INTERNATIONAL ISO/IEC
STANDARD 13211-1

First edition
1995-06-01

Information technology” — Programming
languages — Prolog —

Part 1:
General core

Technologies;de T'information — Langages de programmation —
Prolog —

Partie 1:\Noyau général

SN
Reference number
S * ISO/IEC 13211-1:1995(E)

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC

13211-1 : 1995(E)

Contents Page
Foreword |. e viii
Introductign ix
1 Scope.| ... 1
L1 ONDEES . . oo I
2 Normative references 1
3 Definitilons Y 2
4 Symbols and abbreviations 0 NN 10
4.1 Nptation U 10
4/1.1 Basic mathematical types~ .. . 10
4[1.2 Mathematical and set operators. ... ,.v............ 10
4J1.3 Other functionst 10
4.2 Abpstract data type: stack =30 11
4.3 Abpstract data type: mapping %D oo 11
5 Compllance NN7T. ... 11
5.1 Prolog processor 11
52 Prologtext O .. 12
53 Prologgoal 12
54 Dpcumentation. .). 12
5.5 BKensions . . .t 12
S0 Syntax(T. .. 12
55.2 Predefined operators 12
515.3, (Gharacter-conversion mapping. 12
SISAC/TYPES . . o oo 12
5§55 Ditectives - 3
5.5.6 Sideeffects 13
5.5.7 Control constructs 13
558 Flags 13
5.59 Built-in predicates 13

© ISO/IEC 1995

All rights reserved. Unless otherwise specified, no part of this publication may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office Case Postale 56 ¢ CH-1211 Gengve 20 e Switzerland

Printed in S

ii

witzerland

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

ISO/IEC 13211-1 : 1995(E)

5.5.10 Evaluable functors. 13
5,511 Reserved atoms.t 13
6 SYntax 13
6.1 Notation 13
6.1.1 Backus Naur Form 13
6.1.2 Abstract term Syntax, 14
6.2 Prologtextanddata............... 15
6.2.1 Prologtext 15
622 Prologdata............ 15
63 Terms o) 15
63.1 Atomicterms (NI ... 16
6.3.2 Variables) 16
6.3.3 Compound terms — functional notation N,] 16
6.3.4 Compound terms — operator notation N\~). 17
6.3.5 Compound terms — list notation .. >. 19
6.3.6 Compound terms — curly bracketedterm 20
6.3.7 Terms - double quoted list notationJ..... 20
64 Tokens o] 20
64.1 Layouttext.......~\Y................f..... 21
642 Names 007 oo 21
6.43 Variables N o] 23
6.4.4 Integer numbers).].. ... 23
6.4.5 Floating poitit numbers].. ... 23
6.4.6 Doublequoted lists).. ... 24
6.4.7 Back)quoted strings].. ... 24
64.8 Othertokens..........................]..... 24
6.5 ProcesseriCharacter set o 24
6.5.1, “Graphic characters.]..... 25
65,2 Alphanumeric characters|..... 25
6.5.3 Solocharacters). ... 25
6.54 Layout charactersJ..... 25
6.5.5 Metacharacters.J... .. 26
6.6 Collatingsequence {0 26
7 Language concepts and semantics 26
71 Types ..o 27
711 Variable oo oo 27
712 Integer........... ol 27
7.1.3 Floatingpoint]..... 28
704 AOM 29
71.5 Compoundterm 29
71.6 Relatedterms|..... 29
F2—Fermordep—m—m—————————————————————— 30
721 Variable 31
7.2.2 Floating point 31
723 Integer 31
724 AtOM 31
725 Compound 31
7.3 Unification 31
7.3.1 The mathematical definition 31
7.3.2 Herbrand algorithm 31
7.3.3 Subject to occurs-check (STO) and not subject to occurs-
check (NSTO) i 33
7.3.4 Normal unification in Prolog 33
7.4 Prolog text 33
7.4.1 Undefined features 34

iii

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

iv

© ISO/IEC 1995

742 Directives 34
743 Clausesot 35
7.5 Databaseo 36
7.5.1 Preparing a Prolog text for execution 36
7.5.2 Static and dynamic procedures 36
7.5.3 Private and public procedures 36
7.54 A logical database update 37
7.6 Converting a term to a clause, and a clause to a term 37
7.6.1 Converting a term to the head of a clause 37
7.6.2 Converting a term to the body of a clause. 37
7.6.3] Converting the head of a clause toaterm........... 37
7.6.4] Converting the body of a clause to a term. 38
7.7 Execpiting a Prolog goal 38
770 Execution 38
7.7.2] Data types for the execution model 38
7.7.3] Initialization 39
774 A goalsucceeds 39
775 Agoalfails 39
7.7.60 Re-executinga goal................ 39
7.7.7 Selecting a clause for execution 40
7.7.8 Backtracking. 40
779 Side effects 40
7.7.10 Executing a user-defined procedure 40
7.7.1]1l Executing a user-defined procedure with no more clauses. 42
7.7.12 Executing a built-in predicate {7 42
7.8 Contkol constructs NN 43
781 true/O.. UNT 43
782 fail/lO oA 43
783 call/lY 44
T8Al VO —cCut ...y 45
7.8.5 ()2 —conjunction=N0. ... 47
7.8. (;5)/2 —disjunctionl oo 47
787 (>)2 —if-then...... ... 5= 49
788 (/2 —if-then-else ... ~N»7 50
789 catch/3....... 51
780 throw/l 0\ 53
7.9 Evalpating an expressiof.).". 54
7.9.1 Description. _) 54
7920 EIrors . S . 54
7.10 Inpuffoutput .~ 7. ... 54
7.10{1 Sources“and sinks 54
700J2 Sfreams 55
7.10{3 Read-options list L. 58
7.103—Write-options st -~~~ -~ -~~~ 58
7.10.5 Writing a term 59
TA1 Flags 60
7.11.1 Flags defining integer type I 60
7112 Other flags 61
T2 BITOTS . o o o o e e e e e e e 6l
7.12.1 The effect of an error 62
7.12.2 Error classification 62
Built-in predicates oL 63
8.1 The format of built-in predicate definitions 63
8.1.1 Description oot 63
8.1.2 Template and modes 64
8.1.3 EITOIS .. ot ittt e 64

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

ISO/IEC 13211-1 : 1995(E)

814 Examples,
8.1.5 Bootstrapped built-in predicates
8.2 Term unification.
821 (=)2-Prologunify
8.2.2 unify_with_occurs_check/2 — unify
8.2.3 (\=)/2 - not Prolog unifiable
83 Typetesting
831 wvar/l
832 atom/l
833 integer/1........
834 float/ll
83.5 atomic/l............. O]
83.6 compound/1 L N
83.7 nonvar/l.......... N>l
83.8 number/l N
8.4 Term comparison00 ..,
84.1 (@=<)/2 - term less than or equal,.(==)/2 — term idg

8.5

8.6

8.7

8.8

8.9

8.10

Term creation and decomp@sition.

8.5.1
8.5.2
8.5.3
854

Arithmetic evaluation

8.6.1

Arithmetie’ comparison

8.7.1

Clause retrieval and information

8.8.1
8.8.2

Clause creation and destruction

8.9.1
8.9.2
8.9.3
8.9.4

All solutions

8.10.1
8.10.2

(\==)/2 — term not identical,, (@<)/2 — term less

ntical,
than,

(@>)/2 — term greater thdp; (@>=)/2 — term greatgr than

orequal Nt
functor/3
arg/3
(=.)/2 — uniy
copy-term/2

(is)/2— evaluate expression

(=:=)/2 — arithmetic equal, (=\=)/2 — arithmetic not
(<)/2 - arithmetic less than, (=<)/2 - arithmeti
than or equal, (>)/2 — arithmetic greater than, (>
arithmetic greater than or equal

clause/2
current_predicate/1

asserta/l
assertz/1
retract/1

abolish/1

findall/3
bagof/3

equal,

L)/ —

8.11

8.12

8163

Stream selection and control

8.11.1
8.11.2
8.11.3
8.114
8.11.5
8.11.6
8.11.7
8.11.8

Setof’3

current_input/1

current_output/1
set_input/1

set_output/1
open/4, open/3
close/2, close/1
flush_output/1, flush_output/0
stream_property/2, at_end_of_stream/0, at_end_of_stream/1 .

8.11.9 set_stream_position/2
Character input/output
8.12.1 get_char/2, get_char/l, get_code/1, get_code/2
8.12.2 peek_char/2, peek_char/l, peek_code/l, peek_code/2

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

vi

8.12.3 put_char/2, put_char/l, put_code/l, put_code/2, nl/0, nl/1 . 94

© ISO/IEC 1995

8.13 Byte input/output 95
8.13.1 getbyte/2, getbyte/l1 95
8.13.2 peek_byte/2, peek.byte/1 96
8.13.3 putbyte/2, putbyte/l 97

8.14 Term input/output.ttt 98
8.14.1 read_term/3, read_term/2, read/1, read/2 98
8.14.2 write_term/3, write_term/2, write/1, write/2, writeq/1,

writeq/2, write_canonical/l, write_canonical/2 99
8.14.3 OD/3 . o e e 101
8148 currentOp/3 102
8.145 charconversion/2 103
8.146 current_char_conversion/2 103

8.15 Logif and control 104
81501 (\+)/1 —not provable 104
8A5R2 once/l 105
8158 repeat/O 105

8.16 AtomiC term Processingewn oot 105
8.16J1 atom_length/2 106
8.162 atom.concat/3 106
8.16J3 sub_atom/5 107
8.16J4 atom_chars/2 108
8.16/5 atom.codes/2 109
8.16/6 charcode/2. 109
8.16J7 numberchars/2 N 110
8.16J8 numbercodes/2. a0 111

8.17 Implementation defined hooks 5. 112
8.17{1 set_prologflag/2 0T 112
8.17{2 current_prologflag/2\ 112
81713 halt/O............« 113
817|4 halt/1 LTSN 113

Evaluablg functors &= 114

9.1 The |simple arithmetic functors ~“>7 o 114
9.1.1 Evaluable functors and operations 114
9.1.3 Exceptional values.\\ 114
9.1.3 Integer operatiofis)and axioms 114
9.1.4 Floating point\operations and axioms 115
9.1.4 Mixed mode operations and axioms 116
9.1.4 Type cenversion operations 117
9.1.7 Examplés 117

9.2 The [formatyof other evaluable functor definitions 119
9.2.1 \DESCHPUHON . . o o ot 119
9.2.2 Template and modes . . - - - 1o
923 EBITOTS .. .ot 119
924 Examples 119

