Atom, then the goal succeeds, 1) Al is an atom which unifies with Atom-l, and

c) Else the goal fails. 2) A2 is an atom which unifies with Atom-2, and

8.16.1.2 Template and modes 3) A3 is an atom which unifies with Atom-12, and

atom-length (+atom, ?integer) 4) the characters of the name of ~3 are the result
of concatenating the characters of the name of A2 to
the characters of the name of ~1, 8.16.1.3 Errors

a) Atom is a variable
- instantiation-error.

b) If a non-empty list is found, then proceeds to
8.16.2.1 d,

b) Atom is neither a variable nor an atom
- type-error(atom, Atom). c) Else the goal fails.

C> Length is neither a variable nor an integer
type-error(integer, Length).

d) Chooses the first element, ac (AM, AAS, AAL), of
Ld,,,

4 Length is an integer that is less than zero
domain-error (not-less-than-Zero, Length). e) The goal succeeds, unifying Atom-l with AAl,

unifying Atom-2 with AA& and unifying Atom-12 with
AA3.

8.16.1.4 Examples

f) If all the elements of List,, have been Chosen, then
the goal fails,

atom-length
Succeeds

('enchanted evening
I unifying N with 1

, , NI.
7.

atom-length('enchanted\
evening', N) .

Succeeds, unifying N with 17.
g) Else chooses the first element of List,, , ac (AA1 ,
AA2 I AM), which has not already been Chosen, and
proceeds to step 8.16.2.1 e.

atom-1 ength
suc ceeds

(
I I

, NI.

I unifying N with 0.
atom-concat (Atom-l, Atom-2, Atom_12) is re-
executable. On re-execution, continue at 8.16.2.1 f
above.

atom-length('scarlet', 5).
Fails.

atom-length(Atom, 4).
instantiation-error.

8.16.2.2 Template and modes atom-length(1 . 23, 4).
type-error (atom, 1.23).

atom_concat(?atom, ?atom,
atom-concat (+atom, +atom,

+atom)
-atom)

atom-length(atom, ‘4').
type-error(integer, '4').

106

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

8.16.2.3 Errors 3) there is an atom A3 whose name has ~3 characters,
and

a) Atom-l and Atom-12 are variables
- instantiation-error. 4) Sub-atom unifies with A2, and

b) Atom-2 and Atom-12 are variables
- instantiation-error.

3 Before unifies with Ll, and

6) Length unifies with ~2, and
C> Atom-l is neither a

type-error(atom,
variable nor an atom

7) After unifies with ~3, and Atom-l).

8) Atom is the atom whose name is the result of
concatenating the characters of the name of A3 to the
characters of the name of the atom A12, where Al2
is the atom whose name results from concatenating
the characters of the name of ~2 to the characters of
the name of the atom ~1,

Atom-2 is neither a variable nor an atom d)
type-error(atom, Atom-z).

e) Atom-12 is neither a variable nor an atom
- type-error(atom, Atom-12).

8.16.2.4 Examples b) If a non-empty list is found, then proceeds to
8.16.3.1 d,

atom-concat('hello', ' world', S3).
Succeeds, unifying S3 with 'hell0 world'.

c) Else the goal fails.
atom-concat(T, ' world', 'small world').

Succeeds, unifying T with 'small'. d) Chooses the first element, sa (LLI , LLZ , LLX ,
AA2), of List,,, atom-concat('hello', '

Fails.
world', 'small world').

e) The goal succeeds, unifying Before with LLl,
unifying Length with LL~, unifying After with LL~,
and unifying Sub-atom with AAL.

atom-concat(T1, T2, 'helle').
Succeeds, unifying Tl with 'l,

and T2 with 'helle'.
On re-execution, succeeds,

unifying Tl with 'h', and T2 with 'ello
[1 . . .

f) If all the elements of List,, have been Chosen, then
the goal fails,

atom-conca
instant

t(
ia

small,
tion-e

772, V4).
rror. g) Else chooses the first element of List,,, sa (LLI,

LLZ, LL~, AAZ), which has not already been Chosen,
and proceeds to step 8.16.3.1 e.

8.16.3 sub_atom/5

sub-atom(Atom, Before, Length, After, Sub-atom)
is re-executable. On re-execution, continue at 8.16.3.1 f
above.

8.16.3.1 Description

sub-atom(Atom, Before, Length, After, Sub-atom)
is true iff atom Atom tan be broken into three pieces,
AtomL, Sub-atom and AtomR such that Before is the
number of characters of the name of AtomL, Length is
the number of characters of the name of Sub,atom and
After is the number of characters of the name of AtomR.

8.16.3.2 Template and modes

sub-atom(+atom, ?integer, ?integer, ?integer,
?atom)

Procedurally, sub-atom(Atom, Before, Length,
After, Sub-atom) is executed as follows: 8.16.3.3 Errors

Atom is a variable a) Creates the sorted list List,, containing as elements
all the terms sa (Ll, ~2, ~3, A2) such that

a>
instantiation-error.

b) Atom is neither a variable nor an atom 1) there is an atom Al whose name has ~1 characters,
type-errodatom, Atom). and

C> Sub-a .tom is neither a variable nor an atom 2) there is an atom A2 whose name has ~2 characters,
type-errodatom, Sub-atom) and

107

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114: 1995(E) @ ISO/IEC 1995

4

e>

0

s)

f-0

0

Before is neither a variable nor an integer
type-error(integer, Before).

Length is neither a variable nor an integer
type-error(integer, Length).

After is neither a variable nor an integer
type-error(integer, Length).

Before is an integer that is less than zero
domain-error(not-less-than-Zero, Before)

Length is an integer that is less than zero
domain-error(not-less-than-Zero, Length)

After is an integer that is less than zero
domain-error(not-less-than-Zero, After).

8.16.3.4 Examples

sub-atom(abracadabra, 0, 5, -, S2).
Succeeds, unifying S2 to 'abrac'.

sub-atom(abracadabra, -, 5, 0, S2).
Succeeds, unifying S2 to 'dabra'.

sub-atom(abracadabra, 3, L, 3, S2).
Succeeds, unifying L to 5
and S2 to 'acada'.

sub-atom(abracadabra, B, 2, A, ab).
Succeeds, unifying B to 0 and A to 9.
On re-execution, succeeds,
unifying B to 7 and A to 2.

sub-atom('Banana', 3, 2, -, S2).
Succeeds, unifying S2 with 'an'.

sub-atom('charity', -, 3, -, S2).
Succeeds, unifying S2 with 'cha'.
On re-execution, succeeds,

unifying S2 with 'har'.
On re-execution, succeeds,

unifying S2 with 'ari'.
On re-execution, succeeds,

unifying S2 with 'rit'.
On re-execution, succeeds,

unifying S2 with 'ity'.

sub-atom('ab', Start, Length, -, Sub-atom) .
Succeeds, unifying Start with 0,

On

On

On

On

On

108

and Length with 0, and Sub-atom with ".
re-execution, succeeds,
unifying Start with 0, and Length with 1,
and Sub-atom with 'a'.
re-execution, succeeds,
unifying Start with 0, and Length with 2,
and Sub-atom with 'ab'.
re-execution, succeeds,
unifying Start with 1, and Length with 0,
and Sub-atom with ".
re-execution, succeeds,
unifying Start with 1, and Length with 1,
and Sub-atom with 'b'.
re-execution, succeeds,
unifying Start with 2, and Length with 0,
and Sub-atom with ".

8.16.4 atom_chars/2

8.16.4.1 Description

atom_chars(Atom, List) is trueiff List is a listwhose
elements are the one-char atoms whose names are the
successive characters of the name of atom Atom.

Procedurally, atomxhars(Atom, List) is executed as
follows:

a) If Atom is a variable, then instantiates Atom with the
atom whose name (see 6.1.2 b) has the same sequence
of characters as the elements of List, and the goal
succeeds,

b) Else if List is a variable, then instantiates List
with a list of one-char atoms identical to the sequence of
characters of the name of Atom, and the goal succeeds,

c) Else if List is a list of one-char atoms, and Atom
is the atom whose name has the same sequence of
characters, then the goal succeeds,

d) Else the goal fails.

8.16.4.2 Template and modes

atomxhars(+atom, ?character-list)
atom-charskatom, +character-list)

8.16.4.3 Errors

4
lisl

b)

C>

Atom is a variable and List is a partial list or a
with an element which is a variable
instantiation,error.

Atom is neither a variable nor an atom
type-error(atom, Atom).

Atom is a variable and List is neither a list nor a
partial list
- type-error(list, List).

d) Atom is a variable and an element E of the list
List is neither a variable nor a one-char atom
- type-error(character, E).

8.16.4.4 Examples

atom-chars(", L) .
Succeeds, unifying L with [].

atom-chars([], L) .
Succeeds, unifying L with ['[', '1'1.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

8.16.5.3 Errors at om-chars(I I I I
, L).

Succeeds I unifying L with [""].

a) Atom is a variable and List is a partial list or a
list with an element which is a variable
- instantiation-error.

atom-chars('ant', L).
Succeeds, unifying L with

['a', 'n', 'VI.

atom-chars (Str, ['s', 'o', 'p']).
Succeed .s I unifying Str with 'sop'. b) Atom is neither a variable nor an atom

type-error(atom, Atom).
atom-chars('North', ['N' 1 X]).

Succeeds, unifying X with
['o', 'r', 't', 'hl]. c) Atom is a variable and List is neither a list nor a

partial list
- type-error(list, List). atom-chars('soap',

Fails.
[‘s’, ‘o’, ‘p’l) -

d) Atom is a variable and an element E of the list
List is neither a variable nor a Character code
- representation-error (Character-Code).

atom-chars(X, Y).
instantiation-error.

8.16.5 atom-codes/
8.16.5.4 Examples

8.16.5.1 Description atom-codes(", L) .
Succeeds, unifying L with [].

atom-codes([], L).
Succeeds, unifying L with [O'[, 0'11.

atom-codes("", L).
Succeeds, unifying L with [O"'].

atom-codes (Atom, List > is true iff List is a list whose
elements correspond to the successive characters of the
name of atom Atom, and the value of each element is
the Character code for the corresponding Character of the
name.

at om-codes(
Succeeds

'ant', L).
I unifying L with

List) is executed as Procedurally, atom-codes (Atom, [O'a, O'n, OW.
follows:

atom-codes(Str, [O's, 0'0 I O’PI) *
Succeeds, unifying Str with 'sop'.

1 XI).
ith

a) If Atom is a variable, then instantiates Atom with
the atom whose name (see 6.1.2 b) is a sequence of
characters such that the Character code (7.1.2.2) of the
Nth Character is the Nth element of List, and the goal
succeeds,

atom-codes('North', [O'N
Succeeds, unifying X w
[O'o, O'r, O't, O'h].

atom-codes('soap', [O's, 0'0, O'p]).
Faik.

atom-codes(X, Y).
instantiation-error.

b) Else if List is a variable, then instantiates List
with a list of Character Codes such that the Nth element
of List is the Character code of the Nth Character of
the name of Atom, and the goal succeeds,

8.16.6 char_code/2

c) Else if List is a list of Character Codes, and Atom
is an atom whose name is a sequence of characters such
that the Character code of the Nth Character is the Nth
element of List, then the goal succeeds,

8.16.6.1 Description

char-code(Char, Code) is true iff the Character code
(7.1.2.2) for the one-char atom Char is Code.

d) Else the goal fails.
Procedurally, char,code (Char , Code) is executed as
follows:

8.16.5.2 Template and modes a) If Char is a variable, then instantiates Char with
the atom whose name (see 6.1.2 b) is a Character
corresponding to the Character code (7.1.2.2) Code and
the goal succeeds,

atom-codes (+atom, ?character-code-list)
atom-codes (-atom, +character-code-list)

109

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

b) Else if Char is a one-char atom whose name has a
Character code which unifies with Code, then the goal

8.16.7 number_chars/2

succeeds,

c) Else the goal fails.

8.16.6.2 Template and modes

char-code(+character, ?character-Code)
char-code(-Character, +character-Code)

8.16.6.3 Errors

a) Char and Code are variables
- instantiation-error.

b) Char is neither a variable nor a one-char atom
- type-error(character, Char).

c) Code is neither a variable nor an integer
- type-error(integer, Code).

d) Code is neither a variable nor a Character code
(7.1.2.2)
- representation-error(character_code).

8.16.6.4 Examples

char-code('a', Code).
Succeeds, unifying Code with the

Character code for the Character 'a'.

char-code(Str, 99).
Succeeds, unifying Str with the Character

whose Character code is 99.

char-code(Str, 0'~).
Succeeds, unifying Str with the Character 'c

char-code(Str, 163).
If there is an extended Character whose

Character code is 163 then
Succeeds, unifying Str with that

extended Character,
else

representation-error(character_code).

char-code('b', 84).
Succeeds iff the Character 'b' has the

Character code 84.

char-code('ab', Int).
type-error(character, ab).

char-code(C, 1).
instantiation error. -

8.16.7.1 Description

numberxhars(Number, List) is true iff List is a list
whose elements are the one-char atoms corresponding to
a Character sequence of Number which could be output
(7.105 b, 7.105 c).

Procedurally, number-chars (Number, List) is executed
as follows:

a) If List is not a list of one-char atoms, then
proceeds to 8.16.7.1 e,

b) Else parses the list of the characters of the name
of the one-char atoms according to the Syntax rules for
numbers and negative numbers (6.3.1.1, 6.3.1.2) to give
a value N,

c) If Number unifies with N, then the goal succeeds,

d) Else the goal fails.

e) Let LC be a list of one-char atoms whose names
correspond to the sequence of characters which would be
output by write-canonical (Number) (see 7.10.5 b,
7.10.5 c, 8.14.2),

f) If LC unifies with List, then the goal succeeds,

g) Else the goal fails.

NOTES

1 The sequence of one-char atoms ensures that, for every
number X, the following goal is true:

number,chars(X,C) , number-chars(Y,C) , X == Y.

2 This definition ensures that the following goal is true:
C=['O', '.', '1'1,

number-chars(X,C) , number-chars(X,C).

8.16.7.2 Template and modes

number-chars(+number, ?character-list)
number-chars(-number, +character-list)

8.16.7.3 Errors

a) Number is a variable and List is a partial list or
a list with an element which is a variable
- instantiation-error.

b) Number is neither a variable nor a number
- type-error(number, Number).

110

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

c) Number is a variable and List is neither a list nor
a partial list
- type-error(list, List).

d) An element E of the list List is not a one-char
atom
- type-error(character, E).

e) List is a list of one-char atoms but is not parsable
as a number
- Syntax-error(imp-dep-atom).

8.16.7.4 Examples

number-chars(33, L).
Succeeds, unifying L with ['3', '3'1.

number-chars(33, ['3', '3'1).
Succeeds.

number-chars(33.0, L).
Succeeds, unifying L with an
implementation dependent list of characters,
e.g. ['3', '2, '3', 'E', +, '0', '1'1.

number-chars(X,
['3', '.', '3" 'E', +, '0'1).

Succeeds, unifying X with a value
approximately equal to 3.3.

number-chars(3.3,
['3', '.', '3" 'E', +, '0'1).

Implementation dependent: may succeed or fail.

number-chars(A, [-, '2', '5'1).
Succeeds, unifying A with -25.

number-chars(A, ['\n', ' ', '3'1).
[The new line and space characters are

not significant.]
Succeeds, unifying A with 3.

number-chars(A, ['3', ' '1).
Syntax-error(imp-dep-atom) where 'imp-dep-atom'
is an implementation dependent atom.

number-chars(A, ['0', x, fl)
Succeeds, unifying A with 15.

number-chars(A, ['0', "", a])
Succeeds, unifying A with the
collating sequence integer for the
Character 'a'.

number-chars(A, ['4', '.', '2'1).
Succeeds, unifying A with 4.2.

number-chars(A,
['4', '21, '.', 'O', Ie', '-',

Succeeds, unifying A with 4.2.

8.16.8 number-Codes/2

8.16.8.1 Description

I 1’3) -

whose elements are the Character Codes corresponding to
a Character sequence of Number which could be output
(7.10.5 b, 7.10.5 c).

Procedurally, number-Codes (Number, List) is executed
as follows:

a) If List is not a list of Character Codes, then
proceeds to 8.16.8.1 e,

b) Else parses the list of characters corresponding to
those Character Codes according to the Syntax rules for
numbers and negative numbers (6.3.1.1, 6.3.1.2) to give
a value N,

c) If Number unifies with N, then the goal succeeds,

d) Else the goal fails.

e) Let LC be a list of Character Codes corresponding
to the sequence of characters which would be output by
write-canonical(Number) (see 7.10.5 b, 7.10.5 C,
8.14.2),

f) If LC unifies with List, then the goal succeeds,

g) Else the goal fails.

NOTE - The sequence of Character Codes representing the
characters of a number shall be such that for every value X,
the following goal is true:

number-codes(X, C), number-codes(Y, C), X==Y.

8.16.8.2 Template and modes

number-codes(+number, ?character-code-list)
number-codes(-number, +character-code-list)

8.16.8.3 Errors

a) Number is a variable and List is a partial list or
a list with an element which is a variable
- instantiation,error.

b) Number is neither a variable nor a number
- type-error(number, Number).

c) Num,&r is a variable and List is neither a list nor
a partial list
- type-error(list, List).

d) An element E of the list List is not a Character
code (7.1.2.2)
- representation-error(character-Code).

e) List is a list of Character Codes but is not parsable
as a number

number,codes(Number, List) is true iff List is a list - svntax-error (imp-dep-atom). -2

111

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISOIIEC 13211-1 : 1995(E) @ ISO/IEC 1995

8.16.8.4 Examples 8.17.1.2 Template and modes

set-prolog-flag(+flag, Qnonvar) number-codes(33, L) -
Succeeds, uni fying L with [0'3, 0'31.

number-codes(33,
Succeeds.

[0'3' 0'31). 8.17.1.3 Errors

a) Flag is a variable
- instantiation-error.

number-codes(33.0, L).
Succeeds, unifying L with an
implementation dependent list of Character Codes,
e-g. [0'3, O'., 0'3, O'E, O'+, 0'0, 0'11.

b) value is a variable
- instantiation-error. number-codes(33.0,

[0'3, O'., 0'3, O'E, O'+, 0'0, O'i]).
Implementation dependent: may succeed or fail. C> Flag is neither a variable

type-error(atom, Flag)
nor an atom

number-code
Succeeds

s(A, [O'-, 0'2, 0'51).
' unifying A with -25.

d) Flag is an atom but an invalid flag for the processor
- domain-error(prolog-flag, Flag). number-codes(A, [0' , 0'31).

[The space Character is not significant.]
Succeeds, unifying A with 3.

e> Value k inapprOpriate fOr Flag
domain-error(flag-value, Flag + Value). number-Codes (A, [0'0, O'x, O'f])

Succeeds, unifying A with 15.

f) Value is appropriate for Flag but flag Flag is not
modifiable
- permission-error(modify, flag, Flag).

number-codes(A, [0'0, 0"', O'a])
Succeeds, unifying A with the

collating sequence integer for the
Character 'a'.

number-Codes (A, [0'4, O'., 0'21).
Succeeds, unifying A with 4.2.

8.17.1.4 Examples

setsrolog-flag(unknown, fail).
Succeeds, associating the value fail
with flag unknown.

number-codes(A,
[0'4, 0'2, O'., 0'0, O'e, O'-, 0'11).

Succeeds, unifying A with 4.2.

setprolog-flag(X, Off).
instantiation-error.

8.17 Implementation defined hooks
setprolog-flag(5, decimals) .

type-error(atom, 5). These built-in predicates enable a program to find the
current value of any flag (7.1 l), and to Change the current
value of some flags.

set_prolog-flag(date, 'July 1988').
domain-error(flag, date).

tsro log-flag(debug, trace) .
doma in-error(flag-value, debug+trace).

8.17.1 set-prologflag/2

A goal set-prolog-flag(F1 W’ value) enables the
val ue associated with a Prolog flag to be altered.

8.17.2 current_prologflag/2

8.17.2.1 Description

8.17.1.1 Description current-prolog-flag(Flag, Value) k trUe iff Flag
is a flag supported by the processor, and value is the
value currently associated with it. set-prolog-flag(Flag, Value) is true.

Procedurally, set-prolog-flag(Flag, value) is exe-
cuted as follows:

Procedurally, curren
executed as follows:

t-prolog-flag(Flag, Value) is

a) Associates value with the flag Flag (7.11) where
value is a value that is within the implementation
defined range of values for Flag,

a) Searches the current flags supported by the processor
and creates a set Set,pf of all the terms f lag (F, V)
such that (1) there is a flag F which unifies with Flag,
and (2) the value v currently associated with F unifies
with value, b) The goal succeeds.

112

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

b) If a non-empty set is found, then proceeds to
8.17.2.1 d,

a) Exits from the processor,

b) Returns to whatever System invoked Prolog.

Any other effect of halt/ 0 is implementation defined.

NOTE - This built-in predicate neither succeeds nor fails.

c) Else the goal fails.

d) Chooses a member of Set,,! and the goal succeeds.

e> If all the members of Set,,! have been Chosen,
then the goal fails, 8.17.3.2 Template and modes

f) Else chooses a member of Set,,f which has not
already been Chosen, and the goal succeeds.

halt

cur
On

rent-prolog-flag(Flag, Value) is re- executable. 8.17.3.3 Errors

None.
re-execution, continue at 8.17.2.1 e above.