9.3 Other arithmetic functors 119
9.3.1 (FF)/2 —POWEr . .. oo 119
9.3.2 sin/l ... 120
933 oS/l .. 120
934 atan/l 120
935 exp/l ... 121
9.3.6 log/l 121
937 sqrt/l ... 122

9.4 Bitwise functors. 122
94.1 (>>)/2 - bitwise right shift. 122
942 (<<)/2 - bitwise left shift 122

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

Annex

A Formal semantics
A.1 Introduction

94.3
944
9.4.5

ISO/IEC 13211-1 : 1995(E)

(/\)2 —bitwiseand

(\/)2 =bitwise or
(\)/1 — bitwise complement

A4

A5

A3l
A3.2
A3.3
A34
AG35
A.3.6
A3.7
A38
A39

The Formal Semantics

A4.1

Control constructs and built-in predicates

A5
A5.2
AS.3
AS4
ASS
A5.6

Abstract databases and terms
Predicate indicator.
Forest
Abstract lists, atoms, characters and lists
Substitutions and unification.
Arithmetic
Difference lists and environments
Built-in predicates and packets
Input and output

The kernel

Control constructs

A.1.1 Specification language: syntax
A.1.2 Specification language: semantics
A.1.3 Comments in the formal specification (.
A.1.4 About the style of the Formal Specification ..\/)"
A.1S References N~
A.2 An informal description Nt
A.2.1 Search-tree for “pure” Prolog "\
A.2.2 Search tree for “pure” Prolog withjcut
A.2.3 Search-tree for kernel Prolog »,
A.2.4 Database and database update,view..........
A.2.,5 Exception handling .. . S,
A2.6 Environments/ M\t ..o
A.2.7 The semantics of aCstandard program
A.2.8 Getting acquainted with the formal specification .
A.2.9 Built-in predicates
A.2.10 Relationships with the informal semantics of 7.7 a
A.3 Data structuress .7 . ..

Term unification e

Type testing
Term comparison]|
Term creation and decomposition
Arithmetic evaluation - (is)/2 |

ST

A58

AS5.9

A5.10
A5.11
A5.12
A5.13
A5.14
A5.15
A.5.16
AS5.17

ATTthmetic comparson -
Clause retrieval and information
Clause creation and destruction
All solutions
Stream selection and control
Character input/foutput
Byte input/output L L
Term input/foutput
Logic and control
Atomic term processing
Implementation defined hooks

vii

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

Foreword

© ISO/IEC 1995

ISO (the Interrfational Organization for Standardization) and IEC (the International

Electrotechnic

)l Commission) form the specialized system for worldwide

standardizatio]. National bodies that are members of ISO or IEC participate
in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of
technical actiyity. ISO and IEC technical committees collaborate in fields

of mutual int
governmental,

In the field of

brest. Other international organizations, governmental and nons
in liaison with ISO and IEC, also take part in the work.

information technology, ISO and IEC have established a"joint

technical comjmittee ISO/IEC JTC 1. Draft International Standards adopted
by the joint technical committee are circulated to national bodies-for voting.

Publication as
the national b

an International Standard requires approval by, at least 75% of
dies casting a vote.

International Sgandard ISO/IEC 13211 was prepared by Joint Technical Committee

ISO/IEC JTC

1, Information technology, Subcommittee SC 22, Programming

languages, thdir environments and system software”interfaces.

Annex A of this part of ISO/IEC 13211 (is,for information only.

viii

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

|

© ISO/IEC 1995

ISO/IEC 13211-1

: 1995(E)

Introduction

This is the first International Standard for Prolog, Part I*(General (
produced on 20 April 1995.

There is no other International Standard for Prolog.

Prolog (Programming in Logic) combines)the concepts of logical and
programming, and is recognized net-just as an important tool in A
Intelligence) and expert systems, but as a general purpose high-level p
language with some unique pfoperties.

The language originates ffom work in the early 1970s by Robert
while at Edinburgh University (and ever since at Imperial College,]
Alain Colmerauer at the University of Aix-Marseilles in France.

ore). It was

algorithmic
\I (Artificial
rogramming

A. Kowalski
_ondon) and

Their efforts

led in 1972 to the use of formal logic as the basis for a programming language.

Kowalski’s research provided the theoretical framework, while (
gave rise:t6 the programming language Prolog. Colmerauer and h
built the first interpreter, and David Warren at the AI Department, {
Edinburgh, produced the first compiler.

The crucial features of Prolog are unification and backtracking.
shows how two arbitrary structures can be made equal, and Prolo
employ a search strategy which tries to find a solution to a
backtracking to other paths if any one particular search comes to a

Prolog is good for windowing and multimedia because of the ease]
complex data structures dynamically, and also because the concep
out of an operation is built into the language.

Colmerauer’s
s team then
Iniversity of

Unification
b processors
problem by
dead end.

of building
of backing

Prolog is taught in more UK university computing degrees tha

h any other

programming language.

This part of ISO/IEC 13211 defines the general core features of
part 2 will define modules.

Prolog, and

ix

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

This page intentionally feft blank

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

INTERNATIONAL STANDARD © ISO/IEC

ISO/IEC 13211-1:1995(E)

Information technology — Programming languages — Prolog —

Part 1:
General core

1 Scope

ISO/IEC 13211 is designed to promote the applicability

1.1 Notes

Notes in this part of ISO/IEC 13211 have

no effect on the
that are defined

and portapility of Prolog text and data among a variety ot
data procgssing systems.

This part|of ISO/IEC 13211 specifies:
a) Th¢ representation of Prolog text,

b) Thp syntax and constraints of the Prolog language,

c¢) The

semantic rules for interpreting Prolog text,

d) Thg representation of input data to be processed by
Prolog,

e) Th¢
and

representation of output produced by Prolog,

f) Thg restrictions and limits imposed on a conforming
Prolog [processor.

NOTE — [This part of ISO/IEC 13211 does-not specify:

a) the [size or complexity of Prolog text that will exceed the
capacity| of any specific data processing system or language
processdr, or the actions to b€ taken when the corresponding
limits afe exceeded;

b) the|minimal requiréments of a data processing system
that is dapable ofl supporting an implementation of a Prolog
processdr;

Pieal Peal
|au5ua$u, TTOTOE textorr TOTUE PTOCUSSUTY

as conforming to this part of ISO/IEC-134
including a note include:

a) Cross references to other clauses a
this part of ISO/IEC 132N 1n order to
their way around,

11. Reasons for

hd subclauses of
help readers find

b) Warnings when a built-in predicafe as defined in

this part of ISO/IEC 13211 has a diffd
some existing implementations.

2~ Normative references

The following standards contain provision

reference in this text, constitute provisionf

ISO/IEC 13211. At the time of publicat

rent meaning in

which, through
of this part of
on, the editions

indicated were valid. All standards are sulpject to revision,

and parties to agreements based on this

13211 are encouraged to investigate the

applying the most recent editions of the
below. Members of IEC and ISO main
currently valid International Standards.

ISO/IEC 646 : 1991, Information technol
coded character set for information interd

ISO 2382-15 : 1985, Data processing —
Part 15: Programming languages.

ISO 8859-1 : 1987, Information techno

bart of ISO/IEC
possibility of
standards listed
ain registers of

gy — ISO 7-bit
hange.
Vocabulary —

ogy — 8-bit
— Part 1: Latin

single-byte coded graphic character sets -

c) thelmethods of activating the Prolog processor or the
set of commands used to control the environment in which
Prolog text is prepared for execution and executed;

d) the mechanisms by which Prolog text is prepared for
use by a data processing system;

e) the typographical representation of Prolog text published
for human reading;

f) the user environment (top level loop, debugger, library
system, editor, compiler etc.) of a Prolog processor.

This part of ISO/IEC 13211 is intended for use by implementors
and knowledgeable programmers, and is not a tutorial.

atptmabet No—1-
ISO/IEC 9899 : 1990, Programming lang

ISO/IEC TR 10034 :

uages — C.

1990, Guidelines for the prepara-

tion of conformity clauses in programming language

standards.
ISO/IEC 10967-1 :
floating point arithmetic.

BS 6154 :
language.

1981, Method of defining —

1994, Information technology — Lan-
guage independent arithmetic — Part 1:

Integer and

Syntactic meta-

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

3 Definitions

This terminology for Prolog has a format modelled on that
of ISO 2382.

An entry consists of a phrase (in bold type) being defined,
followed by its definition. Words and phrases defined in
the glossary are printed in ifalics when they are used in
other entries. When a definition contains two words or
phrases defined in separate entries directly following each

© ISO/IEC 1995

3.9 arity: The number of arguments of a compound
term. Syntactically, a non-negative integer associated with
a functor or predicate.

3.10 assert, to: To assert a clause is to add it to the
user-defined procedure in the database defined by the
predicate of that clause.

NOTE — It is unnecessary for the user-defined procedure to
already exist.

other (or separated only by a punctuation sign), ™ (an
asterisk) separateq them.

Words and phrasep not defined in this glossary are assumed
to have the meaning given in ISO 2382-15; if they do not
appear in ISO 2B82-15, then they are assumed to have
their usual meanipg.

For the purposes |of ISO/IEC 13211, the following defini-
tions apply:
3.1 A: The sef of atoms (see 6.1.2 b, 7.1.4).

3.2 activation:| The process of executing an activator.

3.3 activator: [The result of preparing a goal for exe-
cution (see 7.7.3

3.4 algorithm,|Herbrand: See 3.85 — Herbrand al-
gorithm.

3.5 alias: An {itom associated with an\open stream (see
7.10.2.2).
The standard inpfit stream has“the alias user_input, and
the standard outplit streamhas. the alias user_output (see

7.10.2.3).

NOTE — A strearp'cdn/have many aliases, but an atom can be

3.11 associativity (of an operator): Property pf being
non-associative, right-associative, or left-associafive (see
6.3.4, table 4).

3.12 atom: A basic objecty denoted by an [dentifier
(see 6.1.2 b, 7.1.4).

3.13 atom, null_Set 3.117 — null atom.

3.14 atom] one-char: See 3.119 — one-char ptom.

3.15\ atomic term: An atom or a number.

3.16 axiom: A rule satisfied by an operation| and all
values of the data type to which the operation bdlongs.

3.17 backtrack, to: To return to the choicepoipt of the
current goal in order to attempt to re-execute it (sge 7.7.8).

3.18 bias, exponent: See 3.68 — exponent bjas.

3.19 body: A goal, distinguished by its context as part
of a rule (see 3.154).

3.20 bootstrapped (built-in predicate): Deﬁjed as a

special case of a more general built-in predidate (see

the alias of at moSTOIE SI7eant.

3.6 anonymous variable: A variable (represented in a
term or Prolog text by) which differs from every other
variable (and anonymous variable) (see 6.1.2, 6.4.3).

3.7 argument: A term which is associated with a
predication or compound term.

3.8 arithmetic data type: A data type whose values
are members of Z or R.

2

8.1.5).

3.21 built-in predicate: A procedure whose execution
is implemented by the processor (see 8).

3.22 byte: An integer in the range [0..255] (see 7.1.2.1).

3.23 (C: The set of characters (see 7.1.4.1).

3.24 callable term: An atom or a compound term.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

3.25 (CC: The set of character codes (see 7.1.2.2).

3.26 character: A member of C' — an implementation
defined character set (see 6.5, 7.1.4.1).

3.27 character, quoted: See 3.144 — quoted charac-
ter.

ISO/IEC 13211-1 : 1995(E)

3.37 compound term: A functor of arity N, N positive,
together with a sequence of N arguments (see 6.1.2 e,

7.1.5).

3.38 configuration: Host and target com

puters, any op-

erating system(s) and software used to operate a processor.

3.39 conforming processor: A processor which con-

3.28 character, unquoted: See 3.194 — unquoted
character.

3.29 charfacter-conversion mapping: A mapping on
the set of [characters, C, which specifies that, in some
Prolog text nits and sources, some characters are intended
to be equivglent to other characters, and converted to those
characters {see 3.46, 7.4.2.5, 8.14.5).

3.30 choicepoint: A state during execution from which
a goal can [be executed in more than one way.

3.31 clasy (of an operator): The class of an operator
defines whether it is a prefix, infix, or postfix operator
(see 6.3.4).

3.32 clause: A fact or a rule. It has two parts: a head,
and a body,

NOTE — Iij ISO/IEC International Standards “clause” has the
meaning: ope of the numbered paragraphs of a standard. In
this part of [ISO/IEC 13211, the centext distinguishes the two
meanings.

3.33 clause-term: A/read-term T. in Prolog text where
T does not |have principal functor (:-)/1 (see 6.2.1.2).

3.34 collatingsequence—An-implementatic
dering defined on the set C' of characters (see 6.6).

3.35 complete database: The set of procedures with
respect to which execution is performed (see 7.5).

3.36 composition (of two substitutions): The mapping
resulting from the application of the first substitution
followed by the application of the second. Composition
of the substitutions oy and o, is denoted o o 65. When
the composition acts on a term t, it is denoted by to0,
with the meaning ((to1)02).

formstoattthe comptiance chauses tsee5; 1)) for processors

in this part of ISO/IEC 13211.

3.40 conforming Prolog data:, Sequence} of characters
and bytes that conform to allthe compliarce clauses for

Prolog data in this part of.JSO/IEC 13211

(see 5, 6.2.2).

3.41 conformingProlog text: A sequencp of characters

that conforms fo all the compliance clauses
in this part\0of ISO/IEC 13211 (see 5, 6.2).

for Prolog text

3.42) “construct, control: See 3.45 — confrol construct.

3.43 constructor, list: See 3.100 — list

constructor.

3.44 contain, to: A term T1 contains another term T2 if

either T1 and T2 are identical terms, or T1
term, one of whose arguments contains T2.

3.45 control construct: A procedure w
is part of the Prolog processor (see 7.8).

3.46 Convc: The character-conversion

is a compound

hose definition

mapping on C'

(the set of characters) which specifies that, in some Prolog
text units and sources, some characters arg converted to
other characters (see 3.29, 7.4.2.5, 8.14.5).

NOTES

1 A directive or goal
out) (74.25, 8.14.5) replaces
update_mappingc(In, out, Convc).

2 Any unquoted character C that is part of a

ty_mappingc.

char_conversion (In,

Conve by

read-term which

is input by read_term/3 (8.14.1) or as Prolog text is replaced

by apply_mappingc(C, Convc).

3 Convc can be inspected by calling
current_char_conversion/2 (8.14.6).

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

4 The rationale for providing this facility is because some
extended character sets (for example, Japanese JIS character
sets) are used with the basic character set and contain the
characters equivalent to those in the basic character set with
different encoding. In such cases, users will often wish the
meaning of characters in Prolog data and Prolog text to be the
same regardless of the encoding.

3.47 convert (from type A to type B): An operation
whose signature_is

© ISO/IEC 1995

3.58 directive-term: A read-term T. in Prolog text
where T has principal functor (:-)/1 (see 6.2.1.1).

3.59 dynamic (of a procedure): A dynamic procedure
is one whose clauses can be inspected or altered during
execution, for example by asserting or retracting * clauses
(see 7.5.2).

converts_p|: A — BU {error}

which converts

 value of rype A to type B. It shall be

an error if the donversion cannot be made.

For example, sqe converting a term to a clause and vice
versa (7.6), chhracter-conversion (3.29, 7.4.2.5, 8.14.5),

and converting
and vice versa

0 floating point value to an integer value
9.1.6).

3.48 copy, r¢gnamed (of a term): See 3.150 — re-
named copy (of a term).

3.49 (CT: ThHe set of compound terms (see 6.1.2 e,
7.1.5).

3.50 cut: A fontrol construct whose effect is to remove
all choicepoints| back to a deeper execution state defined
by its cutparent| (see 7.7.2, 7.8.4).

3.51 data, canforming Prolog: See 3.40 — conform-
ing Prolog datj.

3.52 databasp: The set of user-defined procedures
which currently] exist during execution (see 7.5).

3.53 databas,
database.

compléter'See 3.35 — complete

3.54 data typei A set of values and a set of operations

3.60 effect, side: See 3.157 — side effect

3.61 element (of a list): An element of a fion-empty
list is either the head of the list er an element pf the tail
of the list. The empty list has-ng,clements.

3.62 empty list: Thedatom [1 (nil).

3.63 error: “A“special circumstance which dauses the
normal process of execution to be interrupted (see 7.12).

3.64" evaluable functor: The principal functor of an
expression (see 7.9, 9).

3.65 evaluate: To reduce an expression to |its value.
(see 7.9, 8.6.1, 9).

3.66 exceptional value: A non-numeric value of an
expression: float_overflow, int_overflow, underflow,
zero_divisor, or undefined (see 7.9).

NOTE — It is an evaluation_error (E) when the value

of an expression is an exceptional value.

3.67 execution (verb: to execute): The process by
which a Prolog processor tries to satisfy a goal (see 7.7.1).

that manipulate those values.

3.55 data type, arithmetic: See 3.8 — arithmetic
data type.

3.56 denormalized value: A floating point value of
type F' providing less than the full precision allowed by
F (see Fp, 7.1.3).

3.57 directive: A ferm D which affects the meaning of
Prolog text (see 7.4.2), and is denoted in that Prolog text
by a directive-term :- (D) .

4

3.68 exponent bias: A number added to the exponent
of a floating point number, usually to convert the exponent
to an unsigned integer.

3.69 expression: An atomic term or a compound term
which may be evaluated to produce a value (see 8.6.1, 9).

3.70 extension: A facility provided by the processor
that is not specified in this part of ISO/IEC 13211 but that
would not cause any ambiguity or contradiction if added
to this part of ISO/IEC 13211.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

3.71 F: The set of floating point values (see 6.1.2 d,
7.1.3).
3.72 fact: A clause whose body is the goal true.

NOTE — A fact can be represented in Prolog text by a term
whose principal functor is neither (:-)/1 nor (:-)/2.

ISO/MEC 13211-1 : 1995(E)

3.85 Herbrand algorithm: An algorithm which com-
putes the most general unifier MGU of a set of equations

(see 7.3.2).

3.86 I: The set of integers (see 6.1.2 ¢, 7.1.2).

3.87 identical terms: Two terms are identical if they

have the same abstract syntax (see 6.1.2).

3.73 fail,to: Execution of a goal fails if it is not

satisfied.

3.74 fild name: An implementation defined * ground
term which identifies to the processor a file which will be
used for input/output during the execution of the Prolog
text.

3.75 flag: An atom which is associated with an imple-

b

mentation|defined or user-defined value (see 7.11).

3.76 floating point value: A member of the set F
(see 6.1.2|d, 7.1.3).

3.77 functor: An identifier together with an arity.

3.78 functor name: The identifier of a functor.

3.79 function, rounding: See 3.153“<~"rounding func-
tion.

3.80 functor, principal: (Sge 3.134 — principal func-
tor.

3.81 gogql: A predication which is to be executed (see
body, quety,fand 7.7.3).

3.88 identifier: A basic unstructdred
denote an atom, functor name or _predicat

3.89 iff: If and only if;

3.90 implementation defined: Defined
part of ISQ/IE€ 13211, and partly by the
accompanying a processor (see 5).

3:91 implementation dependent: An
dependent feature is dependent on the pro

NOTE — This part of ISO/IEC 13211 d
an implementation dependent feature to be]
accompanying processor documentation.

3.92 implementation specific: Undefing
ISO/IEC 13211 but supported by a confor

NOTE — This part of ISO/IEC 13211 doe
implementation specific feature to be supported
processor, but it preserves the syntax and semg
conforming Prolog text which does not use
defining a term order on variables, or definif
terms which are STO (3.165).

3.93 indicator, predicate: See 3.131 —
dicator.

object used to
P name.

partly by this
documentation

implementation
ressor.

oes not require
defined in the

d by this part of
Ining processor.

5 not require an
by a conforming
ntics of a strictly
it, for example,
g unification for

- predicate in-

3.82 ground term: An atomic term or a compound term
whose arguments are all ground. A term is ground with
respect to a substitution if application of the substitution
yields a ground term.

3.83 head (of a list): The first argument of a non-empty
list.

3.84 head (of a rule): A predication, distinguished by
its context.

3.94 input/output mode: An atom which represents an

attribute of a stream.

A processor shall support the

input/output modes: read, write, append (see 8.11.5,

7.10.1.1).

3.95 instance (of a term): The result
substitution to the term.

of applying a

If t is a term and o a substitution, the instance of ¢ by ¢

is denoted to.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

3.96 instantiated: A variable is instantiated with re-
spect to a substitution if application of the substitution
yields an atomic term or a compound term.

A term is instantiated if any of its variables are instantiated.

3.97 integer value: A member of the set I (see 6.1.2 ¢,
7.1.2).

© ISO/IEC 1995

3.110 name, file: See 3.74 — file name.
3.111 name, functor: See 3.78 — functor name.
3.112 name, predicate: See 3.132 — predicate name.

3.113 named variable: A variable which is not an
anonymous variable (see 6.1.2 a, 6.4.3).

3.98 level, top:| See 3.185 — top level.

3.99 list: Eithef the empty list or a non-empty list.