The Order in which flags are found by
current-prolog-flag(Flag, Value) is implementa-
tion dependent. 8.17.3.4 Examples

halt.
Implementation defined.

NOTE - All flags are found, whether defined by this part of
ISO/IEC 13211 or implementation specific.

8.17.4 halt./1

8.17.4.1 Description

Procedurally, halt (x) is executed as follows:

a) Exits from the processor,

b) Returns to whatever System invoked Prolog passing
the value of x as a message.

Any other effect of halt / 1 is implementation defined.

NOTE - This built-in predicate neither succeeds nor fails.

8.17.2.2 Template and modes

current-prolog-flag(?flag, ?term)

8.17.2.3 Errors

a> Flag is neither a variable nor an atom
type-error(atom, Flag).

Flag is an atom but an invalid flag for
domain-error(prolog-flag, Flag).

the processor b)

8.17.2.4 Examples

8.17.4.2 Template and modes
currentprolog-flag(debug, Off).

Succeeds iff the value currently associated
with the flag 'debug' is 'Off'. halt(+integer)

currentprolog-flag(F, V).
Succeeds, unifying 'F' with one of the
flags supported by the processor, and 'V'
with the value currently associated with
the flag 'F'.
On re-execution, successively unifies 'F'
and 'V' with each other flag supported by
the processor and its associated value.

8.17.4.3 Errors

a) x is a variable
- instantiation-error.

b) x is neither a variable nor an integer
- type-error(integer, X). currentprolog-flag(5, -) .

type-error(atom, 5).

8.17.4.4 Examples

halt(l).
Implementation defined.

halt(a).
type-error(integer, a).

8.17.3 halt/0

8.17.3.1 Description

Procedurally, halt is executed as follows:

113

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

9 Evaluable functors 9.1.3 Integer operations and axioms

This subclause defi nes the evaluable functors wh ich shall be
impl .emented by a standard-conforming Prolog processor.

9.1 The simple arithmetic functors

The basic arithmetic functions are defined mathematically
in the style of ISO/IEC 10967-1 - Language Independent
Arithmetic (LIA). They conform to a subset of its
requirements.

9.1.1 Evaluable functors and operations

Esch evaluable functor corresponds to one or more
operations according to the types of the values which are
obtained by evaluating the argument(s) of the functor.

The following table identifies the integer or floating Point
operations corresponding to each functor:

Evaluable functor
(+> /2
c-4 /2
(*) /2
W) /2

Operation
addr, addF, addFI, addp
SubI, st&‘, SubFI, SubIF
muiI, mdl7, mdFI, m?dIF
int divr

(/) 12
b-em) /2
bd /2

divF, diviI, diqq, divIF
remI
modr

(4 11 negI 7 negF
abs/l absr, absF
sign/l signI, signF
float-integer-Part/1

intpartF
float-fractional-Part/1

fractpartF
float/l f loatI+F, f loatF+F
floor/l f lO0rF-tI
truncate/l truncateF+I
round/l roundF,I
ceiling/l cedingF+I

NOTE- l+', '-I, l*', '//', '/', 'rem', 'mod' are
infix predefined Operators (see 6.3.4.4).

9.1.2 Exceptional values

An exceptional value is float-Overflow,
underflow, Zero-divisor, or undefined.

The following operations are specified:

addI : I x I ---+ 1 U {int-overflow}
subl : I x I --+ 1 U {int-overflow}
muZ1 : I x I -+ I U {inkoverflow}
intdizq : I x I --+ I U { int _overflow, Zero-divisor}
remr : I x I -+ I U {Zero-divisor}
modi : I x I --+ I U {Zero-divisor}

nw : I --+ I U {int-overflow}
abq : I --+ I U {int-Overflow}
Sigi21 : I+I

The behaviour of the integer operations are defined in
terms of a rounding function rndr(x) (see 9.1.3.1).

For all x, y E I, the following axioms shall apply:

addr(x, Y) =x+y ifx+yEI
= int -Overflow ifx+y#I

subr(x, Y) =x-y ifx-yEI
- - int -Overflow ifx-y$I

mulr(x, Y) =x*y
= int -Overflow

ifx*yEI
ifx*y(ZI

intdizq(x, y) = rnclI(x/y)
if y # 0 A rndy(x/y) E I

- - int -Overflow
if y # 0 A rndi(x/y) @ I

- - Zero-divisor
if y =o

rem*(x, Y) = x - (rndl(x/y) * y) if y # 0
- - Zero-divisor if y =o

n-d (x, Y) = x - (lX/Yl * Y> if y#O
- - Zero-divisor if y =o

negi(x) = -x
= int -Overflow

if -x E I
if -x $Z I

ab(x) =x I I if 1x1 E I
= int -Overflow if 1x1 $2 I

w-u(x) = 1 ifx>O
= 0 if x =o
= -1 ifx<O

int-overfiow,
9.1.3.1 Integer division rounding function

NOTE - It is an evaluation-error (E) if the value of an
expression is an exceptional value (see 7.9.2).

An in
tation

teger division
defined:

rounding function shall be implemen-

114

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

rndr : R --+ 2

For x E R, the following axiom shall apply, either

rndi(x) = 1x1

or

rndr(x) = tr(x)

NOTE - The notations IX] and tr(z) are defined in 4.1.3.3 and
4.1.3.4. The flag integer-rounding- f unction (7.11.1.4)
makes the implementation defined choice of rounding function
accessible to a goal.

9.1.4 Floating Point operations and axioms

The following operations are specified:

addF : F x F -+ F U {float-Overflow, underflow}
subF : F x F --+ F U { float -overflow , underflow}
mulF : F x F -+ F U {float-Overflow, underflow}
divF : FxF

---+ F U { float -Overflow, underflow, Zero-divisor}

negF : F--+F
absF : F+F
SignF : F---+F
intpartF : F--+F
fractpart, : F --+ F

The behaviour of the floating Point operations are defined
in terms of a rounding function rndF(x) (see 9.1.4.1),
a floating Point result function resu&(x, round) (See
9.1.4.2), and an approximate-addition function addF(x, y)
(see 9.1.4.3).

For all x, y E F, n E 1 the following axioms shall apply:

addF(x, Y)

subF(x, Y>

mulF (x, Y)

diVF(x, Y>

negF (x>

absF (x)

SignF (2)

= resultF(add>(x, y), rndF)

= addF(x, -y)

= resuitF(x * y, rndF)

= resultF(x/y, rndF)
- - zero-divisor

- - -X

=x I I

= 1
= 0
= -1

intpartF(x) = signF(x) * [lxl]

fractpa$+) = x - intpartF(x)

ify#O
if y =o

ifx>O
ifx=O
ifx<O

9.1.4.1 Floating Point rounding function

A floating Point rounding function shall be implementation
defined:

rndF : R + F*

For all x E R, i E 2, the following axiom shall apply:

rndF(-x) = -rndF(x)

For all x E R, i E 2, such that 1x1 > f??%inN and
IX * ri 1 > fminN, the following axiom shall-apply: -

rndF(x il: ri> = rndF(x) * ri

NOTE - This rule means that the rounding function does not
depend on the exponent part of the floating Point value except
w hen denormalization occurs.

9.1.4.2 Floating Point result function

A floating Point result function shall be implementation
defined:

resdtF : R x (R -3 F*)
+ F U { float -Overflow, underflow}

For all x E R and any rounding function round E (R --+
F*), the following axioms shall apply:

resuk!F (x, round)
= round(x)

ifx=OV f minN < 1x1 5 fmax

= round(x)
if 1x1 > fmax A Iround(x)l = fmax

= float -0verflow
if 1x1 > fmax A Iround(x)l # fmax

- - round(x) or underflow
if 0 < 1x1 < f minl\r A Iround(x)l 5 f minN

It shall be implementation defined whether a processor
chooses round(x) or underflow when 0 < 1x1 < f minN.

9.1.4.3 Floating Point approximate-addition function

A Floating Point approximate-addition function shall be
implementation defined:

add> : FxF+R

For all U, v, X, y E F, i E 2, the following axioms shall
aPPlY:

115

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

add>(u, v) = add>(v, u)

addT,(-u, -v) = -add$(u, v)

x < (u + v) < y 3 x < (addF(u,v)) < y - - -

21 < v * add>(u,x) < add>(v,x) - -

If u, v, u * r’, and v * ri are all in FN,
add>(u * ri, v * ri) = addF(u, v) * ri

The approximate-addition function should satisfy

add>(x, y) = J: + y

which trivially satisfies the above axioms.

NOTE - The five axioms for the approximate-addition ensure:

a> add> is commutative,

b) ad& is sign symmetric,

C> add>(u, v) is in the same “basic interval” as u + v, and
is exact if u + v is exactly representable (a “basic interval”
is the range between two adjacent values of F),

d) add> is monotonic,

e> u&$ does not depend on the exponents of its arguments,
only their differentes.

9.1.5 Mixed mode operations and axioms

These operations convert the integer Operand or operands
(3.121) to floating Point and then use the appropriate
floating Point Operation.

The following operations are specified:

addF1 : F x I -+ F U {float-Overflow, underflow}
addp : I x F --+ F U { float -Overflow, underflow}
subFr : F x I -+ F U { float -Overflow, underflow}
subp : I x F ---+ F U {float-Overflow, underflow}
mulFI : F X I --+ F U { float -Overflow, underflow}
mulIF : I X F ---+ F U {float-Overflow, underflow}
divFI : F x I

-+ F U { float -Overflow, underflow, Zero-divisor}
divIF : I X F

-+ F U {float -overflow, underflow, Zero-divisor}
divII : I x I

--+ F U {float-Overflow, underflow, Zero-divisor}

For all x, y E F, m, n E 1, the following axioms shall
aPPlY:

116

addFI(x,n)

= addF(x, floatI+F(n))
if flOatI+F(n) E F .

= float -Overflow
if fiOatI+F(n) $! F

addIF(n, x)

= addF(flOatI+F(n), 2)

if flOatI+F(?-%) E F
= float -Overflow

if fbat&+F(n) 4 F

SUbFI(x,n)

= sub(x, flOati,F(n))

if f dOatI+F(n) E F
= float -Overflow

if f lOatI+F(n) $ F

SUbIF(n,x)

= SUbF(flOatI+F(n), 2)

if flOatI+F(n) EF
= float -0verflow

if flOatI+F(n) 4F

mUiFI (IL’, n>

= mulF(x, fiOatI_ f+-+
if f lOatI+F (n) EF

= float -Overflow
if flOatI+F(n) #F

mUlIF(n, J:>

= m2dF(flOatI+F(n), x)

if fiOatI+F(n) E F
= float -Overflow

if flOatI+F(n) 4f F

divFI(x, n)

= divF(x, f~OatI+F(n))

if f dOatI+F(n) E F
= float -Overflow

if f lOatI+F(n) sf F

divIF(% 2)
= divF(floatl,F(n), 2)

if flOatI+F(n) E F
= float -0verflow

if flOatI+F(n) $ F

div&, m)
= divF(flOatI+F(n), flOatI+F(m))

if f lOatI-+F(n) E F A f lOatI+F(m) E F
= float -Overflow

if flOatI+F(n) $! F V flOatI.+F(m) @ F

NOTE -A floati ng Point value is never implicitly converted
to an i n teger. The programmer mus t s tate which conversion is

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

to be applied, see 9.1.6.1.

9.1.6 Type conversion l operations

The following functions are specified to convert a value
from integer type 1 to floating Point type F, and vice versa.
The behaviour of the type conversion operations are defined
in terms of a rounding function rndF(x) (see 9.1.4.1),
a floating Point result function resultF(x, round) (See
9.1.4.2), and floating Point to integer rounding functions
9.1.6.1.

floatI-F : I--f F U {float-Overflow}
floatF-F : F --+ F
fioorF-I : F -+ 1 U {int-Overflow}
truncateF+I : F --+ 1 U {bt-Overflow}
roundF,I : F --+ 1 U {int-Overflow}
ceilingp-I : F --+ I U {int-Overflow}

For all x E F, n E 1, the following axioms shall apply:

floah-F(n)

= resultF(n, rndF)

floatF-F(x)

=x

floorF-I(x)
- - floorn,z(x)
- - int -0verflow

truncateF+I(x)
= truncaten,z(z)
- - int -Overflow

roun&+I(x)
= rounda,z(x)
- - int -Overflow

ceilingF+I (x)
= ceilingn,2 (2)
= int -0verflow

if floorn-2(x) E I

if floor~,&x) 6 I

if truncaten,z(x) E I
if truncaten,2(x) $Z I

if roundn,z(x) E I
if roundn.+2(x) @ I

if ceilingn,2(x) E I
if ceilingn+2(x) ff I

9.1.6.1 Floating Point to integer rounding functions

The following rounding functions are specified:

floorR,2 : R --+ 2
truncaten,2 : R --+ 2
roundx,z : R -+ 2
ceilingn-2 : R --+ 2

For all x E R, n E 2, the following axioms shall apply:

truncaten,2(x) = 1x1 ifx>O -
- -- 11 IJ X ifx<O

round~+&$ = lx + 1/2J

ceilingn,z (2) = - l-x]

9.1.7 Examples

'+'(7, 35).
Evaluates to the value 42.

'+'(O, 3+11).
Evaluates to the value 14.

'+'(O, 3.2+11).
Evaluates to a value
approximately equal to 14.2000.

'+'(77, N).
instantiation-error.

'+'(foo, 77).
type-error(number, foo).

'-1 (7) *
Evaluates to the value -7.

t -'(3-H).
Evaluates to the value 8.

'-1 (3.2-11).
Evaluates to a value
approximately equal to 7.8000.

f-' (NI .
instantiation-error.

t -'(foo).
type-error(number, foo).

'-1 (7, 35) -
Evaluates to the value -28.

'-1 (20, 3+11).
Evaluates to the value 6.

'-1 (0, 3.2+11).
Evaluates to a value
approximately equal to -14.2000.

'-1 (77, NI.
instantiation-error.

I -'(foo, 77).
type-error(number, foo).

'*'(7, 35).
Evaluates to the value 245.

'*'(o, 3+11).
Evaluates to the value 0.

'*'(l.S, 3.2+11).
Evaluates to a value
approximately equal to 21.3000.

floow,z(x) = x 11

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

round(N).
instantiation-error.

'*'(77, N).
instantiation-error.

ceiling(-0.5).
Evaluates to the value 0.

'*'(fOo, 77).
type-error(number, foo).

truncate(-0.5).
Evaluates to the value 0.

'/'(7, 35).
Evaluates to the value 0.

truncate(fo0).
type-error(number, foo).

V'(7.0, 35).
Evaluates to a value
approximately equal to 0.2000.

float(7).
Evaluates to the value 7.0. '/'(140, 3+11).

Evaluates to the value 10.
float(7.3).

Evaluates to a value
approximately equal to 7.3.

'/'(20.164, 3.2+11).
Evaluates to a value
approximately equal to 14.2000.

float(5 / 3).
Evaluates to the value 1.0. '/'(7, -3).

Evaluates to an implementation defined value.
float(N).

instantiation-error. '/'(-7, 3).
Evaluates to an implementation defined value.

float(fo0).
type-error(number, foo). '/'(77, N).

instantiation error. -
abs(7).

Evaluates to the value 7. '/'(foo, 77).
type-error(number, foo).

abs(3-11).
Evaluates to the value 8. '193, 0).

evaluation-error(zero_divisor).
abs(3.2-11.0).

Evaluates to a value
approximately egual to 7.8000.

mod(7, 3).
Evaluates to the value 1.

abs(N) .
instantiation-error.

mod(O, 3+11).
Evaluates to the value 0.

abs(foo).
type-error(number, foo).

mod(7, -2).
Evaluates to the value -1.

current_prolog-flag(max_integer, MI),
X is '+'(MI, 1).

evaluation-error(int_overflow).

mod(77, N).
instantiation-error.

mod(foo, 77).
type-error(number, foo). current_prolog-flag(max-integer, MI),

X is '-'('+'(MI, l), 1).
evaluation-error(int_overflow). mod(7.5, 2).

type-error(integer, 7.5).
current-prolog-flag(max-integer, MI),

X is '-'(-1, MI).
evaluation-error(int-overflow).

mod(7, 0).
evaluation-error(zero_divisor).

current_prolog-flag(max_integer, MI),
X is '*'(MI, 2).

evaluation-error(int-overflow).

floor(7.4).
Evaluates to the value 7.

floor(-0.4).
Evaluates to the value -1. current_prolog-flag(max-integer, MI),

R is float(M1) * 2,
X is floor(R).

evaluation-error(int-Overflow).
round(7.5).

Evaluates to the value 8.

round(7.6).
Evaluates to the value 8.

round(-0.6).
Evaluates to the value -1.

118

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

9.2 The format of other evaluable functor defini-
tions

9.2.4 Examples

An example is normally a term with that evaluable functor
as principal functor, eg.

functor(Argument, argument)
and its value or the error term that will occur.

These subclauses define
other evaluable functors.

format of the definitions of

Sometimes, an example will be a goal. In this case
the format is the Same as that for examples of built-in
predicates (8.1.4).

9.2.1 Description

The description assumes that no error condition is satisfied,
and is a mathematical description of the value of evaluating
as an expression a term with that evaluable functor. 9.3 Other arithmetic functors

9.3.1 (**)/2 - power
9.2.2 Template and modes

9.3.1.1 Description

A specification for the type of the values when the
arguments of the evaluable functor are evaluated as an
expression, and the type of its value. The cases form a
mutually exclusive set.

I * * I (x, Y) evaluates the expressions x and Y with values
vx and VY and has the value of vx raised to the power of
VY. If vx and VY are both Zero, the value is 1.0.

Notation for the
value:

structure and type of the arguments and
9.3.1.2 Template and modes

'**'(int-exp, int-exp) = float
'**'(float-exp, int-exp) = float
'**'(int-exp, float-exp) = float
'**'(float-exp, float-exp) = float

a> int-exp - integer expression,

b) integer - integer value,

C> float-exp - floating Point expression, NOTE- ‘**’ is an infix predefined Operator (see 6.3.4.4).

float - floating Point value
9.3.1.3 Errors

When appropriate, a “Template and modes” subclause
includes a note that the evaluable functor is a predefined
Operator (see 6.3.4.4, table 7).

a) x is a variable
- instantiation-error.

b) Y is a variable
- instantiation,error.

9.2.2.1 Examples

c) vx is negative and Y is not an integer
- evaluation-error(undefined).

sin(float-exp) = float

'-c<'(int-exp, int-exp) = integer

d) vx is zero and VY is negative
- evaluation,error (undefine d).

9.2.3 Errors
e) The magnitude of the vx raised to the power of VY
is too large
- evaluation-error(float-Overflow). A list of the error conditions and associ

when a , term with that evaluable fun ctor is
ated error term

as an eval uated
expression.

NOTE - The effect of an error condition being satisfied is
defined in clause 7.12.

f) The magnitude of the vx raised to the power of VY
is too small and not zero
- evaluation,error(underflow).

119

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

9.3.1.4 Examples
sin(fo0).

type-error(number, foo). '**'(5, 3).
Evaluates to a value
approximately equal to 125.0000. PI is atan(l.O) * 4,

X is sin(P1 / 2.0).
Succeeds, unifying X and PI with values
approximately equal to 1.0000 and 3.14159.

'**'(-5.0, 3).
Evaluates to a value
approximately egual to -125.0000.

9.3.3 cos/1 '**'(5, -1).
Evaluates to a value
approximately eq-ual to 0.2000. 9.3.3.1 Description

'**'(77, N).

instantiation-error. cos (x) evaluates the expression x with value vx and has
the value of the cosine of vx (measured in radians).

'**'(fOO, 2).
type-error(number, foo).

'**'(5, 3.0).
Evaluates to a value
approximately eq-ual to 125.0000.

9.3.3.2 Template and modes

cos(float-exp) = float
cos(int-exp) = float

‘**’ (0.0, 0).
Evaluates to a value
approximately equal to 1.0.

9.3.3.3 Errors

a) x is a vari able
- instantia .tion-error.

9.3.2 sin/1

9.3.2.1 Description
b) x is not a variable and vx is not a number
- type-error(number, Vx). sin (X) evaluates the

.ne the value of the si
expression x with value vx

of vx (measured in radians).
and has

NOTE - The value of cos (x) has little or no significance if
vx has a large magnitude.

9.3.2.2 Template and modes

9.3.3.4 Examples
sin(float-exp) = float
sin(int-exp) = float cos(O.0).

Evaluates to the value 1.0.

cos(N) .
instantiation-error.

9.3.2.3 Errors

a) x is a variable
- instantiation-error.

cos(O).
Evaluates to the value 1.0.

cos(fo0).
type-error(number, foo) .

PI is atan(l.O) * 4,
X is cos(P1 / 2.0).

Succeeds, unifying X and PI with values
approximately equal to 0.0000 and 3.14159.

b) x is not a variable and vx is not a number
- type-error(number, VX).

NOTE - The value of sin (X) has little or no significance if
vx has a large magnitude.

9.3.2.4 Examples 9.3.4 atan/l

sin(O.O).
Evaluates to the value O.O. 9.3.4.1 Description

atan(x) evaluates the expression x with value vx and
has the value of the principal value of the arc tangent of
vx, that is, the value R satisfies
-42 < R < 42 - -

sin(N).
instantiation-error.

sin(O).
Evaluates to the value O.O.