NOTE — Example: (1, [a, X], (1, 2, -1, [a | [b]]

3.100 list constructor: The principal functor ' .'/2
used for construcfing lists.

3.101 list, empity: See 3.62 — empty list.

3.102 list, non{empty: See 3.114 — non-empty list.

3.103 Ilist, partial: See 3.125 — partial list.

3.104 list, reafl-options: See 3.147 — read-options
list.

3.105 list, write-options: See 3.207 — write-options
list.

3.106 mapping: A data type Mp where T is a data
type (see 4.3).

3.107 mode, ifput/etitput: See 3.94 — input/output
mode.

3.114 non-empty list: A compound term (whose prin-
cipal functor is the list constructor and, Whose| second
argument is a list.

3.115 normalized value: A floating point valug of type
F providing the full precisiontaltowed by F' (see|7.1.3).

3.116 NSTO: Not subject to occurs-check (see|7.3.3).

3.117 null atom: The atom ' .

3.118 Chumber: An integer value or floating poipt value.

3:119 one-char atom: An afom whose name is|a single
character.

3.120 operand (of a compound term or predfcation):
An argument of a compound term (predication]) whose
functor name (predicate name) is an operator.

3.121 operand (of an operation): A value supplied to
an operation defined by a signature and one pr more
axioms.

3.122 operator: A functor name or predicafe name
which allows compound terms or predications resgectively,
to be expressed in prefix, infix or postfix form (sge 6.3.4).

3.108 most general unifier (MGU): The most general
unifier (MGU) of terms is a minimal substitution which
acts on the terms to make them identical. Any unifier is
an instance of some MGU.

NOTE — It is defined up to a renaming of the variables. 1f
idempotent no variable of its domain appears in the resulting
terms. An idempotent MGU can be computed by the Herbrand
algorithm (see 7.3.2).

3.109 name (of atom): A sequence of characters which
distinguishes an afom from any different atom (see 6.1.2 b).

6

3.123 operator, predefined: See 3.128 — predefined
operator.

3.124 options, stream: See 3.167 — stream-options.

3.125 partial list: A variable, or a compound term
whose principal functor is the list constructor and whose
second argument is a partial list.

NOTE — The concept of a partial list is used in 8.5.3.

Examples: A, [a | X], [1, 2 | B]

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

t
|

© ISO/IEC 1995

3.126 position, stream: See 3.168 — stream position.

3.127 precision: The number of digits in the fraction
of a floating point value (see 7.1.3).

3.128 predefined operator: An operator which is ini-
tially provided by the processor.

ISO/IEC 13211-1 : 1995(E)

3.140 Prolog data: A sequence of read-terms (see

6.2.2).

3.141 Prolog text: A sequence of read-terms denoting
directives and clauses (see 6.2, 7.4).

3.142 public (of a procedure): A public procedure is
one whose clauses can be inspected during execution, for

3.129 predicate: An identifier together with an arity.

3.130 predicate, built-in: See 3.21 — built-in predi-
cate.

3.131 predicate indicator: A compound term A/N,
where A i$ an atom and N is a non-negative integer,
denoting orje particular procedure (see 7.1.6.6).

3.132 predicate name: The identifier of a predicate.

3.133 predication: A predicate with arity N and a
sequence O] N arguments.

3.134 principal functor: The principal functor .of a
compound ferm is F/N if the functor of the conipound
term is F ahd its arity is N.

The principal functor of an atomic teriois c/0 if the
atomic term is C.

3.135 prijvate (of a procedure): A private procedure is
one whose |clauses cannot,be”inspected during execution.
(see 7.5.3).

3.136 prpcedure: A control construct, a built-in pred-
icate, or a|usér‘defined procedure. A procedure is either

example by calling the buili-in predicate dlause/2 (see
7.5.3, 8.8.1).

3.143 query: A goal givenhas interactive input to the
top level.

NOTE — This part of ISO/IEC 13211 doeq not define or
require a processor 30,'support the concept of 1qp level.

3.144 quoted character: A character {n Prolog text
or Prologydata which is a single quotgd character
or a‘double quoted character or a jpack quoted
chavacter (see 6.4.2.1).

NOTE — For example, ‘a’ ‘b\’c’ contains 5 quoted characters
M a, 2) ', 3) b, (4) ' (a meta escape sequgnce), (5) c.

3.145 R: The set of real numbers (see 4.1.1).

3.146 read-option: A compound term With uninstanti-
ated * arguments which amplifies the refults produced
by the built-in predicate read-term/3 (8{14.1) and the
bootstrapped * built-in predicates based on [it (see 7.10.3).

3.147 read-options list: A list of read-dptions.

3.148 read-term: A term followed by [an end token.
(see 622, 6.4.8).

static or dynamic. A procedure 1s either private or public
(see 7.5).

3.137 procedure, user-defined: See 3.195 — user-
defined procedure.

3.138 processor: A compiler or interpreter working in
combination with a configuration.

3.139 processor, conforming: See 3.39 — conforming
Processor.

3.149 re-execute, to: To re-execute a goal is to attempt
to satisfy it again (see 7.7.6, 7.7.8).

3.150 renamed copy: (of a term) A special variant of
a term (see 7.1.6.2).

3.151 retract, to: To retract a clause is to remove it
from the user-defined procedure in the database defined
by the predicate of that clause.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

3.152 rounding: Computing a representable final value
(for an operation) which is close to the exact (but
unrepresentable) value for that operation (see 9.1.3.1,
9.1.4.1).

3.153 rounding function: A function with signature:
rnd : R — X (where X is a discrete subset of R)
which maps each member of X to itself, and is monotonic

non-decreasing. Formally, if and y are in R,

(© ISO/IEC 1995

3.161 source/sink: A source or a sink.

3.162 specifier (of an operator): One of the atoms f£x,
fy, xfx, xfy, vfx, xf or yf. A specifier denotes the
class and associativity of an operator (see 6.3.4).

3.163 stack: A data type Sp where D is a data type
(see 4.2).

reX =>rnd(z) ==
T <y = rndfz) < rnd(y)

NOTE — If u ¢ R is between two adjacent values in X,
rnd(u) selects orje of those adjacent values.

3.154 rule: A clause whose body is not the goal true.
During executiof, if the body is true for some substitution,
then the head {s also true for that substitution. A rule
is represented ih Prolog text by a term whose principal
functor is (:-)[/2 where the first argument is converted

to the head, and the second argument is converted to the
body.

3.155 satisfy,| to: To satisfy a goal is to execute it
successfully.

3.156 sequenke, collating: See 3.34 — collating se-
quence.

3.157 side effect: A non-logical effect of antactivator
during executiof (see 7.7.9).

3.158 signatyre: A specificationrofan operation which
defines its namd, and the type of (ts)operands(s) and value.

NOTE — The ¢peration isAfurther defined by one or more
axioms.

For example, the|signature:

addy - I x 1

I {;nd- overfosl
- = J

3.164 static (of a procedure): A static prosedyre is one
whose clauses cannot be altered (see 7.5.2).

3.165 STO: Subject to occursscheck (see 7.3.B).

3.166 stream: A connection to a source or|sink (see
7.10.2).

3.167 stream-options: A list of zero or mpre terms
which specify” additional characteristics over gnd above
those given by the mode of a stream (see 7.10.2.11).

3.168 stream position: An absolute positjon in a
source/sink to which the stream is connected (see|7.10.2.8).

3.169 stream, target: See 7.10.2.5 — Target stream.

3.170 stream-term: An implementation depg¢ndent %
ground term which identifies a stream inside Hrolog text
(see 7.10.2.1).

3.171 substitution: A mapping from variablds to terms.
By extension a substitution acts on a term by|acting on
each variable in the term.

NOTE — A substitution is represented by a GreeK letter (for
example X, o,) acting as a postfix operator, for example:

defines the operation add; which takes two integer operands
(I x I) and produces either a single integer value (I) or the
exceptional value int_overflow.

3.159 sink: A physical object to which a processor
outputs results, for example a file, terminal, or interprocess
communication channel (see 7.10.1).

3.160 source: A physical object from which a processor
inputs data, for example a file, terminal, or interprocess
communication channel (see 7.10.1).

{X—a Y—3+Z, Z — b }
foo(X, Y, 2)
foo(a, 3 + 2z, b)

Substitution o
Term T
New term To

3.172 succeed, to: Execution of a goal succeeds if it
is satisfied.

3.173 tail: The second argument of a non-empty list.

3.174 target stream: See 7.10.2.5 — Target stream.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

3.175 term: An atomic term, a compound term or a
variable (see 7.1).

3.176

term, atomic: See 3.15 — atomic term.

3.177

term, callable: See 3.24 — callable term.

3.178 term, componnd: See 337 — componund ferm 3493 o

3.179 tefm, ground: See 3.82 — ground term.

3.180 tefms, identical: See 3.87 — identical terms.

3.181 tefm-precedes: A binary relation on the set of
terms whidh defines a total ordering of terms (see 7.2).

3.182 tefm, stream: See 3.170 — stream-term.

3.183 tekt, conforming Prolog: See 3.41 — conform-
ing Prolog text.

3.184 tekt, Prolog: See 3.141 — Prolog text.

3.185 top level: A process whereby a Proldg processor
repeatedly |inputs and executes * queries.

NOTE — [This part of ISO/IEC 1321%-does not define or
require a prpcessor to support the concept of top level.

3.186 type: The type of.a term is a property of the
term depending on its,Syntax and is one of: atom, integer,
floating pojnt, variable or compound term (see 7.1).

ISO/IEC 13211-1 : 1995(E)

3.191 unifier, most general: See 3.108 — most gen-
eral unifier.

3.192 unify, to: To find and apply a most general
unifier of two terms by successfully executing (explicitly
or implicitly) the built-in predicate (=)/2 (unify) (see

8.2.1).

when it is not instantiated.

3.194 unquoted character:) A characte
or Prolog data which is-net a quoted
6.4.2.1).

3.195 user-defined procedure: A proce
defined by a.sequence of clauses where th|
clause has\the same predicate indicator, d
is expressed by Prolog text or has been
exectition (see 8.9).

3.196 V: The set of variables, (see 6.1
3.197 value, denormalized: See 3.56 —
value.
3.198 value, exceptional: See 3.66 -
value.
3.199 value, normalized: See 3.115 -
value.

3.200 variable: An object which may b

uninstantiated

- in Prolog text
character (see

dure which is
e head of each
nd each clause
isserted during

D a, 7.1.1).

denormalized

— exceptional

- normalized

Ecome instanti-

ated to a term during execution. (see 6.1.2|a, 7.1.1).
3.187 type,‘data: See 3.54 — data type.

3.201 variable, anonymous: See 3.6 — anonymous
3.188 undefined: A feature is undefined if this part of variable.
ISO/IEC 13211 (1) states it is undefined, or (2) makes no
requirements concerning its execution.

3.202 variable, named: See 3.113 — named variable.
3.189 unifiable: Two or more terms are unifiable iff

3.203 variable set (of a term): See 7.1.1.1 — Variable

there exists a unifier for them.

3.190 unifier (of two or more terms): A substitution
such that applying this substitution to each term results in
identical terms.

set of a term.

3.204

a term.

variant (of a term): See 7.1.6.1 — Variants of

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

Table 1 — The basic sets

(© ISO/IEC 1995

Table 2 — Basic mathematical operations

Symbol Mathematical Type Operator Signature Meaning
R real numbers < B x B — B equivalence
z integers = B x B — B implication
B Boolean (= {true,false}) A B x B— B conjunction
\Y B x B — B disjunction
= B—B negation
3.205 witness (of a set of variables): See 7.1.12 — < R xR —B less
Witness of a variable set. < R xR — B less or equal
= R xR —DB equal
R xR — B not equal
3.206 write-oftion: A ground term that controls the > R xR — B greaterfor‘equal
output produced |by the built-in predicate write_term/3 > R xR — B greater
(8.14.2) and its |bootstrapped * built-in predicates (see + R xR — R addition
7.10.4, 7.1.4.2). — R x R — R () subtraction
* R x R — R~ multiplication
/ R x R(— R division

3.207 write-options list: A list of write-options.

4.1.3 Other functions

3.208 Z: The|set of mathematical integers (see 4.1.1).

4.1.3.1 Substitution composition

Signatute: o Substitution x Substitufion —
4 Symbols dnd abbreviations Substitution

The following sy
part of ISO/IEC

4.1 Notation

mbols and abbreviations are used in this
13211.

4.1.1 Basic mathematical types

Table 1 defines
types.

the notation for the)basic mathematical

Axiom: fog = h where h(z)

4.1.3.2

|z| — abs x

Signature: | | : R — R

Axiom: |z| = if z > 0 then z else —z

4133 |z| - floor x

f(g(z))

The notation |2] designates the largest integer npt greater

4.1.2 Mathemgtical and Set operators
than .

Table 2 defines| the” basic operations which have their

e ») Z
conventional (exact) mathematical meaning. A

[fras 1|
otghattre——

The following notation also has its conventional (exact) Axiom: [z] = n where (z —1 < n) A (n < x)

mathematical meaning:

4.1.34 tr(r) - truncate x

z¥, logzy, on R
The notation ¢r(z) designates the integer part of =z

The following set operations also have their conventional (truncated towards zero).

mathematical meaning:
) Signature: tr: R — Z
€ (member), & (not member), = (equality), C (subset),

U (union), — (mapping), x (cartesian product) Axiom: tr(z) = if & > 0 then [z] else —|—2]

10

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

(© ISO/IEC 1995

4.1.3.5 /z — square root
Signature: \/: R — R U {undefined}

Axiom: If z > 0 then /z is the positive square root of &
else undefined

4.1.3.6 Maximum of real set

ar :R-—set —R

ISO/IEC 13211-1 : 1995(E)

For all a, @/, b, b’ € T, m € Mr, the following axioms
shall apply:

apply-mappingr (a, identity_mappingr) = a
apply_-mappingr (a, mappingr(a’, b, m))
=bifa=d

= apply_-mappingr(a, m) if a # o

update_mappingr(a, b, identity_mappingr)

Signature:

Axiom: mge(S)=zifza€SA x>y forallyes

4.1.3.7 Minimum of real set
Signature: mmin : R—set — R

Axiom: m{n(S) =z ifz e S Az <yforallyesS

4.2 Abstract data type: stack

The follow]ng functions are specified for a stack Sp where
D is a datj type:

pushp :| D x Sp — Sp
topp : $p — D U {error}
popp : $p — Sp U {error}
newstackp : — Sp
isemptyp : Sp — Boolean
For all d € D, s € Sp, the following axioms, shall apply:
topp (puphp(d,s)) = d
topp(nestackp) = error
popp (pYshp(d,s)) = s

popp (ndwstackp) £error

isemptyp (newstackp) = true

isemptyp (plushp(d, s)) = false

= waentity_-mappingr 1 a =0
mappingr(a, b, identity_mappingr) if a # b

I

update_mappingr (a, b, mappingr(a’, b’ |m))
= mappingr(a’, V', updateZmappingy(a, b, m))
ifa#ad
= mappingr(a, b, M)
ifa=d and a #0b
m
if a =\al*and a = b

NOTE — ,C'onvc (3.46) is a mapping.

5) “Compliance
5.1 Prolog processor
A conforming Prolog processor shall:

a) Correctly prepare for execution Prolog text which
conforms to:

1) the requirements of this part of I$O/IEC 13211,
and

2) the implementation defined and |mplementation
specific features of the Prolog processpr,

b) Correctly execute Prolog goals whjch have been
prepared for execution and which conform to:

1) the requirements of this part of ISO/IEC 13211,

NOTE — Stacks are used in the definition of executing a goal
(7.7) and control constructs (7.8).

4.3 Abstract data type: mapping

The following functions are specified for a mapping Mt
where T is a data type:

identity_mappingr : — Mr

mappingr : T X T x Mp — Mr
apply_mappingr : T x Mp — T
update_mappingr : T x T x My — My

and

2) the implementation defined and implementation
specific features of the Prolog processor,

c) Reject any Prolog text or read-term whose syntax
fails to conform to:

1) the requirements of this part of ISO/IEC 13211,
and

2) the implementation defined and implementation
specific features of the Prolog processor,

11

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132

11-1 : 1995(E)

d) Specify all permitted variations from this part of
ISO/IEC 13211 in the manner prescribed by this part of
ISO/IEC 13211, and

e) Offer a strictly conforming mode which shall reject

the use of an
text or while

implementation specific feature in Prolog
executing a goal.

5.2 Prolog text

© ISO/IEC 1995

b) any sequence of tokens that conforms to the syntax
of a term defined in subclause 6.3 shall have the abstract

syntax defined in that subclause,

c) any sequence of characters that conforms to the

syntax of Prolog tokens defined in subclause 6.4 shall
be parsed to those Prolog tokens.
NOTE — The presence of an infix and a postfix operator

with the same priority is also an allowable extension as an

1

Conforming Prolpg text shall use only the constructs speci-
fied in this part ¢f ISO/IEC 13211, and the implementation

defined and imp
the processor.

ementation specific features supported by

Strictly conformjing Prolog text shall use only the con-

structs specified

in this part of ISO/IEC 13211, and the

implementation defined features supported by the processor.

5.3 Prolog goal

A conforming
defined by the ¢
13211, and the i
specific features

A strictly confo
is defined by

ISO/IEC 13211,

supported by th

Prolog goal is one whose execution is
bnstructs specified in this part of ISO/IEC
mplementation defined and implementation
supported by the processor.

ming Prolog goal is one whose execution
he constructs specified in this part of
and the implementation defined featurés
P Processor.

5.4 Documentation

A conforming
by documentati
implementation
specified in this

5.5 Extensio

Prolog processor shall\be accompanied
n that completes_the) definition of every
Jefined and implemeéntation specific feature
part of ISO/IEC 13211.

A processor md
feature,

any construct that is implicitly or explicitly

undefined in the part of ISO/IEC 13211.

5.5.1 Syntax

A processor may support one or more additional char-

acters in PCS
implementation

(6.5) and additional syntax rules as an
specific feature iff:

a) any sequence of tokens that conforms to the syntax

of Prolog tex

t and data defined in subclause 6.2 shall

have the abstract syntax defined in that subclause,

12

irrpleren T
extension, it does not change the meaning of Prolog

conforms to the standard.

5.5.2 Predefined operators

her syntax
ext which

A processor may support one lor‘more additional predefined
operators (table 7) as an, {mplementation specific feature.

5.5.3 Character<conversion mapping

A processor may support some other initial

value of

Convgs\the character-conversion mapping (3.4p), as an

implementation specific feature.

5.5.4 Types

A processor may support one or more additignal types

(7.1) as an implementation specific feature iff,
additional type 7' supported by a processor:

a) No term with type 7' shall also have 4

where T and T” are different.

b) For every two terms ¢ and ¢’ with types
respectively, ¢ term_precedes t' (7.2) shall de
on T and T unless T = T".

for every

type 7"

" and T’
bend only

c) The processor shall define in its accompanying

documentation the effect of converting a terip of type

d) The processor shall define in its accompanying
documentation, the abstract and token syntax of every
term of type 1.

e) The processor shall define in its accompanying
documentation, the effect of evaluating as an expression
a term of type 1" (7.9).

f) The processor shall define in its accompanying
documentation, the effect of writing a term of type T'
(7.10).

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

5.5.5 Directives

A processor may support one or more additional directive
indicators (7.4.2) as an implementation specific feature.

5.5.6 Side effects

A processor may support one or more additional side
effects (7.7.9) as an implementation specific feature.

ISO/IEC 13211-1 : 1995(E)

Table 3 — BS6154 syntactic metalanguage

BS6154 symbol Meaning

Unquoted characters Non-terminal symbol
oL Terminal symbol
L Terminal symbol

() Brackets
[..] Optional symbols
{...} Symbols repeated zero

or more times

5.5.7 Control constructs

A processdr may support one or more additional control
constructs {7.8) as an implementation specific feature.

=

5.5.8 Flags

A process¢r may support one or more additional flags
(7.11) as aph implementation specific feature.

5.5.9 Buift-in predicates

A processqr may support one or more additional built-in
predicates [8) as an implementation specific feature.

When a prgcessor supports additional built-in predicates as
an implementation specific feature, it may also support as
an implemgntation specific feature one or more additional
forms of Efror_term (7.12.1).

NOTE — The additional forms of Errori.term may include
for example] >= (N), between (N, M) andJone_of (List) as
valid domaips.

5.5.10 Eyaluable functors

A processqr may support one or more additional evaluable
functors (9) as_an>implementation specific feature. A
processor may support the value of an expression being a
value of ar[r additional type instead of an exceptional value.

= Defining symbol
; Rule terminatpr
| Alternative
, Concatenation
(* ... *) Comment

6 Syntax

This clause definies the abstract and concrg¢te syntaxes of
a term, Prolog text and data.

Terms afe) the data structures manipulated 4t runtime by a
Proteg application. Subclause 6.2 defines how terms form
Prolog text and data, subclause 6.3 defines how tokens are
combined to form terms, and subclause 6|4 defines how
sequences of characters form tokens.