120

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

9.3.4.2 Template and modes 9.3.5.4 Examples

exp(O.O).
Evaluates to the value 1.0.

exp(l.O).
Evaluates to a value
approximately equal to 2.7818.

em(N) .
instantiation-error.

exp(O).
Evaluates to the value 1.0.

atan(float-exp) = float
atan(int-exp) = float

9.3.4.3 Errors

a) x is a variable
- instantiation-error.

b) x is not a variable and vx is not a number
- ty-pe-error(number, VX).

exp(fo0).
type-error(number, foo).

9.3.4.4 Examples

9.3.6 log/1 atan(O.O).
Evaluates to the value O.O.

9.3.6.1 Description
PI is atan(l.O) * 4.

Succeeds, unifying PI with a value
approximately equal to 3.14159. log (x) evaluates the expression x with value vx and has

the value of the natura1 logarithm of VX.
atan(N).

instantiation-error.

9.3.6.2 Template and modes atan(0).
Evaluates to the value O.O.

log(float-exp) = float
log(int-exp) = float atan(fo0).

type-error(number, foo).

9.3.6.3 Errors 9.3.5 exp/l

a> x is a variable
instantiation-error.

9.3.5.1 Description

exp (x> evaluates the expression x with value vx and has
the value of the exponential function of VX. x is not a variable and vx is not a number

type-error(number, VX).
b)

C> 9.3.5.2 Template and modes vx is zero or negative
evaluation-error(undefined).

exp(float-exp) = float
exp(int-exp) = float

9.3.6.4 Examples

9.3.5.3 Errors log(l.0).
Evaluates to the value O.O.

a) x is a variable
- instantiation-error.

log(2.7818).
Evaluates to a value
approximately egual to 1.0000.

b) x is not a variable and vx is not a number
- type-error(number, VX). log(N) -

instantiation-error.

c) The magnitude of the exponential function of vx is
too large
- evaluation-error(float-overflow).

l0gu-u -
evaluation-error(undefined).

log(fo0) -
type-error(number, foo). d) The magnitude of the exponential function of vx is

too small and not zero
- evaluation-error(underf1ow).

log(O.0) -
evaluation-error(undefined).

123

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

The value shall be implementation defined depending on
whether the shift is logical (fill with Zeros) or arithmetic
(fill with a copy of the sign bit).

9.3.7 sqrtil

9.3.7.1 Description

sqrt (x) evaluates the expression x with value vx and is The value shall be implementation defined if VS

or VS is larger than the bit size of an integer.
negative,

has the value ~(vx).

9.3.7.2 Template and modes
9.4.1.2 Template and modes

sqrt(float-exp)
sqrt(int-exp) =

= float
float 39 (int-exp, int-exp) = integer

NOTE - ’ >>’ is an inf-ix predefined Operator (see 6.3.4.4).
9.3.7.3 Errors

a) x is a variable
- instantiation-

9.4.1.3 Errors
error.

a) Ni s a variable
tantiation- b) x is not a variable and vx is not a number

- type-error(number, VX).
- ins error.

b) s is a variable
- instantiation-error.

c) vx is negative
- evaluation-errorhndefined).

C> N is not a variable and VN is not an integer
type-error(integer, TTN). 9.3.7.4 Examples

sqrt(O.O).
Evaluates to the value O.O. d) s is not a variable and VS is not an integer

- type-error(integer, VS).
sqrt(1).

Evaluates to the value 1.0.

9.4.1.4 Examples sqrt(l.21).
Evaluates to a value
approximately equal to 1.1000. ~~(16, 2).

Evaluates to the value 4.
sqrt(N).

instantiation-error. >>'(19, 2).
Evaluates to the value 4.

sqrt(-1.0).
evaluation-error(undefined). >>'(-16, 2).

Evaluates to an implementation defined value.
sqrt(fo0).

type-error(number, foo). >>'(77, N).
instantiation-error.

9.4 Bitwise functors >>'(foo, 2).
type-error(integer, foo).

The operands (3.121) and value of these evaluable functors
are integers which are treated as a binary sequences of bits.
The value is implementation defined when an Operand or
value is negative because the representation of a negative
integer is implementation defined.

9.4.2 (<<)/2 - bitwise left shift

9.4.2.1 Description

’ -C-C ’ (N, S) evaluates the expressions N and s with values
VN and VS and has the value of VN left-shifted VS bit
posi tions, where the VS least significant bit positions of
the result are Zero.

9.4.1 (>>)/2 - bitwise right shift

9.4.1.1 Description

'>>' (N, S) evaluates the expressions N and s with values
VN and VS and has the value of VN right-shifted VS bit
positions.

n defined if VS
of an integer.

is negative, The value shall be implernen tatio
or vs is larger than the bit size

122

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

9.4.2.2 Template and modes 9.4.3.3 Errors

4 ~1 is a variable
- instantiation-error.

,-c-c,(int-exp, int-exp) = integer

NOTE - ‘<<’ is an infix predefined Operator (see 6.3.4.4).

b) B2 is a variable
- instantiation-error.

9.4.2.3 Errors

C> Bl is not a variable and v~l is not an integer
- type-error(integer, VBl). a) N is a variable

- instantiation-error.
d) B2 is not a variable and VB~ is not an integer
- type-error(integer, VB2). b) s is a variable

- instantiation-error.

9.4.3.4 Examples c) N is not a variable and VN is not an integer
- type-error(integer, VN).

‘/\\’ (10, 12).
Evaluates to the value 8.

d) s is not a variable and VS is not an integer
- type-error(integer, VS). /\(lO, 12).

Evaluates to the value 8.

'/\\'(17 * 256 + 125, 255).
Evaluates to the value 125. 9.4.2.4 Examples

/\ (-10, 12) -
'~'(16, 2).

Evaluates to the value 64.

'<<'(19, 2).
Evaluates to the value 76.

'~~'(-16, 2).
Evaluates to an implementation defined value.

'~~'(77, N).
instantiation error. -

'<<'(foo, 2).
type-error(integer, foo) .

Evaluates to an implementation defined value.

'/\\'(77, NI.
instantiation-error.

'/\\'(foo, 2).
type-error(integer, foo).

9.4.4 (\ /)/2 - bitwise or

9.4.4.1 Description

, \ \ / , (Bl , B2) evaluates the expressions 131 and B2 with
values ~131 and VB~ and has the value such that each bit
is set iff at least one of the corresponding bits in VBI and
vB2 is set.

9.4.3 (/ \)/2 - bitwise and

9.4.3.1 Description

The value shall be implementation defined if VBl or VBZ
is negative. , / \ \ ’ (131, B2) evaluates the expressions ~1 and B2 with

values VB~ and VB2 and has the value such that each bit
is set iff each of the corresponding bits in VB~ and VB2
is set. 9.4.4.2 Template and modes

The value shall be implementation defined if ~7131 or VB2
is negative.

'\\/,(int-exp, int-exp) = integer

NOTE - ’ \ \ / ’ is an infix predefined Operator (see 6.3.4.4).

9.4.3.2 Template and modes
9.4.4.3 Errors

,/\\,(int-exp, int-exp) = integer

NOTE - , / \\ ' is an infix predefhed operator (see 6.3.4.4).
a) ~1 is a variable
- instantiation-error.

123

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

b) B2 is a variable
- instantiation-error.

9.454 Examples

'\\' ('\\' (10)).
Evaluates to the value 10.

C> Bl is not a variable and VBl is not an integer
- type-error(integer, VB1). \(UlO)).

Evaluates to the value 10.

d) B2 is not a variable and VB2 is not an integer
- type-error(integer, VB2).

\ (10).
Evaluates to an implementation defined value.

‘\\’ (NI.
instantiation-error.

9.4.4.4 Examples '\\'(2.5).
type-error(integer, 2.5).

'\\/'(lO, 12) -
Evaluates to the value 14.

\/(lO, 12).
Evaluates to the value 14.

'\\/'(125, 255).
Evaluates to the value 255.

\/(-10, 12).
Evaluates to an implementation defined value.

'HP (77, NI.
instantiation-error.

'\\/'(foo, 2) -
type-error(integer, foo 1 -

9.4.5 (\)/l - bitwise complement

9.451 Description

f \ \ f (BZ) evaluates the expression Bl with value VBl and
has the value such that each bit is set iff the corresponding
bit in vB1 is not set.

The value shall be implementation defined.

9.4.5.2 Template and modes

,\\, (int-exp) = integer

NOTE - f \ \ f is a prefix predefined Operator (see 6.3.4.4).

9.4.5.3 Errors

a) Bl is a variable
- instantiation-error.

b) ~1 is not a variable and VB~ is not an integer
- type-error(integer, VBl).

124

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

Annex A
(informative)

Formal semantics

A.l Introduction

This formal specification provides a clear unambiguous
description of the meaning of the control constructs and
most of the built-in predicates defined in this part of
ISO/IEC 13211. Many features implicit in the clauses
defining the informal semantics (7.7), control constructs
(7.8), and built-in predicates (8) are explicitly described
here.

NOTES

1 The following built-in predicates are not specified formally
(aspects of the System environment have not been formalized) :

char_conversion/2,
current_char_conversion/2,
flush-output/l,

close/2,
current-op/3,

op/3, open/4, read-term/3, set-stream_position/2,
stream_property/2, write_term/3.

2 This formal specification does not provide description of the
Character sets and Syntax of Prolog texts.

3 Unless explicitly stated, there is no semantics for undefined
or implementation defined or dependent features.

The formal semantics is presented in four Steps which
should be read in the Order:

A.2 - An informal introduction to the main features
of the formal specification. This is also an informal
introduction to Standard Prolog and the semantics of
control constructs and some built-in predicates (like
assert, retract). It describes the main general properties of
the formal specification which are needed to understand
it.

A.3 - A description of the data structures used in the
formal text and the comments of the clause A.4. Some
structures are assumed to be defined by other means for
example, arithmetic.

A.4 - The kerne1 of the specification and Utilities
written with clauses and local comments. One short
comment is associated with each packet of clauses.

AS - The specification of the control constructs and
built-in predicates.

The rest of this clause may be skipped, if familiar with
logic programming. The other clauses need not be read
sequen tially. A better approach is to read the informal

presentation (A.2) and then to Start reading a built-in
predicate defined in clause AS, following the references
to find the meaning of the predicates used in its definition.

A.l.1 Specification language: Syntax

The formal specification is written in a specification
language which is a first Order logical language. It is a
subset of most known dialects, in particular of Standard
Prolog (but, in Order to avoid circular definition, with a
proper Syntax).

This language uses normal clauses (i.e. implications with
possibly negative hypotheses). They are logical formulae
written with:

- three logical connectors: “c” (implication, which
tan be read as : - of Standard Prolog), “ ,” (conjunction),
“not” (negation).

- a finite set of semantical predicates which are
themselves defined by normal clauses in clause A.4 (e.g.
semantics, buildforest, etc.).

- a finite set of data structure predicates which arc
defined in clause A.3 and whose names arc prefixed by
L- or by D-.

- a finite set of special predicates, arguments of
special-pred (A.3.1).

- the arguments of the predications of the specification
are either a variable, written using the Syntax:

variable =
capital letter char, { alpha numeric char)

. - I

or some term built with all the function Symbols used
in the formal specification and representing databases,
goals, search-trees, and other objects. Every value and
constant of Standard Prolog is denoted in the formal
specification as specified in the abstract Syntax in clause
A.3.1.

NOTE -- No confusion arises between Symbols denoting a
variable of a Standard program and a variable of the specification
language. In a Standard program as in any feature related tc
the description of its behaviour (terms, database, streams, . . . :
all the objects are represented by ground terms. So they have
a different Syntax. However as variables and constants do no1
receive formally described treatment, no representation for thesc
objects is provided in the formal specification.

125

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

A.1.2 Specification language: semantics

At first glance it may come as a surprise to give the
semantics of Standard Prolog using a stritt subset of itself.
There is no paradox: (1) Prolog programs and the formal
specification have a different Syntax, and (2) the semantics
of the specification language is purely declarative whereas
the semantics of Standard Prolog tan only be described
operationally. The formal specification is a pure logical
description of some meta-interpreter of Standard Prolog
programs.

The formal specification is axiomatic. It contains uni-
versally quantified first Order logic axioms only. It tan
either be read logically (without specific knowledge of any
existing Prolog dialect), or procedurally. But the semantics
does not depends on any particular execution model, and
the Order of clauses and the predications in the bodies of
clauses are irrelevant. Nevertheless they are given in an
Order which will aid readers to understand them. This
axiomatic specification may be used to perform proofs of
particular properties of the language. It may also be used
to derive prototypes.

The semantics of clauses without negation is well-known.
This is an advantage of this specification language; how-
ever, without negation, its expressiveness is insufficient.
With negation the specification language becomes ex-
tremely powerful.

Even if the formal specification tan be considered as
purely logical, its semantics is denoted by a specific model
defined as the set of the proof-tree roots. The proof-trees
are obtained by pasting together ground instances of normal
clauses such that argument of a negative predication is not
itself a proof-tree root.

Such a condition is not paradoxical because of the notion
of stratification. Negation is stratified, i.e. a predicate is
never defined recursively in terms of its negation.

NOTES

1 The stratification
Russell-like paradox.

Of negation is introduced to avoid a

2 The specification uses five levels of stratification.

3 The use of negation by the specincation fits with the usual
notion of negation by failure, and thus simplifies the production
of a consistent r-unnable specification from the formal one.

4 In the specification, a negated predication will never contain
unbound variables. However the formal specification is not an
“allowed” program.

5 The notion of stratification
reading of the axioms.

does not influence the logical

6 The semantics of the specification language fits with most of
the known semantics for normal databases in logic programming,
in particular it corresponds to the unique stable model or one of
the minimal term models of the completion, or the (two valued)
welI-founded model.

Observe that only ground proof-trees are considered, but
that other proof-trees tan be constructed from the clauses
of the formal specification. Only the subset of the ground
proof-trees whose root is the predication semantics with
arguments which are well-formed abstract objects (i.e.
abstract database, goal and environment) are considered.
This is a sufficient condition to guarantee that all such
proof-trees are ground and with well-formed arguments in
the formal specification. In some cases an extension of
the Syntax will be allowed, such that clauses may have
variables as predication. In that ease it will be assumed
that these variables are instantiated by goals only. The
formal specification is written in such a way that proof
trees which use such clauses tan be built with such
instances only.

The D- predicates are mostly simp
sary to make preci se definitions.

le relations, but neces-

The L- predicates are not defined in the formal semantics:
they are an interface between the formal semantics and
other specifications provided elsewhere in the Standard. The
semantics of L- predicates is defined by means of relative
denotation. This means that their semantics is implicitly
given by a possibly infinite set of ground predications. So
the semantics of the whole formal specification is the set
of the ground proof-tree roots (where the arguments are
well-formed data structures) extended with the possibly
infinite set of facts corresponding to the L- predicates.

A.l.3 Comments in the formal specification

There is no formal specification without comments ex-
pressed in the natura1 language. This specification respects
this rule. However a strong discipline has been used in
Order to limit the need of long comprehensive comments.

Comme nts within th e formal specification are of two kinds:
general comments a ,nd specific comments.

General comments are all grouped in the clause A.2
(Informal description). They describe general properties
of the specification which are difficult to deduce just by
reading the axioms of the formal specification. They
do not answer all possible questions about the behaviour
of a Standard database and a goal, but do assist its
understanding.

Elsewhere only specific comments are given. Exactly one
comment is associated with each data structure predicate
or semantical predicate. The comments have the form:

126

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

pred(X, Y) - if P(X) then QQX, Y)

pred(X Y) - i$f QK V

to avoid clashes of names with user-defined predicates.
In fact “bootstrapping” consists of adding to the initial
complete database new predicate definitions. In the case
of bootstrapped control construct or built-in predicates this
is not needed because they cannot be redefined by the
User.

where X, Y denote a partition of the
and P and Q are assertions.

arguments of pred

A.l.5 References

Such a comment is an informal description of the meaning
of pred. It also corresponds to a partial correctness
assertion: this means that all the predications in the
semantics of the formal specification satisfy this assertion.
If the comment contains ifl, the assertion is also a
completeness condition, i.e. the comment defines exactly
all the predications in the semantics of this predicate.
When there is a negative predication (e.g. not Q(X, Y))
in the body of a clause of the formal specification the
comment required to understand it is usually the negation
of the formula QcX, Y) in the comment of the predicate
of the predication.

In the formal specification every axiom is accompanied by
Cross references to the definitions of the predications in
its body.

A.1.4 About the style of the Formal Specification

The style of the formal specification may be surprising at
m-st glance. Here are some observations which may help
to understand it.

Terms Of the form . f(t 17 “‘7 42) are denoted
f~~~~C(f, ht,, .~ziZ) in the formal specification. This
is necessary to keep the specification first Order. It helps
also to understand what is the result of the unification
performed on such terms (as defined in clause 7.3) which
works the same way on abstract terms.

More information on the specification method may be
found in the following documents:

P. Deransart, G. Ferrand: An Operational Formal Definition
of Prolog: a Specification Method and its Application.
New Generation Computing 10 (1992) 12 1- 17 1.

A. Ed-Dbali, P. Deransart: Software Formal Specifications
by Logic Programming: The example of Standard Prolog.
LNAI 636, Springer Verlag, LPSS’92, September 1992.

P. Deransart, J. Maluszynski: A Grammatical View of
Logic Programming, The MIT Press, 1993. (NSTO
properties).

S. Renault, P. Deransart: Design of Formal Specifications
by Logic Normal Programs: Merging Formal Text and
Good Comments. Int. Journal of Software Engeneering
and Knowledge Engineering, V4, 3 (1994) 369-390.

Information about a runnable specification (intended to
be compatible with most existing Prolog processors) is
available on request by E-Mai1 to:
AbdelAli.Ed-Dbali @lifo.univ-orleans.fr.

Some PhD theses have been devoted to aspects of
Standard Prolog, e.g. by Gilles Richard, Sophie Renault
(Validation), AbdelAli Ed-Dbali (runnable specification),
Jean-Louis Bouquard, Bruno Dumant, Michel Teguia
(NSTO properties).

In the body of a clause a negated predication of the
form

A2 . An informal description
not pred(. . +)

does not contain any anonymous variable in its arguments.
This is because such variable is usually intended to be
existentially quantified inside the negation (it is implicitly
universally quantified outside of the clause, hence inside
of the negation). As a result if such quantification is
required an intermediate predicate must be introduced.
See for example the predicates error A.4.1.14 and in-
error A.4.1.15. Furthermore this facilitate production of
executable specification using the Standard negation.

The System atic use of “special predi cates”
strapped or aux iliary d efinition s are given

where boot-
IS necessary

This kind of semantics takes into account non-determinism,
i.e. the multiple (perhaps infinite number of) solutions, the
unsuccessful attempts to resolve a query, and the control
aspects as weh. The representation of all the computations
is usually defined by the so-called “search-tree” (also
called SLD-tree in the case of “pure” Horn clause style).
This notion is introduced in the next clause (A.2.1).

127

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

NOTE - The semantics tan be viewed as being essentially
declarative. The main differente with denotational semantics
Comes from the semantic domains (i.e. search-trees). An
advantage of this approach is the relative familiarity of search-
trees to Prolog programmers. It tan also be considered as
operational since the associated search-tree cannot be defined
without simulating the execution of the database P for the goal
G.

A.2.7 - The semantics of a program conforming to
this part of ISO/IEC 13211.

A.2.8 - Getting acquainted: general
formal specification.

approach of the

A.2.9 - Built-in predicates.

A.2.10 -
7.7.

Relationships with the informal semantics The process of the construction of a branch of the
search-tree for a database and a goal (and an environment)
corresponds to an attempt to satisfy a goal. The
purpose of the formal specification is to describe all the
possible attempts to satisfy a goal for a given Standard
Prolog database. It describes the execution of a goal.
Any action performed before starting the execution is
implementation defined or implementation dependent. It
will be assumed that databases, goals and environments are
already prepared for execution (in particular the database
contains the clauses of the database to be executed and
if a variable occurs as predication it has been included
as argument of a cal1 predication). The body of a fact
contains only the predication true.

AnY
descri

concept which is not defined
ption refers to concepts defined in

in this
the body d

informal
ocument.

A.2.1 Search-tree for “pure” Prolog

Assume first that databases and goals use user-defined
procedures and conjunction ((,)/2) only, and that a predi-
cation in the body of a clause cannot be a variable. A
goal or the body of a clause is a possibly empty sequence
of predications, denoted by the conjunction.

NOTE - This is “pure” Prolog. The notion of a search-tree was
introduced for “pure” Prolog in the history of logic programming
in Order to explain the resolution and the backtracking as they
are fixed in Standard Prolog, and it will serve as a basis to
define and understand the semantics of further constructs.

It is not required that the semantics of a Standard
conforming processor should be a complete implementation
of this search-tree. It should respect the following Points:

a) the control flow: the Order in which the nodes
of the search-tree containing an executed user-defined
procedure or built-in predicate are visited.

Let us recall the notion of search-tree for pure Prolog,
and thus the semantics of pure Prolog in the formal
specification (because pure Prolog is a proper subset of
Standard Prolog). We will describe here what is known
in the literature as the “Standard” operational semantics of
definite programs, or definite program with the left-to-right
computation rule.

b) failures, successes and/or
of a goal in the same Order.

successive instantiations

d effects of the built-in predicates.

The clauses are ordered (by the sequential Order in which
they are written) and grouped into packets of clauses
defining one procedure. The clauses have a head (a
non-variable term) and a body consisting of an ordered
conjunction of predications. If the body is empty it is
denoted by true.