NOTES

1 The concept of a program is different in Prolog from that
in many other programming languages. The closest equivalent
concept in this part of ISO/IEC 13211 is the copcept of “Prolog
text”.

2 Different sequences of characters in Prolog fext and data can
have identical semantic meanings. The semartics is therefore
based on an abstract syntax (6.1.2).

6.1 Notation

6.1.1 Backus Naur Form

NOTE — A program that makes no use of extensions should
not rely on catching errors from procedures that evaluate their
arguments (such as is/2, 8.6.1) unless it is executed in strictly
conforming mode (5.1 e).

5.5.11 Reserved atoms

A processor may reserve some atoms for use in extensions.
The effect of executing a goal whose execution causes
a variable to be instantiated to a reserved atom or to a
compound term whose functor name is a reserved atom is
implementation defined.

Syntax productions are written in a tabular notation, where
the first line uses the extended BNF notation standardized
as BS6154 and summarized in table 3.

The metalanguage symbols ‘=" ‘|’ *,” are right-associative
infix operators which bind increasingly tightly.

The remaining lines of each syntax production link different
attributes of each production and express context-sensitive
constraints. Each entry can be considered as a parameter of
a logical grammar (i.e. a definite clause or metamorphosis
grammar). Parameters apply to non-terminal and terminal
symbols. In these lines, variables are written in italic type

13

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

style, and constants in typewriter type style. Each
attribute of the grammar is on a separate line which is
identified at the start of the line.

The facets of the term grammar are:

Abstract — The abstract term or list of abstract terms
associated with the non-terminal symbol defined by the
syntax rule is specified in terms of the abstract elements
of the symbols forming its definition.

© ISO/IEC 1995

3) n is the concatenation of the characters defined
below for each form of name token (6.4.2):

Letter digit token — The initial small letter
char followed by each alphanumeric char.

Graphic token — Each graphic token char.

Quoted token — The character denoted by each
single quoted character.

Priority — The context-sensitive aspects of the prece-
dence grammafs on which the Prolog operator notation
is based.

Each term and|operator is associated with a priority, i.e.
an integer betyeen 0 and 1201. An atomic term and a
compound term expressed in functional notation have a
zero priority. |A compound term expressed in operator
notation (i.e. ifs principal functor occurs as an operator)
has a priority| which is equal to or greater than the
priority of its principal functor (see 6.3.4.1).

Specifier — [The specifier of an operator (which defines
its class and apsociativity, see table 4).

Condition — | One or more additional conditions which
must be satisfled for the rule of the term grammar to

apply.

6.1.2 Abstract [term syntax

Prolog is typelesq in the sense that it includes only:lene data
type, whose members are called terms. The\enumerable
set of terms is dg¢fined as the union of disjoint sets which
shall include V,|A, I, F', and CT where:

a) V is a se{ of variables such _that for each form of
variable token|(6.4.3):

1) Every qccurrence-of the same named variable in
a read-term|corrésponds to the same member of V,
and

Semicolon token — The character ;.

Cut token — The character !.

The characters of the name of ,an“\atom are numbered
from one upwards.

¢) I is a set of integerS (see 7.1.2) such thaf| ¢ € I is
defined for each form{of integer token (6.44) by:

Integer constant,=— The number obtained by inter-
preting asta“decimal number the concaterjation of
the decimal digit char characters forming the

int€éger constant.

Binary constant — The number obtained py inter-
preting as a binary number the concatenatiqn of the
binary digit char characters forming the binary
constant.

Octal constant — The number obtained by inter-
preting as an octal number the concatenatign of the
octal digit char characters forming thg octal
constant.

Hexadecimal constant — The number obthined by
interpreting as a hexadecimal number the |concate-
nation of the hexadecimal digit char dharacters
forming the hexadecimal constant.

Character code constant — The value in the collat-
ing sequence (6.6) of the character denotefl by the
single quoted character.

2) Every other named variable corresponds to a
different member of V, and

3) Every anonymous variable corresponds to a dif-
ferent member of V.

b) A is a set of atoms such that the name n of a € A

is defined by:

1) n is the two characters [] for the empty list.

2) n is the two characters {} for the empty curly
brackets.

d) F is a set of floating point values (see 7.1.3) and
f € F is defined for each float number by rounding
(see 9.1.4.1) the real number defined by

(integer + fraction) * 10°7P°" "t where:

integer — The number obtained by interpreting as
a decimal number the concatenation of the charac-
ters forming the integer constant of the float
number token.

fraction — The number obtained by interpreting
as a decimal fraction the concatenation of “0.” and
the characters forming fraction.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

ISO/IEC 13211-1 : 1995(E)

exponent — If float number has no exponent p text = clause term, p text ;
then zero, else the number obtained by interpreting Abstract: ¢ -t c t
as a signed decimal number the concatenation of the
characters sign and integer constant forming the
exponent. p text = ;
) Abstract: nil
e) CT is a set where ¢ € CT is defined for each
compound term, and c is defined as f(z,...,2n)
where:
6.2.1.1 Directives
1) f[is the functor name of the compound term, and

2) n

3)

is the arity of the compound term, and

,...,xy for all n > 0, are the arguments of

the compound term.

Prolog text| (6.2) is represented abstractly by an abstract
list z wherp x is:

a) d-t
and t is

b) c-t
t is Prol

c) nil,

NOTES

1 A quot

where d is the abstract syntax for a directive,
Prolog text, or

where ¢ is the abstract syntax for a clause, and
bg text, or

the empty list.

bd token that contains no single-~lguoted

charactey is the null atom.

2 The middle dot (-) denotes associative Concatenation of the
directives arfjd clauses.

6.2 Prol

Prolog text

pg text and data

is a sequencerof read-terms which denote (1)

directive term = term) end ;
Abstract: dt dt
Priority: 1201

Condition: The principal functor*of d¢ is ({-) /1

directdiye/= directive term ;

Abstract: d :—(d)

NOTE -£)Subclause 7.4.2 defines the possible directives and
their 4meaning.

6.2.1.2 Clauses

clause term = term, end ;
Abstract: ¢ c
Priority: 1201

Condition: The principal functor of ¢ is no§ (:-)/1

NOTE — Subclause 7.4.3 defines how each |clause becomes
part of the database.

6.2.2 Prolog data

directives, pnd (2) clauses of user-defined procedures. A Prolog read-term can be read as data |by calling the
Subclause [1.4,defines the correspondence between Prolog built-in predicate read.term/3 (8.14.1).
text and thp'complete database.
read—term=term—eond
Abstract: a a
6.2.1 Prolog text Priority: 1201

Prolog text is a sequence of directive-terms and clause-

terms.

prolog text = p text ;
Abstract: pt pt

p text = directive term, p text ;
Abstract: d -t d t

NOTE — Any layout text before the term is regarded as part
of the first token of the term. A read-term ends with the end
token.

6.3 Terms

Every Prolog term is either an atomic term (6.3.1), a
variable (6.3.2), or a compound term (6.3.3).

15

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

6.3.1 Atomic terms

6.3.1.1 Numbe
term
Abstract: n
Priority: 0O
term
Abstract: r
Priority: 0O

6.3.1.2 Negatiy

term
Abstract: —n
Priority: O

Condition: a is |

term
Abstract:
Priority: O

—r

Condition: a is +

A term which is
constant denotes|

6.3.1.3 Atoms

© ISO/IEC 1995

atom = open curly, close curly ;

Abstract: {}

rs
= integer ; An atom is a name, or [] (the empty list) , or {} (the
n empty curly brackets).
NOTE — An atom which is an operator needs to be bracketed
in order to denote a term of priority 0.
= float number ;
r 6.3.2 Variables
term = variable ;
Abstract: v v
Priority: 0O
e numbers
= name, integer ;
a n 6.3.3 Compound termis = functional notation
Every compoundCterm can be expressed in functional
notation. Wher, the principal functor is an operafor, it can
= name, float number ; also be expreSsed in operator notation (6.3.4). When the
a r principal-functor is ’ .’ /2 it can also be expressed in list

the name - followed directly by a numeric
the corresponding negative constant.

notatién (6.3.5), and sometimes it can be exprefsed as a
double quoted list (6.3.7). When the principal functor is
{}41 it can also be expressed as a curly bracketed term
6.3.6).

Functional notation is a subset of the Prolog
which all compound terms can be expressed.

kyntax in

A compound term written in functional notatiop has the

term|= atom ; form f£(Al,...,aAn) where each argument Ai §s an arg
Abstract: a a and they are separated by , (comma).
Priority: O
Condition: a is 1ot an operator term = atom, open ct, arg list, close
Abstract: f({) f l
Priority: O
term|= atoms7;
Abstract: a a
Priority: 1201 arg list = arg ;
Condition: a is gn\Opérator Abstract: a a
An atom which is an operator shall not be the immediate
operand (3.120) of an operator. The priority of a term arg list = arg, comma, arg list ;
Abstract: a,! a)

consisting of an
1201 rather than

atom
Abstract: a

atom

Abstract: []

16

operator is therefore given the priority
the normal O.

= name ;

= open list, close list ;

6.3.3.1 Arguments

An argument (represented by arg in the syntax rules)
occurs as the argument of a compound term or element of
a list. It can be an atom which is an operator, or a term
with priority not greater than 999. When an argument is
an arbitrary term, its priority shall be less than the priority

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

Table 4 — Specifiers for operators

ISO/IEC 13211-1 : 1995(E)

Table 5 — Valid and invalid terms

Specifier Class Associativity Invalid term Valid term
fx prefix ~ non-associative fx fx 1 fx (fx 1)
fy prefix right-associative
xfx infix non-associative 1 xf xf (1 xf) x£
xfy infix right-associative
vEx infix left-associative 1 xfx 2 xfx 3 (1 xfx 2) xfx 3
xf postfix non-associative
vf postfix left-associative 1 xfx 2 xfx 3 1 xfx (2 xfx 3)
of the *, {1 (comma) operator so that there is no conflict Table 6 — Equivalent-terms

between cpmma as an infix operator and comma as an
argument ¢r list element separator.

arg = atom ;
Abstract: |a a
Condition:e is an operator

arg = term ;
Abstract: ja a
Priority: 999
NOTE — [This concept of an “argument” ensures that both
the terms |£(x,y) and £(:-, ;, [:-, :-|:-]) %are

syntactically valid whatever operator definitions are curgently
defined. Comma is not an atom, and the following(/terms’

have syntak errors: f£(,,a), [a,,]|v], and ~fa.b]|,];
but the following terms are syntactically valid;(E(’, ', a),
la,’,"|v], and [a,b]", "].

6.3.4 Compound terms — operator notation

Operator rotation can be_ used for inputting or outputting
a compoupd term whose\functor symbol is an operator
defined in |the operatortable (see 6.3.4.4, table 7).

An operatqr is anjatom defined by its specifier and priority.

Unbracketed Equivalent brag¢keted
term term
fy fty A fy (fy 1

1 xfy 2'xfy 3 1 xfy (2 xfy 3)
1 xfy \2vyfx 3 1 xfy (2 yfx 3)
fv/2 v fy (2 yf

1 yfyf
1 yfx 2 yfx 3

(1 v£) vE
(1 yfx 2) yEx 3

An operand with smaller priority than a|left-associative
operator which precedes that operator need not be brack-
eted.

An operand with the same priority as a|left-associative
operator which precedes that operator |need only be
bracketed if the principal functor of thgq operand is a
right-associative operator.

An operand with the same priority as a [non-associative
operator must be bracketed.

The 1term non-terminal denotes a subset of terms, namely
those allowed as the left operand of a|left-associative
operator with a given priority.

The priority of an operator is an integer in the range R,
where

R={r,re Z2|1<r<1200}
A lower priority means stronger operator binding.

The specifier of an operator (defined by table 4) is a
mnemonic that defines the class (prefix, infix or postfix)
and the associativity (right-, left- or non-associative) of
the operator.

An operand (3.120) with the same (or smaller) priority
as a right-associative operator which follows that operator
need not be bracketed.

NOTES

1 The examples of terms in tables 5 and 6 assume that each
atom fx, fy, xfx, xfy, vfx, xf and yf is an operator with
the corresponding specifier and same priority.

2 Table 5 shows some invalid terms and how they need to be
bracketed to be valid.

3 Table 6 shows equivalent bracketed and unbracketed terms.
The operators xfy and yfx are assumed to have the same
priority, and the operators fy and yf are also assumed to have
the same priority.

17

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) © ISO/IEC 1995

6.3.4.1 Operand lterm = term, op ;
Abstract: f(a) a f
An operand (3.120) is a term. Priority: n n—1 n
Specifier: xf
term = lterm ;
Abstract: «a a
Priority: n n term = op, term ;
Abstract: f(a) f a
Priority: n n n
Specifier: f
lterm = term ; r‘p“,q;nm..w i y e conctant £ ic not
Abstract: @ ” nétten-lia—is—a-—numen stant—]
- Condition: The first token of a is not open c¥
Priority: n n—1
. L lterm = op, term ;
A term‘ with sm fill?r prlorlty can always occur where a Abstract: f(a) f a
term of larger pfiority is allowed. Priority: n n n —f
Specifier: fx
term|= open, term, close ; Condition: If @ is a numefic)constant, f is not -
Abstract: a a Condition: The first tokef/0f « is not open ct
Priority: 0O 1201
term|= open ct, term, close ; NOTES
Abstract: a a . . o
Priority: 0 1201 1 Thé&/condition “the first token of a is not open cft” defines
y: the \use ‘of - in the term -(1,2) as functor and fhe use in
<42, 2) as prefix operator.
Brackets are used to override the priority of operators. 2 The lterm non-terminal assigns an unambiguops reading
to terms such as fy tl yf where the operators hav¢ the same
priority.

6.3.4.2 Operators as functors
6.3.4.3 Operators

ltermp = term, op, term ;
Abstract: f(a,b a ! b An operator is an atom (6.3.1.3).
Priority: n n—1 n n —l
Specifier: xfx A comma (6.4.8) shall be equivalent to the dtom -’
when /, ' is an operator.
lterfp = lterm,/~0p, term ; op = atom ;
Abstract: f(a, b a f b Abstract: «a a
Priority: n 7l n n—1 Priority: n n
Specifier: yix Specifier: s s
Condition g is an operator
term = term, op, term ;
Abstract: f(a,b) a fob op = comma i
S Abstract: ,
Priority: n n—1 n n Priori 000
Specifier: xfy rlorllty. 1
Specifier: xfy
lterm = lterm, op ; There shall not be two operators with the same class and
Al?str.act. f(a) a f name.
Priority: n n n
Specifier: vE There shall not be an infix and a postfix operator with the
same name.

18

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

Table 7 — The operator table

ISO/IEC 13211-1 : 1995(E)

NOTES
Priority Specifier Operator(s) 1 The predicate indicators whose predicate names are oper-
ators are: (a) (=)/2 (Prolog unify), (\=)/2 (not Prolog
1200 xfx - - unifiable), (b) Term comparison, (¢) (=..)/2 (univ), (d)
1200 fx o 2o Arithmetic evaluation, (e) Arithmetic comparison, (f) (\+)/1
1100 xfy ; (not provable).
1050 xfy ->
1000 xfy o 2 'I_‘he c_ontrol constructs defined as operators are: (a) (,)/2
900 £y \+ (gonjunctlon), (b) (;) /2 (disjunction, if-then-else), (c) (->)/2
(if-then).
700 xfx =\=
728 xfx == \== @< @=< @> @>= 3 The evaluable functors defined as operator{ are: (a) binary
7 xfx = arithmetic functors, (b) (-) /1 (negatio))\(¢) bitwise functors.
700 xfx is =:= =\= < =< > >=
5o vix + - /NN 4 The operator table may be jaltered during execution, see
440 vEx * / // rem mod << >> op/3 (8.14.3).
270 xfx *
270 xfy ”
27o fy -\ 6.3.5 Compound terms — list notation
List notatiop- can be used for inputting qr outputting a
NOTES

1 Commalis a solo character (6.5.3), and a token (6.4) but
not an atom

2 A comnja token is treated as synonymous with the operator
, as it if defined in the initial operator table.

3 The thifd argument of op/3 (8.14.3) may be any_atom
except ', ' [so the priority of the comma operator cannot be
changed.

4 The constraints on multiple operators allow a parser to
decide immgdiately the specifier of an oOperator without too
much look ghead. For example

tl yf_oy_yfx fy_or_yf £2
= tl yf_of_vyfx (fy_or_yf €2)

tl yf_or_yfx fyror_yf vE
((tl yf_or_yfx-)fy_or_yf) vyf

In these cases knowledge about the complete term is necessary
in order to Fecide whether to interpret the yf_or_yfx as a yf

compound term with principal functor * .’ f2 (dot).

term = open list, items, dlose list ;

Abstract: [l
Priority: 0O
items = arg, comma, items| ;
Abstract: .(h,{) h [
items = arg, ht sep, arg
Abstract: .(h,t) h t
items = arg ;

Abstract: .(¢,[]) t

NOTE — For the syntax of an empty list, see[6.3.1.3.

or yfx operator:

6.3.4.4 The operator table

The operator table defines which atoms shall be regarded
as operators when (1) a sequence of tokens is parsed as a
read-term by the built-in predicate read-term/3 (8.14.1),
or (2) Prolog text is prepared for execution (7.4), or (3)
output by the built-in predicate (8.14.2).

Table 7 defines the predefined operators, that is, those
operators defined in the initial state of the operator table.

6.3.5.1 Examples

A list is generally of the form [El,...,En | Tail]
where the items are separated by , (comma).

The following examples show terms expressed in list and
functional notation.

fa]l == .(a, []).
la, bl == .(a, .(b, [1)).

fa | bl == .(a, b).

|
19
|

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

6.3.6 Compound terms — curly bracketed term

A term with principal functor ‘ {} /1 can also be expressed

by enclosing its

term
Abstract: {}(!)
Priority: 0

NOTE — For the

argument in curly brackets.

term, close curly ;

l
1201

= open curly,

syntax of an empty curly brackets, see 6.3.1.3.

© ISO/IEC 1995

(current_prolog_flag(double_gquotes, chars),
atom_chars(’jim’, "jim")

; current_prolog_flag(double_quotes, codes),
atom_codes(’jim’, "jim")

; current_prolog_flag(double_quotes, atom),
‘Jim’ == "jim"

Succeeds.

(current_prolog_flag(double_quotes, chars),

[] == "

; current_prolog_flag(double_quotes, codes),
[] == un

6.3.6.1 Examplles

The following ¢xamples—$How terms expressed in curly

bracket and fun
{a} ==

{a, b} == "{}’

{}(a)l

tional notatiOn:

(r,"(a, b)).

6.3.7 Terms —|double quoted list notation

A double quotefl list is either an atom (6.3.1.3) or a-list

(6.3.5).

If the Prolog fl3g double_quotes has a value chars, a

double quote

i list token dgl containing L double

quoted charagters is a list [with L elements, where

the N-th eleme
name is the N-

If the Prolog fl
double quote
quoted chara

ht of the list is the one-char atom whose
h double quoted character of dgl.

g double_quotes has a value codes, a
H list token dgl containing L double
ters is a list [with L elements, where

the N-th elem¢gnt of the list is the collating sequence
integer of the N-th double quoted character of dgl.

If the Prolog flag double_quotes has a value atom, a

double quote
quoted chara
concatenation 0
is the characte
character of

i 1ist token dgl containing L double
“ters is an atom [whose name is the
f L characters, where the N-th character
denoted by the N-th double quoted
ql.

; current_prolog_flag(double_qguotes, atom)|

rr o —— mau

Succeeds.

6.4 Tokens

Lexically, the syntax of Prolog terms (6.3) shall be a
sequence of tokens. This subclause defines how fharacters
are combined to form tokens, and the tokens to fprm terms
and read-terms.

term (* 6.4 *)
= { token (* 64 *) } ;

read term (* 6.4 *)
= term (* 64 *) , end (* 64 *) ;

token (* 64 *)

Z name (* 64 *)

| “Vapiable (* 6.4 *)

| ifiteger (* 6.4 *)

| float number (* 64 *)

| doubld dueted list (* 6.4 *)

| open (*"64%)

| open ct (¥ 6.4-*)

| close (* 6.4 %)

| open list (* 6.47%)

| close list (* 6.4 %)

| open curly (* 6.4 *)

| close curly (* 64 *)

| ht sep (* 64 *)

| comma (* 6.4 *)

name (* 64 *)
= [layout text sequence (* 6.4.1 *)
name token (* 642 *) ;

term = double quoted list ;
Abstract: [cel
Priority: O

6.3.7.1 Examples

SrTabte—t—64—"
= [layout text sequence (* 64.1 *)] ,
variable token (* 643 *) ;
integer (* 6.4 *)
= [layout text sequence (* 64.1 *)] ,
integer token (* 644 *) ;
float number (* 64 *)
= [layout text sequence (* 64.1 *)] ,
float number token (* 645 *) ;
double quoted list (* 64 *)

The following examples show terms expressed in double
quoted list notation. They assume that the goal has been
input as a term using the built-in predicate read_term/3
(8.14.1) and is then executed without changing the value
of the flag double_quotes.