The formal semantics is explained by progressively intro-
ducing the constructs and built-in predicates.

A.2.1 (“pure” Prolog) - The databases use only user-
defined procedures and conjunction. “true” and “fail”
are introduced.

A database
procedure is

tan be
defined

viewed a set of packets in whi
only once by a Single packet.

ch a
A.2.2 (“pure” Prolog with tut) - Databases with tut.

NOTE - In the formal specification all the clauses defining a
predicate are grouped in a Single packet. The way they are
grouped is implementation defined according to the directive
discontiguous/l 7.4.2.

A.2.3 (kerne1 Prolog) - All control constructs except
“catch” and “throw” are considered. The notions of
“well-formed” and “transformed goal”, and of “scope
of Cut” are introduced.

The semantics of Standard Prolog is based on the general
resolution of a goal. A.2.4 - Structure of the database and “assert” and

“retract” built-in predicates. The database update view
IS defined.

A.2.1.1 The General Resolution Algorithm
A.2.5 - Exception handling (“catch” and “throw”).

The general resolution of a goal G of a database P is
defined by the following non-deterministic algorithm: A.2.6 - Environments.

128

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

a) Start with the initial goal G which is an ordered
conjunction of predications.

A.2.1.3 The search-tree

b) If G is the singleton true then stop (success).

c) Choose a predication A in G (predication-choice)

d) If A is true, delete it, and proceed to step (b).

The different computations defined by this algorithm will
be represented by a (search-)tree in which a node is
labelled by the current goal and has as many children
as there as unifiable heads with the Chosen predication in
the current goal. The children have the same Order as the
clauses in the database.

e) If no renamed clause in P has a head which unifies
with A then stop (f ailure).

NOTE - The search-tree is a suitable tool at the right level of
abstraction. It is a well-known notion in the logic programming
community.

f) Choose a freshly renamed clause in P whose head H
unifies with A (clause-choice) where cr = MGU (H, A)
and B is the body of the clause,

The notion of search-tree permits to represent dynamic compu-
tations as a unique Object. It formalizes the idea of “time”
which is implicitly present in the total Order of its nodes (total
visit Order).

g) Replace in G the predication A by the body B,
flatten and apply the Substitution 0. We give now a more precise definition. Esch node is

labelled by two elements:

h) Proceed to step (b).
- Either a non-empty goal, different from the singleton

NOTES

true and a distinguished predication (the Chosen
predication), or the predication true and the node is
a leaf called success node.

1 The Steps (c), (f), and (g) are called resolution Step.
- a Substitution.

2 The MGU (most general unifier) of two terms is defined
in clause 7.3. The label of the root is the goal to be resolved and the

empty Substitution.
3 A “freshly renamed clause” means a clause in which the
variables are different from all the variables in all the previous
resolution Steps.

4 In Standard Prolog, there is no flattening of goals. If not
identical to true, a goal tan always be viewed as a conjunction
of (sub) goals.

A.2.1.2 The Prolog resolution algorithm

Esch node has as many children as there are clauses
whose head (with a suitable renaming) is unifiable with
the Chosen predication. So if there is no such clause
the node is a leaf called failure node. It corresponds
to a failed branch. A success node corresponds to a
success branch. To every success branch it corresponds
an answer Substitution obtained by the composition of all
the Substitutions of the nodes along the branch, restricted
to the variables of the goal of the root.

In Standard Prolog this algorithm is deterministic:

a) The predication-choice function chooses the first
predication in the sequence G (Step (c)).

There are three kinds of branches: success, failure, infinite.
If there is no infinite branch in a search-tree, it is a Jinite
search-tree.

b) The clause-choice function chooses the unifiable
clauses according to their sequential Order in the packet
WP (f>>*

It is important to observe that the algorithm works also if
the clauses of the program have variables as predication
in their body, if each variable is instantiated by a goal
before it is selected.

The Order of the children corresponds to the Order of
the clauses used to build them in the database. If
B1,-*, B, is the goal associated with a node, BI being
the Chosen predication, and A :- (2’1, . . . , Cm is a freshly
renamed clause with A and BI unifiable, then with the
corresponding Child the associated Substitution is a MGU
(most general unifier) o of BI and A, and the associated
sequence of predications is

This Observation will be used to define some “bootstrapped”
built-in predicates, where a variable may occur in the place
of a predication (see for example the definition of the
disjunction in the clause A.2.3.4). However this is not
permitted in Standard Prolog.

a((G) * - * 7 Gr), B2, - ’ - f 8-h)

or equivalently, if flattened:

fl(G) * ’ l) G-L, Bz, - * * 7 BTX)

129

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

In the General Resolution Algorithm (A.2.1 .l) the search-
tree is defined by the predication-choice function (also
called computation rule) which determines the Chosen
predication for each node. The predication-choice function
could select any predication in a goal and not just the
first one. The Prolog search-tree is defined by the
predication-choice function which always chooses the first
predication.

NOTE - All search-trees (i.e. corresponding to different
computation rules) are equivalent in the sense that given the
database and the goal, all the different search-trees have the
same success nodes with the same answer Substitutions up to
a renaming of the variables. But they correspond to different
semantics when built-in predicates are considered.

A.2.1.4 The visited search-tree

Given a predication-choice function, i.e. a search-tree,
the computations of a database and goal are defined by
depth-first left-to-right visit of the search-tree. This visit
defines the output Order of the answer Substitutions as the
visit Order of the success leaves. It also explains why
the execution loops when the traversal visits an infinite
branch.

To sum up, the semantics of a database and a goal is
formalized by the search-tree with its visit Order. We cal1
visited search-tree (VST) a search-tree provided with a
visit Order. The semantics of Standard Prolog is defkred by
two components: the predication-choice function (search-
tree) and the visit Order (of this search-tree).

A.2.1.5 A search-tree example

Consider the following database and the goal p (x, Y)

PM, Y) :- q(X), rm, n -
p(X, Y) :- s(X).

q(a) :- true.
q(b) :- true.
q(c) :- true.

r(b, bl) :- true.
r(c, cl) :- true.

s(d) :- true.

Figure A.l Shows the search-tree with the Chosen predi-
cation underlined, upper case letters denote variables and
lower case constants.

The Standard visit gives the following answer substitutions,
in this order-:

x = b, Y = bl

x = c, Y = Cl

x=d

130

r(a,Y) - r(b,y)
.

success

success success
Figure A.1 - A search-tree example

4 A
. . .7

current node N n ? , . .
hanging &des

Figure A.2 - A visited search-tree

A.2.1.6 Building the visited search-tree

The semantics of a database P and a goal G is thus
represented by a partially visited search-tree whose root is
labelled by the goal G. Successive transformations modify
the initial partially visited search-tree during the resolution.

When a node N is first visited it is immediately expanded
with all its children. The representation of the search-tree
respects the Order of visits; the non-visited brothers of an
already visited node are all “On the right” of this node.
These nodes are called “hanging nodes” (see figure A.2).
In a partially visited search-tree all the hanging nodes are
“On the Slice” and represent the next possible developments
of the search-tree. The clause-choice function selects the
next node to be visited, following the visit Order.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

exit cal1

4
predication

fail d redo

Figure A.3 - Byrd’s trace model

.
k

ad 1 A, G t fail

Observe now that there is no way to visit the search-
tree beyond the first (i.e. left-most) infinite branch with
the Standard visit Order. This is why in the formal
specification the semantics is represented by all the finite
partial search-trees which are partially visited up to some
current node.

<

m

If the search-tree is finite (no infinite branch), then the
semantics contains a greatest tree which corresponds to
the complete visited search-tree (up to the root).

If the search-tree is infinite the semantics consists of all
the partially visited search-trees containing all the visited
nodes from the root up to some node of the first infinite
branch.

exit dG)
t

redo

.‘/r\
Figure A.4 - Byrd’s model: a search-tree Point of
view

A.2.1.7 Semantics terminology

Let us now introduce some vocabulary as defined in clause
7.7. Given a branch of a search-tree whose current node N
is labelled by a goal G (called the current goal) such that
A is the Chosen predication in G, the activation period of
A corresponds to the construction of the sub-search-tree
issued from N. Of course, the activation period has no
end if this sub-search-tree has an infinite branch.

If a node has more than one Child it is non-deterministic.
Such a node for which A is re-executable is called a choice
Point. If a node has only one Child after its first visit it is
a deterministic node. A node is said completely visited
after all its branches have been completely developed.
New visits to a choice Point correspond to backtracking.

A.2.1.8 An analogy with Byrd’s box model

Comparing this sema ntics w
show how nodes are visited.

ith Byrd’s trace model helps

By analogy with Byrd’s model the visits of a node N
will be denoted by “call” for the first and “fail” for
the last one of the same node. They correspond to the
cal1 of a predication and the end of all the attempts to
resolve it. The “fail” mark must be distinguished from
the failure nodes introduced previously. In fact many
branches issued from the node N may be failed. The other
attempts to re-execute it correspond to “redo” for obvious
reasons (try a new clause at some ancestor choice Point
and continue the resolution). “exit” corresponds to one
successful attempt to resolve the Chosen predication of the
node N.

NOTE - In this part of ISO/IEC 13211 “a predication fails”
means failure if there is no way to satisfy it, or just last
visit if after different attempts to re-execute it (after exhaustive
backtracking).

Byrd’s box (figure A.3) represents what happens during
the activation of a predication, i.e. between its choice at
the current node (“call”) and the last visit to this node
(“redo fail”). The different visits correspond to different
choices of clauses leading to success branches.

Figure A.4
search-tree

Shows the elements of Byrd’s box from the
Point of view.

A.2.2 Search tree for “pure” Prolog with tut

“Pure” Prolog is now extended by allowing the constant
predication tut (!/O) in the body of the clauses.

From the logical Point of view this tut has no effect
(it is always true), but from the Point of view of the
computations (the search-tree) it has a drastic effect: a
tut deletes some search-tree branches in Order to forte
a predication to execute quickly without visiting all its
children.

131

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

must be well-formed. So a variable cannot occur in the
Position of a predication (it must be embedded in a cal1
like cal1 (x) in this case), and a predication must be a
callable term (i.e. neither a variable, nor a number).

dX> 7 4 r(W) By definition weil-formed clause, body of clause, or
goal must respect the following abstract Syntax (formally
defined in A.3.1):

clause = predication :- body

body =
I I

I '(‘ body ',' body ')'
I I . t I '(' body ',' body ')'
I

I ->' '(' body ',' body ')'
r(,,Y>

Figure A.5 - A search-tree example showing the effect
of tut

1 predication

predication = pred "('1 list of terms ') '

where pred is not in { f , 1, f
predication is not a number.

. I I
I I ->’ and

A.2.2.1 A search-tree example with tut

If a clause or a goal is weil-formed,
be performed as follows.

a transformation may If the first clause of the database (A.2.1.5) is replaced by
p(X, Y):- q(X), !, r(X, YL

An (abstract) clause term of the form ‘:-‘(H,G) is trans-
formed into the term ‘:-’ (H,trans-goal(G)) where trans-goal
defines the transformation of a goal as follows.

pw, Y) :- q(X),
p(X, Y) :- s(X).

1 ., r(X, W.

q(a) :- true.
q(b) :- true.
q(c) :- true. An (abstract) goal term is transformed in a new goal

whose behaviour is equivalent, according to this part of
ISO/IEC 13211, to the same goal in which each variable
“X” occurring in the Position of a predication according
to the abstract Syntax above is replaced by “call(X)“.

r(b, bl) :- true.
r(c, cl) :- true.

s W -- true. .

NOTE - This specification is weaker than what is specified
in the term to body conversions 7.6.3: it suggests that some
transformations may be implementation dependent . However as
the effect must be equivalent to the given minimal transformation,
only this minimal transformation is considered in the formal
specification (see D-term-to-body A.3.1) as in 7.63.

Figure AS Shows that the search-tree corres
goal P (x, Y) has one fai led branch only.

ponding to the

NOTE - Cuts sometimes increase the number of success
branches. This may be understood by the use of the tut
to specify negation by failure (see the bootstrapped (\+)/2
definition). The composition of two negations may increase the
number of successes. A.2.3.2 An operational view of the conjunction (‘,‘)/2

The conjunction may be viewed now as a control construct
combining goals. The semantics of this construction is
defined by the mechanism of the search-tree construction
and visit. It may be also informally described as follows:

The effect of the “Cut” is thus to erase some hanging
nodes: all the hanging nodes between the current node
and the parent node of the goal in which it first appeared.

if GI and G2 are two goals then (G1, Gz) is equivalent to
execute Gr and execute G2 in sequence each time G1 is
satisfied.

A.2.3 Search-tree for kerne1 Prolog

In kerne1 Prolog only the control constructs (true/O, fail/O,
VO . 7 (‘,‘)/2, ($2, call/l, (-->) /2, “if-then-else”/3) and the
user-defined procedures are authorized. The conjunction satisfies also the following obvious prop-

erties:

(goaZ, true) = (true, goal) = goal and

((sh 7 d2)7 941 = (gh 7 (912, sk3)) = (id19 d27 SV
A.2.3.1 Syntax: well-formed clause, body and goal,

and transformation

In kerne1 Prolog (as in this part of ISO/IEC 13211) a
clause in the database, a goal, or the body of a clause,

NOTE - These properties hold not only for kerne1 Prolog but
also in Standard Prolog.

132

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

A.2.3.3 true and fail

The meaning of true and fail is now clear. If the
Chosen predication is true, then it will be removed and
the resolution continues with the following predications of
the current goal. If there are no more predications, the
branch is a success branch, and resolution continues from
the closest choice Point not yet completely visited.

fail tan be viewed as a constant predicate with no
definition at all. Hence its choice leads to a failed branch
and resolutions continues from the closest choice Point not
yet completely visited.

A.2.3.4 Disjunction

disjunction is the control construct of two goals Gr and
G2 denoted (GI; G2) whose meaning is equivalent to:

If the principal functor of GI is not (->)/2 then execute
Gr and skip Gz each time Gr is satisfied, and execute G2
when Gr fails if this alternative has not been tut by the
execution of Gr.

The disjunction corresponds to a non-deterministic choice-
Point. The simplest semantics for the disjunction is
given by the two pseudo-clauses (“pseudo” because the
disjunction is a control construct and is not authorized as
functor of a clause head, and a variable is not allowed as
a predication in this part of ISO/IEC 13211):

';'(Gl, G2) :- Gl.
';'(Gl, G2) :- G2.

if the principal functor of Gr is not (->) /2.

A.2.3.5 Cut in kerne1 Prolog and its scope

A tut may occur any where, embedded inside conjunctions,
disjunctions or if-then constructs according to the abstract
Syntax above. Then the (static) scope of the tut is defined
by the visible choice Points which will be tut when it will
be Chosen. In a clause the visible choice Points are the
head of the clause and the disjunctions associated with the
control construct (;)/2 in which the tut is embedded. There
are also “non visible” choice Points which are introduced
by the development of subgoals which have been Chosen
before the tut (but after the head). Hence the scope
of tut in a clause corresponds to all the predications or
disjunctions which are on its left in the body of the clause
together with all its embedding disjunctions and the head
of the clause.

However there is one exception to this rule if the tut is
inside the control part of a the if - then construct (see
A.2.3.7).

In the formal semantic the scope of a tut is represented
by flagging tut (! (flag)) where the flag denotes the
parent node of the node in which the instance of the
clause in which the tut occurs has been used. When a
tut flagged by N is Chosen all the ancestor choice Points
until N (inclusive) are made deterministic.

NOTE- Due to the well-formedness of goals, there is no way
to execute in this formal specification an unflagged tut. Hence
if a tut occurs inside the arguments of some disjunction, the
arguments of the bootstrapped definition contain this already
flagged tut.

A.2.3.6 Cal1

cal1 is
variable

a
as

control construct which permits the
a predication and limits the scope of

use of a
tut.

Its Syntax is cal1 (Term) where Term must be a term.
When cal1 is executed its argument must be a well-formed
body (see is-an-extended-body A.3.1), the scope of a tut
in this goal is limited to this goal. It is sometime said
that cal1 is not transparent or opaque to tut, otherwise it
would be transparent and its scope would extend to all
predications to its left in the body of the clause and its
parent.

Then the argument is transformed according to clause
A.2.3.1 and executed, after local cuts of the goal, in the
Position of a predication according to the Syntax above,
have been flagged.

Notice finally that this part of ISO/IEC 13211 does not
define how the computations continue after a success
branch has been obtained, i.e. how the visit of the search-
tree is continued, nor how the answer Substitutions are
displayed.

A.2.3.7 If-then

The conditional construct ' -> ' (Cond, Then) is defined
out of the context of a disjunction (i.e. not the first
argument of (;)/2) as follows:

if Cond succeeds then cuts the
Cond only and executes Then.

choice Points issued from
Cond is opaque to tut.

if Cond fails then fails.

It tan be defined by the following pseudo-clause:

I ->' (Cond, Then) :- Cond, !,Then.

'->'(cond, Then)
predication (;) /2.

not being the first argument of i:

133

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

-4

ISO/IEC 13211-1 : 1995(E)

A.2.3.8 If-then-else

@ ISO/IEC 1995

The conditional construct “if-then-eise” is denoted by a
syntactical combination of if-then and the disjunction as

(Cond -> Then); Else

It is defined as follows:

if c ond su

Con .d only
cceeds then cuts the
and executes Then i

choice Points
gnoring Else.

If Cond fails then executes Else.

It could be defined by the following pseudo-clause:

((Cond -> Then
(call(Cond)

); Else) :-
, !,Then);Else.

A.2.4 Database and database update view

In this part of ISO/IEC 13211 the relationships between
clauses (issued from Prolog terms in a Prolog text) stored
in the database and a term defining a clause is defined by
means of “conversion” (7.6). Its purpose is to define also
what is a “well-formed goal”. In this formal definition
an abstract Syntax is assumed and given for the database,
clauses and terms, which in particular defines what is a
“well-formed goal”. This Abstract database contains the
user-defined procedures only, but in contains implicitly all
the control constructs and built-in predicates.

wP New

from

Figure A.6 - Standard database update view

Notice that if all clauses of a predicate have been removed
retract/l just fails and all informations about this predicate
remain, except that the packet of clauses is empty. Only
abolishll leaves the database as this predicate had never
existed.

It is also assumed that the database contains at least
three informations for every user-defined procedure: the
predicate indicator, an indication whether it is dynamic or
static and the packet of clauses (D-is-a-database A.3.1.
Esch clause tan be viewed as an abstract term (D-is-a-
term A.3.1) with principal functor : - / 2. Moreover it is
assumed that a predicate is defined only once.

NOTE - A predicate is thus uniquely determined by its
predicate indicator, i.e. its name and arity.

The semantics described so far assumes that the database
remains unchanged during the the execution of a goal.
Standard Prolog contains five built-in predicates which
may modify the database: asserta/l, assertz/l, retractll,
abolish/l, or explore it: clause/2. Intuitively assertall
adds a clause at the beginning of a packet, assertz/l
does the same at the end, retractll removes the first
clause which unifies with the argument and abolish/l
which removes completely a procedure. retract/l is
resatisfiable and removes clauses in the packet. Notice
that an asserted clause must be well-formed and that
retract(predication) seeks for clauses of the form
predication :- true.

To understand the semantics of these built-in predicates in
Standard Prolog it is useful to understand the Problem of
the database update view. As the search-tree is constructed
the database may be modified. Add to each node an
additional label corresponding to the current database used
to build the children of this node. Assume first that all
the clauses are used to build these children. Esch Child
(say 1) 2, . . . , n> is now labelled by a new database (say
NewP1, NewP2, . . . , NewP& This Situation is depicted
in Figure A.6 (the ci’s correspond to the clauses Chosen
to build the Child).

If there is no modification of the database all the NewPi
and P are the same and all the children are visited
and expanded. Now consider a Child i different from
the first (7: > 1) and assume that the clause to which it
corresponds has been removed during the constructions of
an older brother (i.e. NewPi does not contain anymore
the clause ci). 1s it normal to choose and to try to resolve
it or not? Assume now that the youngest Child n has
been reached and resolved, and the current database, say
NewP corresponding to the “fail” visit of n, contains new
clauses appended to the corresponding packet in P. Should
these new clauses be considered to create dynamically
new children or not ? Notice that such Situation happens
with assertz/l only. With asserta/l no new Child will
be created (although subsequent uses will consider the
modified database).

The database update view depends on the way the previous
questions are answered. The Standard adopts the following
view: the retracted clauses are selected but not the
appended ones. It is called the logical view.

NOTE - In the formal specification the logical view is taken
into account as follows: the packet associated to a node

134

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

corresponds to the clauses available to build new children. It is
fixed by the first visit.

Although the logical view has been adopted, some pro-
grammers are used to the so-called immediate view. There
is a “minimal” way of thinking about the views, that is
to say to update the database in a such manner which
does not depend on the view (it is of course undecidable
whether a given database satisfies the requirements of
some view, hence in particular of the logical one). Here
are some possible rules:

4

b)
1s

Using asserta/l is always free of danger.

Never use retract/l or
active except to retract

assertzl
already

1 on a predicate
used clauses.

which

These restrictions fit with a prudent use of database
updates. However note that, even without ‘“call”, these
apparently simple rules remain undecidable.

NOTE - In A.2.2 where “pure” Prolog is described there is
no data base updates and the database is invariant. In Standard
Prolog it is not the case. Thus a different database may be
stored at each node of the search-tree. In the formal semantics
only one database is stored at a node (instead of one “before”
and one “after”): it is the database resulting from the complete
development of the sub search-tree issued from that node; it
may be different from the database associated to this node when
it is the current node.

A.2.5 Exception handling

An exception may be raised during the resolution of a goal
G by the System or by the user (with the control construct
throw/l) and captured anywhere by some ancestor control
construct catch/3 if the resolution of this goal G is
performed in the context of this built-in predicate. The
mechanism of the exception handling tan be informally
described as follows.

The built-in predicate catch/3 has three arguments: a
goal to be executed (say Goal), a Catcher which is term
(say Catcher) and another goal to be executed in case
an error occurs during the resolution of Goal trapped
by this predication (say Recovergoal). Its semantics
is the following: assume that catch (Goal, Catcher,
Recovergoal) is Chosen at node N. Unless some syntactic
error on the form of this predication arises, it succeeds
and two children are created labelled by the two goals:
(Goal, inactivate(... >, Cont) and (Recovergoal,

Cont), where Cont is the continuation defined by the
goal of the node N (the goal at node N has the form
(catch (...) , Cont)). Note that N is non-deterministic.
However if no error occurs the second Child will never be
visited and the node N will be considered as deterministic
by clause-choice).

An error is raised by a predication throw (Ball > , this
predication succeeds if a freshly renamed copy of its
argument Ball tan be unified with the Catcher of some
calling ancestor catch/3 (else a System error is raised). If
some ancestor catch is thus selected all the hanging nodes
of its sub-search-tree are removed and its second Child is
developed, hence the goal (Recovergoal, Cont > is now
resolved.

NOTE - In the formal specification the second node is not
immediately constructed. It is by throw.

The role of the special predicate inactivate/l defined in
the formal specification only is to avoid the Capture of
an error by the Catcher of a calling catch when this error
occurs during the resolution of the continuations. In fact,
an error may be trapped by different Catchers in different
embedded catches, and an error in the continuation must
be trapped by ancestor catches only. For this purpose the
set of the active Catchers is stored at the current node (i.e.
Catchers which must be tried if some error is raised) and
the effect of inactivate whose argument is the node N is to
remove this node from this set. Hence subsequent errors
raised by the developments of Cont are no longer caught
by the Catcher of node N.

Notice also that there are two kinds or exceptions:

a> Explicit ones
throwll, and

specified by the programmer bY

b) Implicit ones raised by control constructs or built-in
predicate errors. This case is exactly as though a user
error is raised by calling throw (Error-term, impl-den .

If the user for any reason omits to specify an appropriate
Catcher, the result is a System error (see 7.8.10.3b).
However in the formal specification there is a Catcher at
the root (see A.4.1 .l and A.4.1.43) in Order to propagate
eventual error to previous Steps of execution (errors
occurring during the execution of findall/ for example).

Finally observe that the exception handling introduces a
new kind of failed branch. In the leaf of such failed
branch the Chosen predication may be a throw or a
built-in predicate in error or a special predicate called
system-error-action. In the case of halt as for some
other special predicates as well new leaves tan be added
to the search-tree which do not correspond either to any
success or failure branch. The possible development of
such branch is implementation defined or implementation
dependent.

A.2.6 Environments

In this part of ISO/IEC 13211 it is required that an
environment is defined at least by the values of the flags

135

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

NOTES

Head Pointer Position
Figure A.7 - L1 - L2: Differente list of characters

1 It is important to observe that the semantics is not unique:
there may be many search-trees for the same database, goal
and environment, even if they are finite, each denoting a
Standard conforming semantics. This is due to undefined or
implementation dependent or implementation defined features.

For example exceptions occurring during the computation
of different subexpressions may lead, in an implementation
dependent but also programmed manner, to completely different
executions. Other cases are illustrated by the term-ordering
(A.4.1.41) which is implementation dependent in the comparison
of variables, or renaming. and the Standard input and output text streams. The

environment may be updated at each step of execution
which affects flags or streams. 2 The semantics specifies all the partially visited search-trees

up to some current node. This is needed to take into account
infinite computations.

In this formal specification the current environment is
attached to the current node. An environment is a
quintuple which contains the current li st of flags, the input

To illustrate the semantics we give a short example with
a simplified notation (the current goals and environments
are not depicted). and output streams and two lists of currently opened input

and output text streams respectively. It is denoted env(
PE IF> OE IFL, OFL) (D-is-an-environment A.3.7). Consider the database:

From the formal Point of view a stream is considered as a
sequence of characters which ends with an “eof” Character.

p(a) :- true.
p(b) :- true.

A stream
characters

is represented by a
This representati

name and a differente list of
the manipulation

goal :- p(X), !.
.on permits

of both the head and the current Character of the stream
(see D-is-a-stream A.3.7).

and the goal: goal.

Its semantics contains all the partially visited search-
trees depicted in Figure A.8 (--+ denotes the node N
to be executed and +- the last completely visited node)
representing the evolution of the search-tree.

To denote a stream, we use stream(N, Ll - L2), where
N is the abstract name of the stream (not represented in
the formal specification) and Ll - L2 is a differente list
of characters. Ll represents the whole contents of the
stream and L2 represents the characters after the pointer NOTE - In A.4 the relation semantics(P, G, E, F) defines

the execution of true & catch(G, X, system-error-action))
instead of G. The catch serves to take into account untrapped
errors during execution. The conjunction of true and catch
serves in the description of halt which creates a new Child to
the root. Such behaviour is indeed implementation defined .

(including the pointed first Character). Thus an empty
stream is denoted nil - nil and Points on the “eof”. A
stream L - L, L being a non empty list of characters
Points on the first Character. A stream L - nd
the end of file (the current Character is “eof”.

Points on
A stream

A.L - L Points on the second and L - A.d on the last.
Initially a non empty stream pointing on its first element
A will be denoted A.L - A.L.

A.2.8 Getting acquainted with the formal specification

The general structure of the formal specification tan now
be described. The details are of course defined in the
formal text (A.3, A.4). A.2.7 The semantics of a Standard program

The key predicate of the relation semantics is a predicate
buildforest (A.4.1.3). It is non-deterministic in Order
to include in the semantics all the finite approximations
of the (eventually infinite partial) visited search-tree.
Esch approximation includes the nodes of the previous
approximation but some elements on the Slice may have
their labels altered by performing the transformations called
“expansion”.

The semantics is defined by a relation with four arguments,
called semantics (A.4.1.1) whose arguments are: a database
(the initial database), a goal, an environment and a forest.
The forest corresponds to the partially visited search-tree
up to the current node, usually denoted by N in the
formal specification. If for a given database P, goal G
and environment E there is a finite search-tree, then in
the semantics of this relation there is a proof-tree such
that the fourth argument of the root represents this finite
complete search-tree. The search-tree is represented by a
data structure called “forest” (see A.3.3).

The predicate buildforest simulates the search- tree walk
construction. It uses the predicate cl ause-choice CA . 4.1.4)

136

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

+ goal

goal goal

T T
+ p(X), !(l), true P(X), U), true

:
+ !(l), true !(l), true

goal goal +

T T
p(X), !(l), true p(X), !(l), true

I
!(l), true !(l), true

-t true true
Figure A.8 - Partially visited search-tree

which, in Standard Prolog, selects the next not yet
completely visited node other than a catch following the
Standard visit Order or the root if there is no eligible node.

NOTE - A catch node is not completely visited because its
alternative is Chosen only after an error or throw occurring in
the development of its first branch.

The predicate treatment (A.4.1.13) analyses the current
goal (the goal labelling the current node) and expands it
according to the selected predication in the current goal.

Notice that the current node “before” or “after” treatment
is the Same, but the search-tree may have been expanded
“after”. Hence in proof-trees rooted by treatment(FI, N,
F2) N is a hanging node of Fl on the Slice, but N may
have children in F2.

The different clauses of treatment together with the
clauses of treatbip deal with success, built-in predicate
not in error, error case, special predicate and failure.
All possible cases (depending of the kind of built-in
predicates called “Substitution- or boot-bip”) are covered,
ensuring the completeness of the formal definition for all
well-formed programs and goals built with user-defined
predicates, control constructs and built-in predicates.

The addition of a new node is made by expand(A.4.1.18)
in which buildchild (A.4.1.25) constructs a new node
following the logical database update view and addchild
makes the search-tree expansion by adding this new
Child. As soon as a search-tree issued form a node N
is completely built and visited, the node N is marked
completely visited and cannot be Chosen any more for new
visits (this happens when all the choices are tut inside a
sub search-tree for example).

NOTES

1 The children
s(zer0). ,n,

of a node n are numbered zero.72,

2 The hanging nodes (i.e. all the children of a current node)
are not explicitly built. Only the next Child not yet visited of
the current node is.

3 The packet associated to a node corresponds in fact to the
remaining children to be built. If it is nd thus no more children
tan be built.

Some resatisfiable built-in predicates like bagof/3 or
atom_concat/3 use different kind of packets. However el-
ements of a packet always have the abstract Syntax of a
clause.

A.2.9 Built-in predicates

Most built-in
transformation

predicates are defined by
using the predicate treat-bip.

a search-tree
One or morc

137

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

clauses for treat-bip (A.4.1.32) are given in the clause for
that predicate, together with clauses for in-error (A.4.1.15)
to show error cases. Only positive and error cases are
specified. Other cases correspond to failure.

(from the top to the bottom) corresponds to the Order in
which the predications (called activators) are Chosen. All
its elements are called decorated subgoal. A decorated
subgoal has a pointer (called cutpointer) which Points to
the equivalent choice Point of the search-tree. The current
state of the resolution Stack corresponds to the current
node in the formal semantics.

Some built-in predicates do not modify the search-tree
other than by generating a new node in case of success
and a (local) answer Substitution. These predicates, called
substbip (A.3.8), are described by the relation execute-
bip (A.4.1.37) which defines this Substitution. Clauses for
execute-bip are thus given in the clause for that predicate.

In short the model of the informal semantics reflects
a possible implementation of the search-tree visits for
“kerne1 Prolog”.

Other built-in predicates are boot-strapped. Formally these
predicates are defined by a piece of a Prolog database as
an argument to D-packet (A.3.8). However a database
given using the abstract Syntax is less clear than using
the concrete Syntax, and also we have not Chosen how to
represent integers, variables, etc. Therefore the packet is
given implicitly using the concrete Syntax of Prolog.

A.3 Data structures

This clause introduces the L- and D- predicates.

The following data structures are considered:

A.3.1 abstract database and term (abstract Syntax) For example @> is defined by:
X@>Y :-YWX.

- A.3.2 predicate indicator
This implies that the specification contains a clause
like: A.3.3 forest: structure and updates

D-packe& func(@>, _. -.nil),
func(: -, func(@>, Varl. Var2.nil).
func(&, Var2. Varl.nil).nil)) -+
L-var(Varl),
L-var(Var2),
not D-equal(Var1, Var2).

- A.3.4 abstract list, atom, Character and lists

A.3.5 Substitution and unification

A.3.6 arithmetic

A.3.7 differente lists and environments Boot-strapping is normally used if the boot-strapped
definition is simpler and more understandable than a direct
definition using treat-bip. - A.3.8 built-in predicates,

icates
packets and special pred-

Esch built-in predicate definition contains a formal defini-
tion or a boot-strapped one in a concrete Syntax form and
the clauses of in-error defining the error cases.

- A.3.9 input and output

A.3.1 Abstract databases and terms A.2.10 Relationships with the informal semantics of
7.7 and 7.8

In clause 6, the abstract Syntax of terms, goals and clauses
is represented by terms of the form f(t 1 , . . . , -tn.). These
terms are denoted j’unc(f, t 1t..nil) in the formal
specification. tl..... t,.n.iE is called an arg-list. A constant
c has the form f unc(c, kl). In the Same clause 6, a
Prolog text is denoted by an arg-list whose elements are
terms (clauses).

The formal specification uses the search-tree model. In this
model all the computations are denoted by one (possibly
infinite) Object. The informal semantics is based on a
Stack. It describes the execution of “kerne1 Prolog”(A.2.3)
only. Esch computation is described separately.

With this restriction in mind, there is a one-one cor-
respondence between the nodes of the search-tree along
a path and the elements of the Stack (execution states).
A goal associated to a node is coded in the informal
semantics as a Stack whose top element corresponds to the
Chosen predication. The Order of the elements in the Stack

The abstract Syntax presented here in a clausal form defines
the objects called in the formal specification: term, clause,
predication (or activator), database and goal as they are
ready for execution. Other objects: lists and environment
are defined in the corresponding subclause.

138

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

NOTES

1 A clause in the body is defined as a term whose principal
functor is (: -) /2 or a predication (if it is a fact). In the
formal specification it is considered that in a database, prepared
for execution, all the facts have also the form of a rule whose
body is true.

2 A predication cannot be a variable. In a database prepared for
execution all the predications reduced to a variable X occurring
in a Prolog text must have been converted to cal1 (X) which
is a term.

3 It is assumed that a procedure is defined only once in the
abstract database.

D-is-a-database(DB) - ifl DB is the abstract repre-
sentation of a concrete database

D-is-a-databasecnil).

D-is-a-database(PDB) +
D-is-a-pred-definition(P),
D-is-a-database(DB).

D-is-a-pred-definition(P) - i$f P is a definition of a
user-predicate.

D-is-a-pred-definition(def(PI, SD, P)) e
D-is-a-predicate-indicator(PI),
D-is-a-static-dynamic-mark(SD),
D-is-a-packet-of-clauses(

NOTE - References: D-is-a-predicate-indicator A.3.2.

D-is-a-packe6of-clauses - i$f P is the abstract
representation of a sequence of clauses prepared for
execution.

D-is-a-packe6of-clauses(niZ).

D-is-a-packe6of-clauses(C.P) +
D-is-a-clause(C),
D-is-a-packe6of-clauses(

D-is-a-clause(func(: -, H. B.nil)) <
D-is-a-head(
D-is-a-body(B).

D-is-a-head +
D-is-a-predication(H).

D-is-a-body(func(f , I, GI .G2.nil)) (
D-is-a-body(GI),
D-is-a-body(G2).

D-is-a-body(func(I ; I, GI. G2.nil)) +
D-is-a-body(GI),
DOis-a-body(G2).

D-is-a-body(func(f - > I , GI. G2.nil)) -C
D=is=a=body(G1),
D-is-a-body(G2).

D-is-a-body(B) +
D-is-a-predication(B).

D-is-a-predication(func(N, A)) -C
L-atom(N),
not D-equal(N, I , ‘),
not D-equal(N, f ; I),
not D-equal(N, I -> ’),
D-is-an-arglist(

NOTE - D-is-a-clause (D-is-a-body) define what is a well-
formed term clause (term goal), or convertible in the sense
of 7.6.

The Syntax of a clause is now extended as follows:

D-is-an-extended-clause(C) - if C is a clause ex-
tended by other data structures.

D-is-an-extended-clause(func(: -, H. B.niZ)) -C
D-is-a-predication(H),
D-is-an-extended-body(B).

D-is-an-extended-body(B) - ifSB is a body extended
by other data structures.

D-is-an-extended-body(func(f , I, GI. G2.niZ)) e
D-is-an-extended-body(GI),
D-is-an-extended-body(G2).

D-is-an-extended-body(func(f ; I, GI. G2.niZ)) +
D-is-an-extended-body(GI),
D-is-an-extended-body(G2).

D-is-an-extended-body(func(I -> ‘, GLG2.niZ)) +
D-is-a-term(Gl),
D-is-an-extended-body(G2).

139

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

- special-pred(undefined-action, nil),
special-predvorward-error, nil),
special-pred(halt-system-action, nil),
special-pred(halt-system-action, -nil),
special-pred(inactivate, -nil),
special-pred(value, ,-.nil),
special-pred(compare, -nil),
special-pred(simple-comparison, kl),
special-pred(operation-value, ,,nil) and
special-pred(sorted, ,-.nil) are allowed as predications.

D-is-an-extended-body(B) (
D-is-an-extended-predication(B).

D-is-an-extended-body(G) - ifl G is a predication
extended by other data structures.

D-is-an-extended-predication(G) +
D-is-a-predication(G).

D-is-an-extended-predication(G) (
D-is-a-special-pred(G). D-is-an-arglist - ifs L is an arg-list of terms.

D-is-an-extended-predication(func(!, Lnil)) +
D-is-a-dewey=number(Z).

D-is-an-arglist(niZ).

D-is-an-arglist(X.L) +
D-is-a-term(X),
D-is-an-arglist(

D-is-an-extended-predication(X) e
L-Var(X).

D -is-a-special-pred(special-p
D-is-a-dewey-number(I).

red(inactivate, I.nil)) +

red(undefined-action, D-is-a-special-pred(speciaZ-p
E. nil)).

D-is-a-term(X) e
L-Var(X).

D-is-a-special-pred(special-pred(forward-error E.nil)).
D-is-a-term(X) -C

D-is-a-number(X). D-is-a-special-pred(special-pred(halt-system-action,
nil)).

D-is-a-term(func(N, L)) (
L-atom(N),
D-is-an-arglist(

D-is-a-special-pred(speciaZ-pred(halt-system-action,
I.nil)) +
D-is-an-integer(l).

D-is-a-special-pred(special-pred(value, -. ,niZ)).

D-is-a-special-pred(special-pred(compare, ,nil)). D-is-annumber(N) - i! N is a number.

D-is-a-special-pred(special-pred(simple-comparison,
_ nil)).

D-is-a-number(X) ti
D-k-an-integer(X).

D-is-a-special-pred(special-pred(operation-value,
_ _. nil)).

D-is-a-number(X) e
D-is-a-float(X).

D-is-a-special-pred(special-pred(sorted, _. ,nil)).
D-is-an-integer(func(N, nil)) +

L-integer(N). NOTE - This additional abstract Syntax defines the notion
of extended goals. The formal specification uses flagged
cuts and special predicates (in Order to avoid clashes with
user defined procedures) as predications. Except for the
predicate semantics the comments will refer to the extended
well-formed database.

D-is-a-float(R) - iff R is a real.

D-is-a-float(func(N, nil)) +
L-float(N).

This abstract Syntax takes into account these new predicates:

- func(
as a predi

1 D.nil) where D is
cation. This is to al

a dewey number, is allowed
low each tut to be flagged.

140

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

D-is-a-constant(X)
L-atom(X).

D-is-a-constant(X)
L-integer(X).

D-is-a-constant(X)
L-float(X).

D-is-a-static-dynamic-mark(SD) - i’fl SD is a
static/dynamic mark (static procedures are private or
public (7.53)).

D-is-a-static-dynamic-mark(static(private)).

D-is-a-static-dynamic-mark(static(public)).

DOis-a-static-dynamic-markt ‘dynamic ‘).

D-is-a-callable-term(7’) - ifl T is a callable term as
it is defined in 3.24.

D-is-a-callable-term(T) +
not D-is-a-number(T),
not L-var(T).

L-Var(X) - ifl X denotes a concrete variable, i.e. an
element of V defined in clause 6.1.2.

L-witness(L, G, V) - if L is an abstract list of terms
and G is a goal and V a term which contains all
the variables (each one occurs exactly once) in G not
occurring in L.

L-atom(X) - ifl X denotes a concrete atom (identi-
fier), i.e. an element of A defined in clause 6.1.2 b.

L-integer(X) - iff X denotes a concrete integer, i.e.
an element of 1 defined in clause 6.1.2 c.

L-float(X) - ifl X denotes a concrete floating Point
number, i.e. an element of R defined in clause 6.1.2 d.

L-Syntax-error-in-code-list(list) - i$f Lis-t is a list
of Codes but not parsable as a number.

L-Syntax-error-in-char-list(list) - if List is a list
of characters but not parsable as a number.

D-is-a-goal(G) - ifl G is the abstract representation
of a goal.

D-is-a-goal(G) (
D-is-a-body(G).

D-is-a-conjunction(G) - if G is a goal then G is a
conjunction of goals.

D-i+a-conjunction(‘~nc(t , ‘, - -niZ)).

D-is-a-dewey-number(D) - ifl D is a dewey number.

D-is-a-dewey-number(niZ).

D-is-a-dewey-number(X.L) c
D-is-a-natural(X),
D-is-a-dewey-number(l).

D-is-a-list-of-dewey-number(L) - i$f L is an abstract
list of dewey numbers.

D-is-a-list-of-dewey-number(niZ).

D-is-a-list-of-dewey-number(X.L) -+
D-is-a-dewey-number(X),
D-is-a-list-of-dewey-number(L).

D-is-a-natural(N) - iJf N is a natura1 number.

D-is-a-natural(zero).

D-is-a-natural(s(X)) C-
D-is-a-natural(X).

L-is-a-Character-Code(I) - ifs 1 is an integer such
that there exists a Character C whose Character-Code
7.1.2.2 value is I.

L-is-an-in-Character-Code(Z) - if I is an integer such
that there exists a Character C whose characterxode
7.1.2.2 value is I or I is the integer -1.

D-is-a-byte(C) - iff C is an integer between 0 and
255 as defined in 7.1.2.1.

D-is-a-byte(func(N, nil)) (
L-integer(N),
L-integer-less(- 1, N),
L-integer-less(N, 2 5 6).

D-is-an-in-byte(C) - iff C is an integer between -1
and 255.

D-is-an-in-byte(B) (
D-is-a-byte(B).

D-is-an-in-byte(‘unc(-1, nil)).

141

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

D-is-a-neg-integer(l) - ifl X is a negative inte-
ger.

D-is-a-neg-integer(‘unc(N, nil)) (
L-integer-less(N, 0).

NOTE - References: L-integer-less A.3.6

D-is-a-non-neg-int(Ij - ifl 1 is a positive inte-
ger.

D-is-a-non-neg-int(X) +
D-k-an-integer(X),
not D-is-a-neg-integer(X).

D-equal(X, Y) - i$f X and Y are any identical terms
built any Symbol used in this formal specification.

D-equal(X, X).

D-term-to-clause(l: C) - if T is a term correspond-
ing to a well formed clause then if its principal functor
is (:--) /2, then C is the corresponding transformed
clause according to A.2.3.1 (also 7.6), else C is the
clause whose head is T and body func(true, nil).

D-term-to-clause(‘unc(: -, H. B.niZ), func(: -, Hl. Bl.niZ))
-e
D-term-to-predication(H, Hl),
D-term-to-body(B, BI).

D-term-to-clause(A, C) (
D-name(A, Name),
D-arity(A, Arity),
not D-equal(Name/Arity, : 99,
D-fact-to-clause(A, C).

D-term-to-body(T, B) - if T is a term corresponding
to a well formed body then C is the transformed body
according to A.2.3.1 (also 7.6) and if B is a body
then T is the corresponding term. (Variables v in the
Position of a predication are transformed into cal1 (v))

D-term-to-body(func(, , , , GI. G2.niZ), func(J , f,
G3. G4. nil)) (
D-term-to-body(GI, G3),
D-term-to-body(G2, G4).

D-term-to-predication(func(c A), func(E A)) (
not D-equal(E f , ,),
not D-equal(E , ; ,),
not D-equal(E , -> ,).

D-term-to-predication(y func(cal1, Vnil)) +
L-var(V).

D-fact-to-clause(B, C) - if B is a term then if its
principal functor is not (: - > / 2, then C is the clause
with head B and body func(true, niZ), else C is
identical to B.

D-fact-to-clause(func(: -, H. B.niZ), func(: -, H. B.niZ)).

D-fact-to-clause(B, func(: -, B.func(true, niZ).niZ)) c
D-name(B, Name),
D-arity(B, Arity),
not D-equal(Name/Arity, : -J/2).

D-clause-to-pred-indicator(CZ, PI) - if CZ is a
clause then PI is the indicator of the head of CZ.

D-clause-to-pred-indicator(func(:-, H.-.niZ), func(/,
At.AwiZ)) -C
D-name(H, At),
D-arity(H, Ar).

D-name(B, K) - if B is a term then Ii’ is the functor
name of B.

D-name(func(K, J, func(K, nd)).
D-term-to-body(func(, ; , , GI. G2.niZ), func(f ; 1,

G3. G4.niZ)) e
D-term-to-body(GI, G3),
D-term-to-body(G2, G4).

D-term-to-body(func(, - > , , GI. G2.niZ), func(->,
G4. G.5. niZ)) +
D-term-to-body(GI, G4),
D-term-to-body(G2, G5).

D-term-to-body(T B) -C
D-term-to-predication(T B).

D-arity(B, A) - if B is a term then A is the arity
of the term B.

D-arity(func(K, L), func(A, nil)) e
D-length-list(L, A).

NOTE - References: D-length-list A.3.4

142

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

A.3.2 Predicate indicator

D-is-a-predicate-indicator(H,) - ifs PI is a com-
pletely instantiated predicate indicator.

D-is-a-predicate-indicator(func(/, At.AuziZ)) -+
D-is-an-atom(At),
D-is-an-integer(

NOTE - References: D-is-an-atom A.3.4, D-k-an-integer
A.3.1

D-is-a-pred-indicator-Pattern(N) - i# PI is a com-
pound term whose functor name is f / I, and arity 2,
and its first arguments may be instantiated by an atom
and the second by an integer.

D-is-a-pred-indicator-pattern(func(/, At.AuziZ)) -c=
L-var(A t),
L-var(A r).

D-is-a-pred-indicator-pattern(func(/, At.AuziZ)) c
L-var(A t),
D-is-an-integer(Ar).

D-is-a-pred-indicator-pattern(func(/, At.AuziZ)) (
L-var(Ar),
D-is-an-atom(A t).

D-is-a-pred-indicator-pattern(func(/, At.AuziZ)) +
D-is-an-atom(A t),
D-is-an-integer(

NOTE - References: L-Var A.3.1, D-k-an-integer A.3.1,
D-k-an-a tom A. 3.4

D-is-a-bip-indicator(BI) - ifs BI is the indicator of
a built-in predicate.

D-is-a-bip-indicator(func(/, At.AuziZ)) +
D-is-a-bip(B),
D-name(B, At),
D-arity(B, Ar).

NOTE - References: D-is-a-bip A.3.8, D-name A.3.1,
D-arity A.3.1

A.3.3 Forest

A node of the search tree is represented as nd(Z, G, e Q,
E, S, L, M) where:

- 1 is a node. If the node is the root of the
search-tree, 1 = niZ, otherwise the node is the Nth Child
of another node identified by J, and I = N . J;

- G is an extended goal;

N

Figure A.9 - The non-empty forest: for(N, Fl, Fz)

- P is a well-formed extended
database);

database (called simply

- Q is a list of clauses available for the current
computation and denotes the potential choices: i. e. the
clauses to be used to build new children;

E is an environment representing current flags and
all available streams for the current computation;

- s is a substi
obtain this node);

tution (the local Substitution used to

- L is a list of nodes (dewey numbers) containing
the active ancestor nodes at this step of resolution (i.e.
the catch goals which could be Chosen if throw is
called). The nodes are ordered in this list from the
youngest to the oldest ancestor.

- M is a marker which indicates if the node is
completely treated or not (i.e. if the sub-search tree
has been completely developed), and is either partial or
complete.

The partially visited search tree is represented by a forest.
A forest is either:

vid : the empty forest; or

- for(N, FI, F2) : a non-empty forest, where N is a
labelled node, and Fl and F2 are forests. A forest term
denotes a sequence of n + 1 trees if F2 has n trees as
depicted in Figure A.9.

A.3.3.1 Forest structure

D-is-a-forest(F) - iff F is a forest.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) 0 ISO/IEC 1995

D-is-a-forest(vid). D-addroot(E N, Fl) - if F is a forest, and N a
label node then Fl is F with a new root labelled by
N at the right-most position. D-is-a-forest(for(N, Fl, F2)) (

D-is-a-label-node(N),
D-is-a-forest(FI),
D-is-a-forest(F2).

D-addroot(vid, N, for(N, vid, vid)).

D-addroot(for(M, Fl, F2), N, for(M, Fl, F3)) c
D-addroot(F2, N, F3). D-is-a-label-node(nd(I, G, E> Q, E, S, L, M)) (

D-is-a-dewey-number(Z),
D-is-a-body(G),
D-is-a-database(P),
D-is-a-packet-of-clauses(
D-is-an-environment(E),
D-is-a-Substitution(S),
D-is-a-list-of-dewey-number(L),
D-is-a-visit=mark(M).

A.3.3.3 Children

D-child(N, -F: M) - if F is a forest then M and N
are nodes of F and M is one of the children of N.

D-child(N, for(N1, Fl, F2), M) X&
D-equal(NImW, j -, j j -> -9 -)),
D-root(FI, M).

NOTE - References: D-is-a-dewey-number A.3.1, D-is-a-
body A.3.1, D-is-a-database A.3.1, D-is-a-packet-of-clauses
A.3.1, D-is-an-environment A.3.7, D-is-a-Substitution A.3.5,
D-is-a-list-of-dewey-number A.3.1,

D-child(N, for(N1, Fl, F2), M) (
D-child(N, Fl, M).

D-child(N, for(N1, Fl, F2), M) e
D-child(N, F2, M).

D-is-a-visit-mark(compZete).

D-is-a-visit-mark(partiaZ).
NOTE - References: D-equal A.3.1, D-root A.3.3.2

D-has-a-child(N, F) - if F is a forest and N is a
node then N is a node of F and N has a Child in F.

A.3.3.2 Root manipulation

D-root(EN) - if F is a forest then N is one of the
roots of F. D-has-a-child(N, F) +

D-child(N, E -).

D-root(for(N1, Fl, F2), N)e
D-equal(NI,nd(N, -) -, -, -, -, -, -)). D-number-of-child(N, E J) - if F is a forest then

N is a node of F and N has J children.

D-root(for(N, Fl, F2), M) G
D-root(F2, M).

D-number-of-child(N, for(N1, Fl, F2), J) (
D-equWUnd(N, + j j j -, -, -)),
D-number-of-root(FI, J). NOTE - References: D-equal A.3.1

D-number-of-child(M, for(N, Fl, F2), J) +
D-number-of-child(M, Fl, J).

D-lastroot(EN) - if F is a forest then N is the last
(right-most) root of F.

D-number-of-child(M, for(N, Fl, F2), J) +
D-number-of-child(M, F2, J).

D-lastroot(for(N1, Fl, vid), N) +
D-equal(NI,nd(N, -) 3 -, -, -, -, -)).

NOTE - References: D-equal A.3.1, D-number-of-root
A.3.3.2 D-lastroot(for(N, Fl, F2), M) -x=

D-lastroot(F2, M).
D-lastchild(N, E M) - if F is a forest then M and
N are nodes of F and M is the last (right-most) Child
of N.

NOTE - References: D-equal A.3.1

D-number-of-root(EJ) - if F is a forest then F has
J roots. D-lastchild(N, for(Ni, Fl, F2), M) e

D-equWUnd(N v 1 3 j -, -, 4,
D-lastroot(F1, M). D-number-of-root(vid, Zero).

D-number-of-root(for(N, Fl, F2), s(J)) -+
D-number-of-root(F2, J).

D-lastchild(N, for(N1, Fl, F2), M) -c=
D-lastchild(N, Fl, M).

144

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

D-lastchild(N, for(NI, Fl, F2), M) -+
D-lastchild(N, F2, M).

NOTE - References: D-equal A.3.1, D-lastroot A.3.3.2

D-parent-or-root(M, F: P) - if F is a forest then M
and P are nodes of F and if M is the root of F then
P is the root of F, else, P is the parent of AI.

Dgparent-or-root(M, E M) e
D-root(E M).

D-parent-or-root(M, E P) +
not D-root(E M),
D-parent(M, I;: P).

NOTE - References: D-lastroot A.3.3.2

D-parent(M, E P) - if F is a forest then M and P
are nodes of F and P is the parent of M.

D-parent(M, E P) +
D-child(e E M).

D-environment of node N in F is E - if IV is a
node of the forest F then E is the environment
in the corresponding label node in F.

D-Substitution of node N in F is S - if N is a node
of the forest F then S is the Substitution in the
corresponding label node in F.

D-active Catchers of node N in F is L - if N is a
node of the forest F then L is the active catcher list in
the corresponding label node in F.

D-visit mark of node N in F is M - if N is a node
of the forest F then M is visit mark in the corresponding
label node in F.

D-root-database-and-env(I$ 8 E) - if F is a non-
empty forest then P is the current database, and E the
current environment at the first root of F.

D-root-database-and-env(‘or(N, -, -), e E) e
D-equal(N, n&, j 8 j E, -, --, -U

NOTE - References: D-equal A.3.1

NOTE - References: D-lastroot A.3.3.2
A.3.3.5 Field node updates

A.3.3.4 Selector predicates

D-label of node N in F is NZ - if N is a node of
the forest F then NI is the node label of N.

D-label of node N in for(NZ, Fl, F2) is Nl (
D-equal(NZ, nd(N, -, -, -, -, j -, J).

D-label of node N in for(MZ, Fl, F2) is NI +
D-label of node N in Fl is NI.

D-label of node N in for(MZ, Fl, F2) is NI (
D-label of node N in F2 is NI.

D-goal of node N in F is G - if N is a node of the
forest F then G is the goal in the corresponding label
node in F.

D-goal of node N in F is G +
D-label of node N in F is nd(N, G, -, -, -, -, -, J.

and analogous:

D-database of node N in F is P - if N is a node of
the forest F then P is the database in the corresponding
label node in F.

D-choice of node N in F is Q - if N is a node of
the forest F then Q is the choice in the corresponding
label node in F.

D- NI is N2 where database is P - if N2 is a node
label and P a database then N 1 is the same node label
except that its database field is P.

D- NI is N2 where database is P e
D-equal(W n&Y G -, Q, E, S L MN,
D-equal(N1, nd(N, G, e Q, E, S, L, M)).

and analogous:

D- NI is N2 where choices are C - if N2 is a node
label then Nl is the same node label except that its
choice field is C.

D- NI is N2 where environment is E - if N2 is a
node label then Nl is the same node label except that
its environment field is E.

D- NI is N2 where Substitution is S - if N2 is a
node label then NI is the same node label except that
its Substitution field is S.

D- NI is N2 where active Catchers are L - if N2
is a node label then Nl is the same node label
except that its active catcher field is L.

D- NI is N2 where visit mark is M - if N2 is a
node label and M is a visit mark then N 1 is the same
node label except that its visit mark field is M.

NOTE - References: D-equal A.3.1

145

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

A.3.3.6 Label of node updates

D-modify-database(F1, Newpg, F2) - if F 1 is a for-
est and Newpg the new database then F2 is identical
to Fl except that in all nodes on the right most branch
of F 1, the old database is replaced by Newpg.

D-modify-database(vid, j vid).

D-modify-database(for(N, Fl, vid), Newpg, for(N1, F2,
vid)) -C
D- NI is N where database is Newpg,
D-modify-database(Fl, Newpg, F2).

D-modify-database(for(N, Fl, F2), Newpg, for(N, Fl,
F-w -e
not D-equal(F2, vid),
D-modifyldatabase(F2, Newpg, F3).

NOTE - References: D- - is - where database is - A.3.3.4,
D-equal A.3.1

D-modify-environment(FI, Newenv, F2) - if Fl is
a forest and Newenv the new environment then F2 is
F 1 where, in all nodes on the right most branch of F 1,
the old environment is replaced by Newenv.

D-modify-environment(vid, -, vid).

D-modify-environment(for(N, Fl, vid), Newenv, for(N1,
F2, vid)) -G
D- NI is N where environment is Newenv,
D-modify-environment(FI, Newenv, F2).

D-modify-environment(for(N, Fl, F2), Newenv, for(N,
Fl, F3)) (
not D-equal(F2, vid),
D-modify-environment(F2, Newenv, F3).

NOTE - References:
A.3.3.4, D-equal A.3.1

D- _ is - environment

D-modify-node(F1, NZl, NZ2, F2) - if N Zl is a node
label of the forest F 1 and Nl2 a new node label
corresponding to the same node then F2 is Fl except
that Nl2 replaces NU.

D-modify-node(for(NZ, Fl, F2), NI, NZl, for(NZ1, Fl,
FW-

D-modify-node(for(NZ, Fl, F2), NZI, NZ2, for(‘NZ, F3,
FW -e
D-modify-node(F1, NZl, NZ2, F3).

D-modify-node(for(NZ, Fl, F2), NZI, NZ2, for(NZ, Fl,
F-v) -e
D-modify-node(F2, NZI, NZ2, F3).

D-create-child(F1, NZl, NZ2, F2) - if NI1 is a node
label of the forest Fl and Nl2 a new node label
corresponding to a new youngest Child of N Z 1 then F2
is F 1 in which Nl2 is the new youngest Child of NI 1.

D-create-child(for(NZ, Fl, F2), NZ, NZI, for(NZ, F3,
Fw=
D-addroot(Fl, NZI, F3).

D-create-child(for(NZ, Fl, F2), NZI, NZ2, for(NZ, F3,
WJ -c
D-create-child(FI, NZI, NZ2, F3).

D-create-child(for(NZ, Fl, F2), NZI, NZ2, for(NZ, Fl,
F-v) -+
D-create-child(F2, NZl, NZ2, F3).

NOTE - References: D-addroot A.3.3.2

A.3.4 Abstract lists, atoms, characters and lists

An abstract list has the form B 1. B2.. . ..niZ where the
elements may be terms (it is thus an arg-List), clauses,
extended goals, streams, dewey numbers, naturals or
substitutions.

A list is the abstract representation of a concrete list of
the form [tr, . . . , t,-J.

D-is-an-atom(A) - ifl A is an atom.

D-is-an-atom(fkzc(N, nil)) +
L-atom(N).

NOTE - References: L-atom A.3.1,

D-is-atomic(A) - if A is a term then A is a constant
(it has the form: func(, nil)).

D-is-atomic(A) -CE
D-is-an-atom(A).

D-is-atomic(A) +
D-is-a-number(A).

D-char-instantiated-list(L) - ifl L is a list whose
elements are variables or characters.

D-char-instantiated-list(func([1, niZ)).

D-char-instantiated-list(func(. , X. L.niZ)) (
L-Var(X),
D-char-instantiated-list(L).

D-char-instantiated-list(func(. , X. L.niZ)) +
D-is-a-char(X),
D-char-instantiated-list(L).

146

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

NOTE - References: L-Var A.3.1, D-is-a-char A.3.7 D-is-a-partial-list(func(. , X. L.niZ)) (
D-is-a-term(X),
L-Var(L). D-var-in-list(L) - if L is a list then it contains a

variable.
D-is-a-partial-list(func(. , X. L.niZ)) -C

D-is-a-term(X),
D-is-a-partial-list(L).

D-var-in-list(func(., X. L.niZ)) e
L-Var(X).

D-var-in-list(func(., X. L. nil)) (
not L-Var(X),
D-var-in-list(L).

NOTE - References: L-Var A.3.1, D-is-a-term A.3.1

D-conc(LI, L2, L3) - if Ll and L2 are abstract lists
then L3 is the concatenation of Ll and L2, and if L3
is an abstract list then Ll and L2 are abstract lists such
that L3 is the concatenation of Ll and L2.

NOTE - References: L-Var A.3.1

D-bad-element-in-char-list(L,E) - if L is a non
empty list then an element E of L is neither a
variable nor a one-char atom. D-conc(niZ, L, L).

D-conc(X.Ll, L2, X.L3) -c=
D-conc(L1, L2, L3).

D-bad-element-in-char-list(func(. , E. L. niZ), E) e
not L-Var(E),
not D-k-a-char(E).

L-concat-list(A, L) - if A is an atom then L is the
list of couples (Al , A) 2 such that the concatenation of
Al and A-J gives A.

D-bad-element-in-char-list(func(. , X. L.niZ), E) e
L-Var(X),
D-bad-element-in-char-list(L, E).

D-delete(L, A, Ll} - if L is an abstract list then A
is the first occurrence of A in L, and Ll is L where
this occurrence is deleted.

D-bad-element-in-char-list(func(. , X. L.niZ), E) G
D-is-a-char(X),
D-bad-element-in-char-list(L, E).

D-delete(A. L, A, L).
NOTE - References: L-Var A.3.1, D-is-a-char A.3.7

D-delete(A.L, B, A. Ll) -C
not D-equal(A, B),
D-delete(L, B, Ll).

D-code-instantiated-list(L) - ifs L is a list whose
elements are variables or Codes.

D-code-instantiated-list(func([1, nd)).
NOTE - References: D-equal A.3.1

D-code-instantiated-list(func(. , X. L. nil)) e
L-Var(X),
D-code-instantiated-list(L).

D-one-delete(L, A, Ll) - if L is a list then A is an
element of L and Ll is L where this element is deleted.

D-one-delete(func(. , A. L.niZ), A, L). D-code-instantiated-list(func(. , X. L.niZ)) (
L-is-a-Character-Code(X),
D-code-instantiated-list(L). D-one-delete(func(. , A.L.niZ), B, func(. , A.Ll.niZ)) -C

D-one-delete(L, B, Ll).
NOTE - References: L-Var A.3.1, L-is-a-Character-code
A.3.1 NOTE - References: D-equal A.3.1

D-is-a-M(L) - iff L is a list. D-member(X, L) - if L is an abstract list then X is
an element of L.

D-is-a-list(func([1, nd)).

D-member(X, X. L).
D-is-a-list(func(. , X. L.niZ)) t-

D-is-a-term(X),
D-is-a-list(L).

D-member(X, YL) (
D-member(X, L).

NOTE - References: D-is-a-term A.3.1
D-position(X, L, N) - if L is an abstract list then N
is a concrete integer and X is the Nth element of L. D-is-a-partial-list(L) - ifs L is a partial list of terms.

147

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

D-position(X, X. L, 1).

D-position(Y X. L, N) -C
L-integer-plus(l;l 1, N),
D-position(Y L, P).

NOTE - References: L-integer-plus A.3.6

D-length-list(L, N) - if L is an abstract list then N
is the concrete integer corresponding to the number of
elements of L.

D-length-list(niZ, 0).

D-length-list(X. L, N) -c=
D-length-list(L, P),
L-integer-plus(e 1, N).

NOTE - References: L-integer-plus A.3.6

D-Same-length(LI, L2) - if Ll and L2 are abstract
lists then they have the Same number of elements.

D-Same-length(niZ, nil).

D-Same-length(X. Ll, YI L2) (
D-Same-length(LI, L2).

D-buildlist-of-var(L, N) - ifs L is an abstract list of
length N whose elements are distinct variables.

D-buildlist-of-var(niZ, 0).

D-buildlist-of-var(X. L, N) -C
D-buildlist-of-var(L, P),
L-integer-pl@8 1, N),
L-Var(X),
not D-member(X, L).

NOTE - References: L-integer-plus A.3.6, L-Var A.3.1,
D-member A.3.4

D-transform-list(LI, L2) - if Ll is an arg-list then
L2 is the corresponding list of the elements of L 1, and
if L2 is a list of terms then Ll is an arg-list formed
by terms in L2.

D-transform-list(niZ, func([1, nd)).

D-transform-list(Term. Ll, func(. , Term. L2.niZ)) ti
D-transform-list(LI, L2).

L-var-order(X,Y) - ifl X and Y are variables such
that X term-precedes Y (this Order is implementation
dependent, see 7.2.1).

L-char-code(X, r) - iff X is a concrete Character
and Y its code (see c har- .code/ 2 built-in predicate).

L-atom-chars(X, Y) - ifl X is a concrete atom and
Y the arg-list of characters such that the juxtaposi-
tion of their concrete form corresponds to X (see
atom-chars / 2 built-in predicate).

L-atom-codes(X, Y) - i# X is a concrete atom and
Y the arg-list of Character Codes such that the juxta-
Position of the corresponding characters of these Codes
corresponds to X (see atomcodes / 2 built-in predicate).

L-number-chars(X, Y) - ifl X is a concrete number
and Y the arg-list of characters corresponding to a
Character sequence of X (see number-chars/ 2 built-in
predicate).

L-number-codes(X, Y) - ifl X is a concrete number
and Y the arg-list of Character Codes corresponding to a
Character sequence of X (see numberxodes /2 built-in
predicate).

L-atom-order(X, Y) - ifl X and Y are concrete
atoms such that X is less than Y in the term Order (see
7 2) . .

L-sorted(X, Y) - iff X and Y are lists and Y is
the list X sorted according to term ordered (7.2) with
duplicates removed except the same Order is used when
two variables are compared. (see also 7.1.6.5)

A.3.5 Substitutions and unification

D-is-a-substitution - ifl S is a Substitution.

NOTE - No formal representation is defined for Substitutions
except for the empty Substitution which is denoted empsubs.

L-unify(X, Y S) - i! X and Y are NSTO terms
and S is one of their most general unifiers (see clause
7.3).

L-unify-occur-check(X, I> S) - iff X and Y are
terms and S is one of their most general unifiers
(see clause 7.3).

L-unify-members-list(L, S) - ifs S is a most general
unifier of all the elements of the abstract list of terms
L.

D-unifiable(X, Y) - iff X and Y are NSTO terms
and they are unifiable terms (see clause 7.3).

D-unifiable(r Tl) +
L-unify(T, Tl, -).

L-not-unifiable(X, Y) - ;fsX and Y are NSTO terms
and they are not unifiable (see clause 7.3).

148

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

L-occur-in(T.2, T2) - @ Tl and T2 are terms and
some variables of Tl occur in T2.

L-value(E, V) - @ E is an elementary arithmetic
expression (see 9.1) which tan be successfully evaluated
and V is the

L-not-occur-in(T1, T2) - z” Tl and T2 are terms
and do not share any variable.

L-composition(S1, S2, S3) - i’ff Sl , S2 and S3 am
Substitutions on terms where S3 is the composition of
Sl and S2 (see clause 7.3).

L-instance(T1, S, T2) - ifs Tl is an any-term, S is a
Substitution and T2 is the any-term obtained by applying
the Substitution S to Tl (applying the Substitution
modifies only the concrete variables occurring in Tl
(3.95)).

NOTE - any-turn denotes any kind of term that is to say
terms built with any functor used in the formal specification
language.

L-rename(E X, Y) - i! F is a search tree, and X
and Y are any-terms such that Y is a copy of X except
its variables are renamed so that they do not occur in
F.

L-rename-except(E r X, Y) - ;fs F is a search tree,
T a term and X and Y are any-terms such that Y
is identical to X except all its variables which do not
occur in T are renamed so that they do not occur in F.

L-variants(TI, T2) - ;fSTl and T2 are variant terms
according to definition 7.1.6.1.

D-compose-list(L, S, Ll) - if L is an abstract list of
Substitutions and S a Substitution then Ll is the abstract
list of Substitutions obtained by composition with S of
each Substitution of L.

D-compose-list(niZ, S, nil).

D-compose-list(S1. Ll, S, S2. L2) e
L-composition(SI, S, S2),
D-compose-list(LI, S, L2).

A.3.6 Arithmetic

L-integer-less(X, Y) - ifs X and Y are concrete
integers such that X < Y.

L-integer-plus(X, K 2) - z’fl X, Y, and 2 are con-
trete integers such that 2 = X + Y.

L-float-less(X, Y) - i# X and Y are concrete reals
such that X < Y.

L-error-in-expression(E, T) - if E is an erroneous
elementary expression and T is the type of the corre-
sponding error (see 9).

corresponding to its value.

L-arithmetic-comparison(X, Op, Y) - I!‘!’ X and Y
denote numbers and Op an arithmetic comparison
Operator such that X Op Y following the definition (see
8 7) . .

A.3.7 Differente lists and environments

D-is-an-environment(E) - @ E is an environment
with all flags (defined only once) and all open streams
(all streams have different stream names).

D-is-an-environment(env(PE IE OE IFL, OFL)) (
D-is-a-list-of-flags(PF),
D-is-a-stream(IF),
D-is-a-stream(OF},
D-is-a-list-of-streams(LIF),
D-k-a-list-of-streams(LOF).

D-is-a-list-of-flags(PF) - iff PF is an abstract list of
flag terms.

D-is-a-list-of-flags(niZ).

D-is-a-list-of-flags(F PF) c
D-is-a-flag-term(F),
D-is-a-lis t-of-flags(PF).

D-is-a-flag-term(Flag) - ifs Flug is a term repre-
senting a flag.

D-is-a-flag-term(func(‘ag,
Name.Actual - valueN,,,.Possible - valuesN,,&‘zil))
e
D-is-a-flag(Name).

Where Name, Actual - V~~UeN,TW
and Possible - vak.sName stand for the name of
a flag and its actual value and possible values as defined
in clause 7.11,

D-is-a-flag(FZag) - ifs Flug is a flag term as defined
in 7.11.

D-is-a-flag(func(Jlag-name,nil)).

with jag-name E { bounded,
max-integer,
min-integer,
integer-rounding-function,
char-conversion,
debug,
max-arity,
unknown,
double-quotes}

149

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132114 : 1995(E) @ ISO/IEC 1995

D-is-a-modifiable-flag(FZag) - iJ5c Flag is a mod-
ifiable flag (its value tan be updated by
set-prolog-flag/ 2 built-in predicate).

D-is-a-list-of-streams(L) - i$f L represents an abstract
list of streams.

D-is-a-list-of-streams(niZ).
D-is-a-modifiable-flag(func(‘ag-narne, nd)).

with JEag-name E {char-conversion,
debug,
unknown,
double-quotes}

D-is-a-flag-value(c Flag, Vdue) - if F is a forest
and Flag is a flag then Value is a valid value of Flug
in F.

D-is-a-flag-value(E Flag, klue) +
D-root-database-and-env(E j env(Pe -, -, -, J),
D-corresponding-flag-term(FZag, PE T),
D-equal(T func(‘ag,4-.func([],nil).nil)).

D-is-a4lag=value(E Flag, Value) +
D-root-database-and-env(t;: -, env(PE;: -, -, -, J),
D-corresponding-flag-term(FZag, PE T),
D-equal(IT: func(jlag, - _. Vd)),
not D-equal(y func([], nd)),
D-transform-list(VI, V),
D-member(VaZue, VI).

NOTE - References : D-root-database-and-env A.3.3.4,
D-equal A.3.1, D-transform-list A.3.4, D-member A.3.4

D-corresponding-flag-term(FZag, PE T} - if F lag
is a flag and PF is a non empty abstract list of
flag terms then T is the flag term corresponding to

D-corresponding-flag-term(FZag, fuMR-%
Flag. VLVnil). PE func(‘ag, Flag. VLVnil)).

D-corresponding-flag-term(FZag, TI. PE T) c
D-corresponding-flag-term(FZag, PE T).

D-is-a-list-of-streams(X. L) e
D-is-a-stream(X),
D-is-a-list-of-streams(L).

D-is-an-io-mode(M) - ifs M is an input/output
mode.

D-is-an-io-mode(func(read, nd)).

D-is-an-io-mode(func(write, nd)).

D-is-an-io-mode(func(append, nd)).

D-is-a-differente-list-of-char(L-L) c
D-is-a-list-of-char(L).

D-is-a-differente-list-of-char(C. Ll -L2) +
D-is-a-char(C),
D-is-a-differente-list-of-char(L1 -L2).

D-is-a-list-of-char(niZ).

D-is-a-list-of-char(C. L) +
D-is-a-char(C),
D-is-a-list-of-char(L).

D-is-a-char(func(C, nd)) -+
L-char(C).

D-is-an-in-char(Char - i# C is the abstract repre-
sentation of a concrete Character or of end-of-f ile.

D-is-an-in-char(Char) -G
D-is-a-char(Char).

D-is-a-stream(S) - ifs S represents a stream.
D-is-an-in-char(func(end-o f -f i Ie, nd)).

D-is-a-stream(stream(S, L)) -C
L-stream-name(S),
D-is-a-differente-list-of-char(L).

L-stream-name(X) - i#X is a ground term denoting
a stream identifier defined in ??.

L-char(X) - ifl X is a concrete atom of length 1.

L-io-option(E Op, V) - if F is a stream, and Op a
stream Option then V is the value of Option Op of the
stream F as defined in 3.167.

L-stream-property(SP) - ifl SP is a stream property
as defined in clause 7.10.2.13.

A.3.8 Built-in predicates and packets

L-binary-stream(BS) - i! BS is a binary stream.

L-text-stream(TS) - i$f TS is a text stream.
D-is-a-bip(B) - if B is a predication then it is the
predication of a built-in predicate.

150

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

D-is-a-bip(B) +
D-is-a-term-unification-bip(B).

D-is-a-bip(B) (
D-is-a-term-comparison-bip(B).

D-is-a-bip(B) (
D-is-an-all-solution-bip(B).

D-is-a-bip(B) +
D-is-a-type-testing-bip(B).

D-is-a-bip(B) (
D-is-a-term-creation-decomposition-bip(BJ

D-is-a-bip(B) G
D-is-a-database-bip(B).

D-is-a-bip(B) (
D-is-an-arithmetic-bip(B).

D-is-a-bip(B) +
D-is-an-atom-processing-bip(B).

D-is-a-bip(B) +
D-is-an-input-output-bip(B).

D-is-a-bip(B) (
D-is-a-logic-control-bip(B).

D-is-a-bip(B) (
D-is-a-control-construct-bip(B).

D-is-a-bip(B) c
D-is-an-environment-bip(B).

D-is-a-term-unification-bip(B).

with B E { func(=, -.-.nil),
func(unify-with-occurs-check, _.-.nil),
func(\ =, -.-.nil)}

D-is-a-term-comparison-bip(B).

with B E {func(==, -.-.nil).
func(\ ==, -.-.nil),
func(@q -.-.nil),
func(@=<, -.-.nil),
func(Cb, -.-.nil),
func(@>=, -.-.nil)}

D-is-an-all-solution-bip(B).

with B E {func(f indall, _._._. nil),
func(bago f, -.-.-. nil),
func(setof, -.-.-.nil)}

with B E {func(var, ail),
fUnC(nonvar, _.nil),
func(atom, -.nil),
func(atomic, -.nil),
func(number, -.nil),
func(integer, -.nil),
func(f loat, -.nil),
func(compound, -.nil)}

D-is-a-term-creation-decomposition-bip(B).

with B E {func(arg, _._.-.nil),
func(functor, _._._. nil),
func(= . . , -.-.nil),
func(copy-term, _._.nil)}

D-is-a-database-bip(B) c
D-is-a-clause-retrieval-information-bip(Bj.

D-is-a-database-bip(B) e
D-is-a-clause-creation-destruction-bip(Bj.

D-is-a-clause-retrieval-information-bip(B).

with B E {func(clause, -.-.nil),
funC(current-predicate, _.nil)}

D-is-a-clause-creation-destruction-bip(B).

with B E {func(asserta, Al),
func(assertz, dil),
funC(retract, dil),
func(abolish, _.nil)}

D-is-an-arithmetic-bip(B).

with B E {func(is, -.-.nil),
func(= : =, -.-.nil),
func(= \ =, -.-.nil),
func(<, -.-.nil),
func(>, -.-.nil),
func(=<, -.-.nil),
func(>=, -.-.nil)}

D-is-an-atom-processing-bip(B).

with B E {func(atomlength, _._.nil),
func(atomconcat, -._._. nil),
func(sub-atom, -._._._._. nil),
func(atomchars, _._.nil),
func(atomcodes, _.-.nil),
func(number-chars, -._.nil),
func(numberxodes, _._. nil),
func(char-Code, -.-.nil)}

D-is-a-type-testing-bip(B).
D-is-an-input-output-bip(B) C-

D-is-a-char-input-output-bip(B).

151

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISOIIEC 132114 : 1995(E) @ ISO/IEC 1995

D-is-an-input-output-bip(B) c
D-is-a-byte-input-output-bip(B).

D-is-an-input-output-bip(B) (
D-is-a-term-input-output-bip(B).

D-is-a-char-input-output-bip(B).

with B E {funC(current-input, _.nil),
fUnC(current-output, -.nil),
func(set-input, _.nil),
func(set-output, -.nil),
funC(at-end-of-stream, nil),
func(at-end-of-stream, -.nil),
func(get.xhar, -.nil),
func(get-char, -.-.nil),
func(get-Code, -.nil),
func(ge t-Code, -.-.nil),
funC(peek-char, -.nil),
func(peek-char, _.-.nil)
funC(peek-Code, -.nil),
func(peek-Code, _._.nil)
func(putxhar, -.nil),
func(put-char, -.-.nil),
func(put-Code, -.nil),
func(put-Code, _.-.nil),
func(n1, nil),
func(n1, -.nil)}

D-is-a-byte-input-output-bip(B).

with B E {func(getbyte, -.nil),
func(get_byte, -.-.nil),
func(peek-byte, -kl),
funC(peek-byte, -.-.nil),
func(puLbyte, -.nil),
func(puLbyte, -.-.nil)}

D-is-a-term-input-output-bip(B).

with B E {funC(read-term, +-.-.nil),
func(read-term, -._. nil),
func(read, -.nil),
func(read, -.-.nil),
funC(wri te-term, -.-.-.nil),
funC(wri te-term, -.-.nil),
funC(wri te, -.nil),
funC(wri te, -.-.nil),
funC(wri teq, -.nil),
funC(writeq, _..-.nil),
fUnC(write-canonical, -.nil),
func(write-canonical, -.-.nil),
func(op, -.-.-.nil),
funC(current-op, -.-.-.nil)}

D-is-a-logic-control-bip(B).

with B E {func(\+, -.nil),
funC(once, -.nil),
funC(repeat, nil)}

D-is-a-control-construct-bip(func(!, D.niZ)) (
D-is-a-dewey-number(D).

D-is-a-control-construct-bip(B).

with B E { func(; , -.-.nil),
func(->, -.-.nil),
func(true, nil),
func(fai1, nil),
func(! , nil),
func(cal1, -.nil),
func(catch, _._._. nil),
func(throw, -.nil)}

NOTE - References: D-is-a-dewey-number A.3.1

D-is-an-environment-bip(B).

with B E {func(halt, nil),
func(ha1 t, -.nil),
funC(current-prolog-flag, -.-.nil),
funC(set-prolog-flag, _._.nil)}

D-boot-bip(B) - if B is a predication then it is the
predication of a boot-strapped built-in predicate.

D-boot-bip(B)

with B E { func(+, -.-.nil),
func(\ +, -.nil),
func(number, -.nil),
func(is, -.-.nil),
func(= : =, .-.-.nil),
func(= \ =, -.-.nil),
func(<, -.-.nil),
func(=<, -.-.nil),
func(>, -.-.nil),
func(>=, -.-.nil),
funC(once, -.nil),
func(setof, _._._. nil),
funC(get-char , -.nil),
func(get-code , -.nil),
funC(get-byte , -.nil),
funC(peek-char , -.nil),
func(peek-code , -.nil),
funC(peek-byte , -.nil),
funC(put-char, -.nil),
func(put-Code, -.nil),
funC(put-byte, -.nil),
funC(at-end-of-stream, nil),
funC(at-end-of-stream, -.nil),
funC(read, -.nil),
fUnC(repeat, nil),

152

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

func(sub-atom, -.-._._._. nil),
func(wri te, -.nil),
func(n1, nil),
func(n1, -.nil)}

D-database-backtrack-bip(B) - if B is a predication
then it is the predication of a re-executable built-in
predicate on database.

with B E {func(clause, -.-.nil),
funC(current-predicate, _.nil),
funC(retract, -.nil)}

D-is-a-backtrack-bip(B) - if B is the built-in predi-
cate atom_concat/3 then its third argument is ground.
or B is the built-inpredicate current_prolog_flag/2.

D-is-a-backtrack-bip(func(atom_concat,
Al.A2.A3.nil)) c
D-is-an-atom(A3).

D-is-a-backtrack-bip(func(current-prolog-f lag,
- -. nd)).

NOTE - References: D-is-an-atom A.3.4

D-is-a-subst-bip(B) - if B is a predication then it is
the predication of a class of built-in predicates which
does not affect the database or environment (the result
of executing such a bip is either success leading to a
Substitution, or failure).

D-is-a-subst-bip(B) +
D-is-a-term-unification-bip(B).

D-is-a-subst-bip(B) e
D-is-a-type-testing-bip(B).

D-is-a-subst-bip(B) +
D-is-a-term-creation-decomposition-bip(B).

D-is-a-subst-bip(B) c-
D-is-an-arithmetic-bip(B).

D-is-a-subst-bip(B) (
D-is-a-term-comparison-bip(B).

D-is-a-subst-bip(B) +
D-is-an-atom-processing-bip(B),
D-name(B, Func),
D-arity(B, Arity),
IZO~ D-equal(Func, fU~C(atomconcat, hl)),
not D-equal(Arity, func(3, rd)).

D-is-an-evaluable-expressi .on(Exp) - if Exp is an
expression whose principal functor is an evaluable one.

D-is-an-evaluable-expression(Func)

with Func E { func(+, -.-.nil),
func(-, -.-.nil),
func(*, -.-.nil),
func(/ /, -.-.nil),
func(/, -.-.nil),
funC(rem, -.-.nil),
func(mod, -.-.nil),
func(* *, -.-.nil),
func(=, -.-.nil),
func(<<, -.-.nil),
func(/ \, -.-.nil),
func(\ / , -.-.nil),
func(-, -.nil),
func(abs, -.nil),
func(s ign, -.nil),
funC(float-integer-Part, _.nil),
func(f lost,fractional-Part, _.nil),
func(f loat, -.nil),
func(f loor, -.nil),
funC(truncate, _.nil),
func(round, _.nil),
funC(ceiling, _.nil),
func(s in, -.nil),
func(cos, -.nil),
func(atan, -.nil),
func(exp, -.nil),
func(log, -.nil),
func(sqrt, _.nil),
func(\, -.nil)}

D-packet(DB, Env, A, Qj - if DB is a database and
Env an environment and A is a predication then

- Q is the list of clauses defining the procedure
corresponding to A;

- or all clauses of DB if A corresponds to the fol-
lowing re-executable built-in predicates: clause / 2,
current-predicate/l, retract/l;

- or a list of pairs of atoms (AI , AZ) such that
the concatenation of Al and A2 gives the 3rd
argument of A (if A corresponds to the re-executable
atom-concat/ 3 built-in predicate);

- or a list of the prolog flags in Env (if A
corresponds to the re-executable built-in predicate
current_prolog_flag/2).

D-packet(ni2, j A, nd) +
not D-is-a-bip(A),
not D-is-a-special-pred(A).

D-packet(DB, -, A, Qj e
not D-is-a-bip(A),
D-name(A, F},
D-arity(A, N),

153

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

corresponding-pred-definition(func(/, EN. nil), DB,
def(-9 -9 Qh -4

D-packet(DB, -, A, niZ) +
not D-is-a-bip(A),
D-name(A, F),
D-arity(A, N),
not exist-corresponding-pred-definition(func(/,
FN.niZ), DB).

D-packet(DB, -, A, Q) -C
D-is-a-bip(A),
D-database-backtrack-bip(A),
D-all-clauses(DB, Q).

D-packet(, -, A, nil) -C
D-is-a-bip(A),
not D-database-backtrack-bip(A),
not D-boot-bip(A),
not D-is-a-backtrack-bip(A).

D-packet(, -, func(atomconcat, Al.A2.A3.niZ), L) +
D=is=an=atom(A3),
L-concat-list(A3, L).

D-packet(, Env, funcccurrent-prolog-flag, -
PF) -G
D-equal(Env, env(PE -, -, -, -)).

-

D-packet(, j Se nil).

with SP E { special-pred(inactivate, -.nil),
special-pred(undefined-action, -.nil),
special-pred(forward-error, -.nil),
special-pred(halt-system-action, nil),
special-pred(halt-system-action, -.nil),
special-pred(value, -.-.nil),
special-pred(compare, _.nil),
special-pred(simple-comparison, -.nil)
special-pred(operation-value, -.-.nil),
special-pred(sorted, -.-.nil) }

. nil),

NOTE - Further clauses for packet are given (implicitly) by
the boot-strap definitions of so defined built-in predicates.

NOTE - References: D-is-a-special-pred A.3.1, D-name
A.3.1, D-arity A.3.1, D-equal A.3.1, corresponding-pred-
definition A.4.1.52, exist-corresponding-pred-definition
A.4.1.53, L-concat-list A.3.4

D-all-clauses(DB, Q) - if DB is a database then Q
is the list of clauses defining all the predicates of DB.

D-all-clauses(niZ, nil).

D-all-clauses(def(, -, Ql).DB, Q) +
D-all-clauses(DB, Q2),
D-conc(Q1, Q2, Q).

NOTE - References: D-conc A.3.4

D-delete-packet(PI, PI, P2) - if Pl is an abstract
list of clauses and PI a predicate indicator Pattern then
P2 is Pl from which all the clauses of the procedure
whose predicate indicator unifies with PI have been
removed.

D-delete-packet(niZ, PI, nil).

D-delete-packet(func(: -, H. -.niZ). Pl, PI, P2) -C
D-name(H, At),
D-arity(H, A r),
D-unifiable(P1, func(/, At.AmiZ)),
D-delete-packet(PZ, PI, P2).

D-delete-packet(func(: -, H. B.niZ). Pl, PI, func(: -,
H. B.nil). P2) e
D-name(H, At),
D-arity(H, AI-),
L-not-unifiable(PI, func(/, At.AmiZ)),
D-delete-packet(PZ, PI, P2).

NOTE - References: D-name A.3.1, D-arity A.3.1, D-
unifiable A.3.5, L-not-unifiable A.3.5

D-Same-predicate(A, B) - if A and B are predica-
tions then they correspond to the same predicate.

D-Same-predicate(A, B) t=
D-equal(A, func(N, LI)),
D-equal(B, func(N, L2)),
D-Same-length(LI, L2).

NOTE - References: D-equal A.3.1, D-Same-length A.3.4

A.3.9 Input and output

L-coding-term(T, Ll - L2) - i’ T is a term con-
cretely represented by the sequence of characters of the
differente list of characters Ll - L2 as specified by the
concrete Syntax in clause 6.

D-open-input(St, Env) - if Env is an environment
and St a name of a stream in Env then the stream
corresponding to St is open for input.

D-open-input(St, env(-, ZF> OE ZFL, OFL)) e
streamname(ZE St).

D-open-input(St, env(-, IE OE IFL, OFL)) -G
not streamname(IE St),
D-member(l;: IFL),
streamname(E St}.

NOTE - References: streamname A.4.1.6 1, D-member
A.3.4

154

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

D-open-output(St, Env) - if Env is an environment
and St a name of a stream in Env then the stream
corresponding to St is open for output.

D-open-output& env(-, I-F: OE IFL, OFL)) +
streamname(OF: St).

D-open-output(St, env(-, ZE OE IFL, OFL)) +
not streamname(OE St),
D-member(E OFL),
streamname(E St).

NOTE - References: streamname A.4.1.6 1, D-member
A.3.4

A.4 The Formal Semantics

A.4.1 The kerne1

NOTES

1 PVST Stands for Partially Visited Search Tree.

2 CVST Stands for Completely Visited Search Tree.

A.4.1.1 semantics(8 G, E, F)

if P is a well-formed complete database, G is a well-
formed goal, and E is an environment then F is a PVST
up to some node which is any leaf before or on the first
infinite branch or CVST if there is no infinite branch.

semantics(8 G, E, F) +
D-equal(N,
nd(ni1, func(catch, G.X.special-pred(unde$ned-action,
X. nil). nil),
e nil, E, empsubs, nil, partial)),
buildforest(‘or(N, vid, vid), niZ, F),
L-Var(X),
L-not-occur-in(X, G).

NOTES

1 in all other comments “database” means extended well-
formed database and “goal” means extended well-formed goal.

2 References: D-equal A.3.1, L-not-occur-in A.3.5, L-Var
A.3.1, buildforest A.4.1.3

A.4.1.2 predication-choice(G, A)

if G is a goal then A is the Chosen predication in G
following the Standard strategy (the “first” predication in
the goal).

predication-choice(A, A) e
not D-is-a-conjunction(A) .

predication-choice(func(I , I,
predication-choice(G, A).

G. -.nil), A) G

NOTE - References: D-is-a-conjunction A.3.1

A.4.1.3 buildforest(FI, N, F2)

if Fl is a PVST up to node N then F2 is the extension
of Fl up to some node after N which is any leaf before
or on the first infinite branch of the complete extension or
is a CVST if the complete extension is finite.

buildforest(FI, N, Fl) -c=
D-root(F1, N).

buildforest(Fl, N, F2) -C
treatment(FI, N, F2).

buildforest(FI, N, F2) -C
not D-root(F1, N),
treatment(FI, N, F3),
clause-choice(N, F3, M),
buildforest(F3, M, F2).

NOTE - References: D-root A.3.3.2, treatment A.4.1.13,
clause-choice A.4.1.4

A.4.1.4 clause-choice(N, I;: J-4)

if F is a PVST up to node N then M is the next eligible
node.

clause-choice(N, E M) e
D-lastchild(N, E M),
not completely-visited-node(M, F).

clause-choice(N, E iV) -+
D-lastchild(N, -F: MI),
completely-visited-node(MI, F),
next-ancestor(N, E M).

clause-choice(N, E M) +
not D-has-a-child(N, F),
next-ancestor(N, c M).

NOTE - References: D-lastchild A.3.3.3, completely-visited-
node A.4.1.5, next-ancestor A.4.1.7, D-has-a-Child A.3.3.3

A.4.1.5 completely-visited-node(N, F)

if N is a node of the PVST F then N is a completely
visited node.

155

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

completely-visited-node(N, F) -+
D-choice of node N in F is rd,
D-visit mark of node N in F is complete.

NOTE - References: D-choice of node - in _ is _ A.3.3.4,
D-visit mark of node _ in _ is _ A.3.3.4

A.4.1.6 completely-visited-tree(& N)

if F is a PVST up to node N then F is a CVST of root
N.

completely-visited-tree(E;: N) (
D-root(lf: N),
completely-visited-node(N, FJ

NOTE - References: D-root A.3.3.2, completely-visited-node
A.4.1.5

D-last-child(K, E M),
not completely-visited-node(M, F).

available-ancestor(N, I;: M) (
D-parent(N, E K),
not eligible-node(K, F),
available-ancestor(K, E M).

NOTE - References: D-parent A.3.3.3, eligible-node A.4.1.10,
available-ancestor A.4.1.8

A.4.1.9 has-an-available-ancestor(N, F)

if F is a PVST up to node N then N has an eligible
node ancestor.

has-an-available-ancestor(
available-ancestor(N, F:

N F} -e
J - .

NOTE - References: available-ancestor A.4.1.8

A.4.1.7 next-ancestor(N, I;: M)

A.4.1.10 eligible-node(N, F)
if F is a PVST up to node N then M is the next ancestor
of N which is an eligible node, if it exists, else the root.

next-ancestor(N, E M) -c=
available-ancestor(N, c M).

next-ancestor(N, c M) c
not has-an-available-ancestor(N, F),
D-root(E NI),
D-lastchild(NI, E M),
not completely-visited-node(M, F).

next-ancestor(N, E M) -C
not has-an-available-ancestor(N, F),
D-root(E;: M),
D-lastchild(M, E MI),
completely-visited-node(MI, F).

NOTE - References: available-ancestor A.4.1.8, has-an-
available-ancestor A.4.1.9, D-root A.3.3.2, D-lastchild A.3.3.3,
completely-visited-node A.4.1.5

if N is a node of the PVST F then N is neither completely
visited nor is a catch node (a catch node cannot be Chosen
again even if it is marked not completely visited).

eligible-node(N, F) -C
not completely-visited-node(N, F),
not is-a-catch-node(N, F).

NOTE - References: completely-visited-node A.4.1.5, is-a-
catch-node A.4.1.11

A.4.1.11 is-a-catch-node(N, F)

if N is a node of the PVST F then N is a node whose
Chosen predication is the bip catch.

is-a-catch-node(N, F)
Chosen predication of node N in F is func(catch, -).

NOTE - References: Chosen predication of node - in _ is-
A.4.1.12

A.4.1.8 available-ancestor(N, E M)
A.4.1.12 Chosen predication of node N in F is A

if F is a PVST up to node N then Ad is the next ancestor
of N which is an eligible node.

available-ancestor(N, E M) +
D-parent(N, E M),
eligible-node(M, F).

available-ancestor(N, E M) +
D-parent(N, E K),
is-a-catch-node(K. F),

if N is a node of the PVST F then A is the Chosen
predication in the goal field of the corresponding label
node in F.

Chosen predication of node N in F is A +
D-goal of node N in F is G,
predication-choice(G,A).

NOTE - References : D-goal of node _ in - is _ A.3.3.4,
predication-choice A.4.1.2

156

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

A.4.1.13 treatment(FI, N, F2)

if F 1 is a PVST up to the first not completely visited
node N then F2 is the extension of F 1 obtained after
one step of resolution from N.

treatment(FI, N, F2) (
success-node(N, Fl),
erasepack(F1, N, F2).

treatment(FI, N, F2) e
not success-node(N, Fl),
Chosen predication of node N in Fl is A,
D-is-a-bip(A),
not error(F1, A),
D-boot-bip(A),
expand(F1, N, F2).

treatment(FI, N, F2) e
not success-node(N, Fl),
Chosen predication of node N in Fl is A,
D-is-a-bip(A),
not error(F1, A),
not D-boot-bip(A),
treat-bip(FI, N, A, F2).

treatment(FI, N, F2) (
not success-node(N, Fl),
Chosen predication of node N in Fl is A,
D-is-a-bip(A),
in-error(FI, A, T),
treat-bip(F1, N, func(throw, Tnil), F2).

treatment(FI, N, F2) -C
not success-node(N, Fl),
Chosen predication of node N in Fl is A,
D-is-a-special-pred(A),
treat-special-pred(FI, N, A, F2).

treatment(FI, N, F2) -C
not success-node(N, Fl),
Chosen predication of node N in Fl is A,
not D-is-a-bip(A),
not D-is-a-special-pred(A),
D-choice of node N in Fl is Q,
not D-equal(Q, nil),
expand(FI, N, F2).

treatment(FI, N, F2) -C
not success-node(N, Fl),
Chosen predication of node N in Fl is A,
not D-is-a-bip(A),
not D-is-a-special-pred(A),
D-choice of node N in FI is nil,
erasepack(F1, N, F2).

NOTE - References: success-node A.4.1.16, erasepack
A.4.1.24, Chosen predication of node - in - is- A.4.1.12,

D-is-a-bip A.3.8, error A.4.1.14, D-boot-bip A.3.8, D-is-
a-special-pred A.3.1, expand A.4.1.18, treat-bip A.4.1.32,
in-error A.4.1.15, treat-special-pred A.4.1.17,

A.4.1.14 error(E B)

if F is a forest and B is a predication then it is a
predication of a built-in predicate whose execution raises
an error in F.

error(E B) -c=
in-error(E B, -).

NOTE - References: in-error A.4.1.15

A.4.1.15 in-error(t;: B, T)

if F is a forest and B is a predication then it is a
predication of a built-in predicate whose execution raises
an error of type T.

The appropriate clauses of in-error
definitions of each built-in predicate.

are given with the

A.4.1.16 success-node(N, F)

if F is a PVST up to node N then the goal carried by
N is the goal true.

success-node(N, F) -C
D-goal of node N in F is func(true,niZ).

NOTE - References: D-goal of node _ in _ is - A.3.3.4

A.4.1.17 treat-special-pred(FI, N, A, F2)

if Fl is a PVST up to node N and the Chosen predication
A in the goal of N is a special predicate then F2 is the
new PVST obtained after its execution.

treat-special-pred(FI, N, special-predfinactivate, J.nil),
F2) e
treat-inactivate(Fi, N, J, F2).

treat-special-pred(Fl, N, special-predfundeflned-action,
E. nil), Fl).

treat-special-pred(FI, N, special-pred(forward-error
E. niZ), Fl}.

treat-special-pred(FI, N,
nil), Fl).

special-pred(halt-system-action,

treat-special-pred(FI, N, special-pred(halt-system-action,
1. nil), FI).

157

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) @ ISO/IEC 1995

treat-special-pred(FI, N, special-pred(value, Exp. Vnil),
F2) +
not error(FJ, special-pred(value, Exp. VW)), ex-
pand(F1, N, F2).

treat-special-pred(FI, N, special-pred(value, Exp. Vnil),
F2) +
in-error(F1, special-pred(value, Exp. VniE), T),
treat-bip(FI, N, func(throw, Tnil), F2).

in-error(-, special-pred(value, Exp. Vnil), instantiation-
error) +
L-var(Exp).

in-error(-, special-pred(value, Exp. Vnil), type-
error(evaluable, func(/, Func.Arity.niZ))) +
not L-var(Exp),
not D-is-a-number(Exp),
not D-is-an-evaluable-expression(Exp),
D-name(Exp, Func),
D-arity(Exp, A rity).

treat-
special-pred(F1, N, special-pred(compare, Comp.nil),
F2) e
expand(F1, N, F2).

treat-special-pred(FI, N, special-predfoperation-value,
Exp.Vnil), F2) +
not error(F1, special-pred(operation-value, Exp. Vnil)),
L-value(Exp, Value),
D-label of node N in Fl is NZ,
D-equaW, nd(4 G f? Q, E, j L -N,
D-number-of-child(l, Fl, J),
erase(G, GI),
D-equal(G2, (V = Value I , I GI)),
predication-choice(G2, Al),
D-packet(8 E, Al, Ql),
D-equal(NZ1, nd(J.I, G2, 8 Ql, E, empsubs, L, partial)},
addchild(F1, NI, NU, nil, F2).

treat-special-pred(FI, N, special-predfoperation-value,
Exp.Vnil), F2) e
in-error(Fl, special-pred(operation-value, Exp. Vnil),
T)
treat-bip(Fl, N, func(throw, Tnil), F2).

in-error(-, special-predfoperation-value, Exp. Vnil), T) +
L-error-in-expression(Exp, T).

treat-special-pred(F1, N, special-predfsorted, Ll.L2.nil),
Fl) +
L-sorted(LI, L2).

treat-special-pred(FI, N, special-pred(simple-comparison,
Comp.nil), F2) +
L-arithmetic-comparison(Comp),

158

D-label of node N in Fl is NZ,
D-equal(NZ, nd(N, G, r> -, E, S, L, -)),
final-resolution-step(G, empsubs, 8 E, GI, Q),
D-equal(NZ1, nd(zero. N, GI, e Q, E, empsubs, L,
partial)),
addchild(F1, Nl, Nil, nil, F2).

treat-special-pred(F1, N, special-pred(simple-comparison,
Comp.nil), F2) e
not L-arithmetic-comparison(Comp),
erasepack(F1, N, F2).

NOTE - References: treat-inactivate A.4.1.64, expand
A.4.1.18, error A.4.1.14, in-error A.4.1.15, L-value A.3.6,
treat-bip A.4.1.32, L-sorted A.3.4, L-error-in-expression A.3.6,
L-arithmetic-comparison A.3.6

A.4.1.18 expand(Fi, N, F2)

if F 1 is a PVST up to node N and the Chosen predication
in the goal of N is a user defined predicate with non empty
list of choice or a boot-strapped built-in predicate then
F2 is the new PVST obtained after one step of resolution
(So the node N in F2 either has a new youngest Child or
has no new Child and is marked completely visited).

expand(FI, N, F2) +
D-choice of node N in Fl is Q,
Chosen predication of node N in FI is A,
D-label of node N in Fl is NI,
not possible-child(Q, Fl, NI, A)),
fail-or-undefined-pred-treatment(FI, N, A, F2).

expand(FI, N, F2) -x=
Chosen predication of node N in Fl is A,
D-equal(A, special-pred(value, E. Vnil)),
D-label of node N in Fl is NI,
add-value-child(Fl, NI, A, F2).

expand(FI, N, F2) +
Chosen predication of node N in Fl is A,
D-equal(A, special-pred(compare, Comp.nil)),
D-label of node N in Fl is NZ,
add-compare-child(Fl, NI, A, F2),

expand(F1, N, F2) +
D-choice of node N in FZ is Q,
Chosen predication of node N in
D-label of node N in Fl is NI,
buildchild(Q, Fl, Nl, A, Nil, Ql),
addchild(F1, NI, NU, Ql, F2).

Fl is A,

NOTE - References: D-choice of node _ in _ is _ A.3.3.4,
Chosen predication of node _ in _ is _ A.4.1.12, D-label
of node _ in _ is - A.3.3.4, possible-Child A.4.1.23, fail-or-
undefined-pred-treatment A.4.1.19, add-value-Child A.4.1.2 1,
add-compare-Child A.4.1.22, buildchild A.4.1.25, addchild
A.4.1.26

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

@ ISO/IEC 1995 ISO/IEC 132114 : 1995(E)

A.4.1.19 fail-or-undefined-pred-treatment(FI, N, A, F2)

if F 1 is a PVST up to node N, and A is the predicate
fail or is an undefined predication then F2 is the
extension of F 1 after execution of fai.1 or according to
the value of the flag unknown (7.11.2.4).

fail-or-undefined-pred-treatment(FI, N, func(fai 1, nd),
F2) -C
erasepack(Fl, N, F2).

fail-or-undefined-pred-treatment(FI, N, A, F2) +
not D-equal(A, func(fai 1, nd)),
D-name(A, Func),
D-arity(A, Arity),
D-database of node N in Fl is DB,
exist-corresponding-pred-definition(func(/,
Func.Arity. nil), DB),
erasepack(F1, N, F2).

fail-or-undefined-pred-treatment(FI, N, A, F2) -c=
not D-equal(A, func(f ai 1, nil)),
D-name(A, Func),
D-arity(A, Arity),
D-database of node N in Fl is DB,
not exist-corresponding-pred-definition(’unc(/,
Func. A rity. nil), DB),
undefined-pred-treatment(FI, N, A, F2).

NOTE - References: erasepack A.4.1.24, D-equal A.3.1,
D-name A.3.1, D-arity A.3.1, D-database of node - in

is - A.3.3.4, exist-corresponding-pred-definition A.4.1.53,
indefined-pred-treatment A.4.1.20

A.4.1.20 undefined-pred-treatment(FI, N, A, F2)

if F 1 is a PVST up to node N, and A is an undefined
predication then F2 is the extension of F 1 according to
the value of the flag unknown (7.11.2.4).

undefined-pred-treatment(FI, N, A, F2) +
D-environment of node N in Fl is Env,
D-equal(Env, env(PF: -, -, j -)),
corresponding-flag-and-value(‘unc(unknown,
func(fail, nil), Pc -, -, -),
erasepack(Fl, N, F2).

nil),

undefined-pred-treatment(FI, N, A, F2) -C
D-environment of node N in Fl is Env,
D-equal(Env, env(PF: -, -, + -)),
corresponding-flag-and-value(‘unc(unknown,
func(error; nil), PE -, -, -),
D-name(A, Func),
D-arity(A, Arity),

nil),

treat-bip(FI, N, func(throw, existente-error(procedure,
func(A Func.Arity. nil). nil), F2).

undefined-pred-treatment(F1, N, A, F2) -C
D-environment of node N in Fl is Env,
D-equal(Env, env(PE -, -, -, -)),
corresponding-flag-and-value(func(unknown,
func(warning, nil), PE 9 j -),
D-label-of-node-in-is(N, Fl, NI),
D-equal(N1, nd(N, G, e -, E, S, L, -)),
erase(G, G2),
D-equal(GI,

nil),

(write(output-warningstream,unknown_procedure-messag~
I I fail I , I G2)),
predication-choice(GI, Al),
D-packet(e E, Al, Q),
D-equal(Nl1, nd(zero.N, GI, e Q, E, empsubs, L,
partial)),
addchild(F1, NI, NU, nil, F2).

NOTE - References: D-environment of node - in _ is -
A.3.3.4, D-equal A.3.1, corresponding-flag-and-value A.4.1.75,
D-name A.3.1, D-arity A.3.1, erasepack A.4.1.24, treat-bip
A.4.1.32

A.4.1.21 add-value-child(F1, NZ, A, F2)

if A is the special predication value Chosen in the goal of
the node label NI in the PVST F then F2 is the new
PVST with one new Child whose node label is identical to
NI except that the new goal contains explicit evaluation
of the expression.

add-value-child(F1, NZ, A, F2) +
D-equaW, nd(J, G C Q, E, j L -Jh
D-number-of-child(1, Fl, J),
D-equal(A, special-pred(value, Num. Vnil)),
D-is-a-number(Num),
erase(G, GI),
D-equal(G2, (number(Num) I , I Num = V I , t GI)),
predication-choice(G2, Al),
D-packet(e E, Al, Ql),
D-equal(NZ1, nd(J.I, G2, e Ql, E, empsubs, L, partial)),
addchild(F1, Nl, NU, nil, F2).

add-value-child(F1, Nl, A, F2) +
D-equW% nd(L G e Q, E, j L -4,
D-number-of-child(l, Fl, J),
D-equal(A, special-pred(value, func(Op, Exp.nil). Vnil)),
erase(G, GI),
L-var(VI),
L-rename(F1, VI, VI 1),
D-equal(G2, (special-pred(value, Exp.Vll.nil) I , I
special-predcoperation-value, func(Op, VI 1 .nil). Vnil)
I I GW,
D:equal(Nll, nd(J.I, G2, 8 Q, E, empsubs, L, partial)),
addchild(F1, Nl, Nll, nil, F2).

add-value-child(F1, NI, A, F2) -C
D-equal(NL nd(I, G, 8 Q, E, 3 L -JA

159

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-1
:19

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