20

= [layout text sequence (* 64.1 *)

]

double quoted list token (* 6.4.6 *)

open (* 64 *)
= layout text sequence (* 64.1 *) ,
open token (* 64.8 *) ;
open ct (* 6.4 *)
= open token (* 648 *) ;

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

close (* 64 *)
= [layout text sequence (* 64.1 *)] ,
close token (* 64.8 *) ;
open list (* 64 *)
= [layout text sequence (* 64.1 *)] ,
open list token (* 6.4.8 *) ;
close list (* 64 *)
= [layout text sequence (* 6.4.1 *
close list token (* 648 *) ;
open curly (* 64 *)
= [layout text sequence (* 64.1 *)] ,
open curly token (* 64.8 *) ;
close curly (* 64 *)

—

ISO/MEC 13211-1 : 1995(E)

The comment text of a single line comment shall not
contain a new line char.

The comment text of a bracketed comment shall not
contain the comment close sequence.

comment (* 6.4.1 *)
= single line comment (* 6.4.1 *)

= [laylout text sequence (* 64.1 *) 1 ,
close curly token (* 648 *) ;
ht sep (*|6.4 *)
= [laylout text sequence (* 64.1 *) 1 ,
head [fail separator token (* 64.8 *) ;
comma (* ¢.4 *)
= [laylout text sequence (* 64.1 *)] ,
commal token (* 648 *) ;

end (* 6.4|*)
= [layjout text sequence (* 64.1 *)] ,
end tpken (* 64.8 *) ;

A token ghall not be followed by characters such that
concatenating the characters of the token with these
characters |forms a valid token as specified by the above
syntax.

NOTES

1 This is [the eager consumer rule: 123.e defines theZtokens
123 . . A layout text is sometimes nécessary to
separate tw¢ tokens.

2 A quoted token begins and ends with~the same quote
character, ahd can contain that quote charatter only as (a) part
of a meta efcape sequence, or (b) two adjacent quote characters,
for exampld 'ab’'cd’'e’, or "™ g", or ‘.

3 Not evefy sequence of tokens' forms a valid term. Additional
requirements are made in<subelause 6.3.

6.4.1 Layout text

Layout text cppqrqfnc tokens and 1s also used to resolve

| bracketed comment (* 6.4.1 *) ;

single line comment (* 6.4.1 *)
= end line comment char (* 6.53 «),
comment text (* 64.1 *),
new line char (* 6.54 *) ¢

bracketed comment (* 6.4.1 *)

= comment open (* 6§40 *),

comment text (* 64.1 *),
comment cloge\(* 64.1 *) ;

comment operny (¥\6.4.1 *)
= comment-”char (* 64.1 *),
comment~2 char (* 64.1 *) ;
comment~close (* 64.1 *)
=/comment 2 char (* 64.1 *),
comment 1 char (* 64.1 *) ;
Comment text (* 6.4.1 *)
= { char (* 6.5 *) } ;

comment 1 char (* 64.1 *) = "/" ;
comment 2 char (* 64.1 *) = "x» ;

6.4.2 Names

name token (* 642 *)
= letter digit token (* 64.2 *)
| graphic token (* 6.4.2 *)
| quoted token (* 642 *)
| semicolon token (* 6.4.2 *)
| cut token (* 642 *) ;

letter digit token (* 642 *)
= small letter char (* 652 *),
{ alphanumeric char (* 6.52 *) } ;

two ambiguities:
a) Is . (dot) a graphic token or an end token?

b) Is an atom followed by an open token the functor of
a compound term (6.3.3) or a prefix operator (6.3.4.2)?

layout text sequence (* 6.4.1 *)
= layout text (* 6.4.1 *),
{ layout text (* 64.1 *) } ;

layout text (* 64.1 *)
= layout char (* 6.54 *)
| comment (* 6.4.1 *) ;

A PR | ool PR rele gl I
7% grapic TORCIT SiTalT MOt OCE T WItIT tirc-ehdracter sequence

comment open (6.4.1).

A graphic token shall not be the single character . (dot)
when . is followed by a layout char or single line
comment.

graphic token (* 642 *)
= graphic token char (* 642 *),
{ graphic token char (* 642 *) } ;

graphic token char (* 64.2 *)

= graphic char (* 6.5.1 *)
| backslash char (* 655 *) ;

21

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

A quoted token consists of the characters denoted by
the sequence of single quoted character (6.4.2.1)
appearing within the quoted token. If this character
sequence forms a valid atom without quotes the quoted
token shall denote that atom.

A quoted token which does not contain a single quoted
character is the null atom.

A quoted token can be spread over two or more lines by

© ISO/IEC 1995

non quote char (* 64.2.1 *)
= graphic char (* 65.1 *)
| alphanumeric char (* 6.5.2 *)
| solo char (* 6.5.3 *)
| space char (* 6.54 *)
| meta escape sequence (* 6.4.2.1 *)
| control escape sequence (* 6.42.1 *)
| octal escape sequence (* 6.42.1 *)
| hexadecimal escape sequence (* 64.2.1 *) ;

means of continjuation escape sequences.

A quoted token|QT containing one or more continuation
escape sequences shall be equivalent to the quoted token
which would b¢ obtained by removing the continuation
escape sequences from Q7.

quoted token (T 642 *)
= single qudte char (* 6.5.5 *),
{ single qgphoted item (* 642 *) } ,
single quolte char (* 655 *) ;

single quoted jtem (* 642 *)
= single qudted character (* 64.2.1 *)
| continuation escape sequence (* 64.2 *) ;

continuation epcape sequence (* 642 *)
= backslash [char (* 6.5.5 *),

new line char (* 6.54 *) ;

semicolon token (* 642 *)
= semicolon [char (* 653 *) ;

cut token (* 64.2 *)
= cut char (f 653 *) ;
NOTE — 'abc’|and abc denote the same atom:

But ‘\\/’ and }\/ do not denote the<same atom because \
is used to start ar] escape sequence in (a guoted token.

6.4.2.1 Quoted characters

single quoted ¢haracter (* 642.1 *)
= non quote fhdp ¢* 642.1 *)
single quofeschar (* 6.5.5 *),

A quoted character is a single quoted ¢character
or a double quoted character or a-bacK quoted
character.

A single quoted character which consists of tw¢ adjacent
single quote chars denotes a sifgle quote char. |A double
quoted character which consists of two adjacept double
quote chars denotes a double quote char. A batk quoted
character which consists/of two adjacent back qyiote chars
denotes a back quote\char.

A quoted character which consists of a graphic char, or an
alphanumeric‘ehar, or a solo char, or a space char denotes
that char’

A meta escape sequence denotes the escaped mgta char.

meta escape sequence (* 6.4.2.1 *)
= backslash char (* 655 *),
meta char (* 6.5.5 *) ;

A control escape sequence denotes the control|character
indicated by the name of the symbolic contrpl char,
iff that control character is an extended characfer of the
processor character set (6.5).

control escape sequence (* 64.2.1 *)
= backslash char (* 6.55 *),
symbolic control char (* 642.1 *) ;

symbolic control char (* 64.2.1 *)
symbolic alert char (* 642.1 *)
symbolic backspace char (* 642.1 *)
symbolic carriage return char (* 6.4.2.1

single quote char (* 6.5.5 *)
double quote char (* 6.5.5 *)
back quote char (* 6.5.5 *) ;

double quoted character (* 642.1 *)
non quote char (* 6.4.2.1 *)
single quote char (* 6.5.5 *)
double quote char (* 6.5.5 *),
double quote char (* 6.5.5 *)
back quote char (* 6.5.5 *) ;

_—l

back quoted character (* 6.4.2.1 *)
non quote char (* 64.2.1 *)
single quote char (* 655 *)
double quote char (* 6.5.5 *)
back quote char (* 6.5.5 *),
back quote char (* 655 *) ;

22

|
|
| symbolic form feed char (* 6.4.2.1 *)
| symbolic horizontal tab char (* 6.42.1 *)
| symbolic new line char (* 64.2.1 *)
| symbolic vertical tab char (* 6.42.1 *) ;
symbolic alert char (* 642.1 *)
= ugn
symbolic backspace char (* 64.2.1 *)
= b ;
symbolic carriage return char (* 642.1 *)
= iy
symbolic form feed char (* 64.2.1 *)

= nfw .
symbolic horizontal tab char (* 64.2.1 *)
T
symbolic new line char (* 6.42.1 *)
-

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

symbolic vertical tab char (* 64.2.1 *)

= "y" ;

An octal or hexadecimal escape sequence denotes the
character from the processor character set (6.5) whose
value according to the collating sequence (6.6) is equal to
the value denoted by the octal or hexadecimal constant.

octal escape sequence (* 6.4.2.1 *)

hl hchax (* 6855)\
= 7T

ISO/IEC 13211

6.4.4 Integer numbers

integer token (* 6.4.4 *)
= integer constant (* 644 *)
| character code constant (* 6.4.4 *)
| binary constant (* 6.4.4 *)
| octal constant (* 6.4.4 *)
| hexadecimal constant (* 6.4.4 *) ;

integer constant (* 644 *)
= decimal digit char (* 6.52 *),
{ decimal digit char (* 6.52 *) } ;

-1 : 1995(E)

= back
octal
{ oct
backs
hexadecim
= backs|
symbo
hexad,
{ hex
backs
symbolic Y
= ixv o
NOTES
1 A new
2 \ canng
new line
continuation|
b’ does no
new line
atoms ‘ab’
3 The rep|

those recom
9899).

4 A back

digit char (* 6.52 *),
1 digit char (* 6.52 *) } ,
lash char (* 655 *) ;

bl escape sequence (* 6.4.2.1 *)
lash char (* 65.5 *),

l ic hexadecimal char (* 64.2.1 *),
bcimal digit char (* 6.52 *),
hdecimal digit char (* 652 *) } ,
lash char (* 655 *) ;

exadecimal char (* 64.2.1 *)

ine char is not allowed in a quoted character.

t be followed by a space in a quoted token, and.a
char occurs in a quoted token only as part of\a
escape sequence (6.4.2), so an atom ‘a\
conform to this syntax unless \ is followed by a
char in which case the atom is equivalent to the
and ab.

Fesentations of the symbolic control characters are
mended by the International Standard for C (ISO/IEC

uoted string (6.4.7)-centains back quoted characters,

but this paft of ISO/IEC 1321V does not define a token (or

term) based

6.4.3 Vai

on a back queted string.

iables

variable f

kan. I*R/i?*\

character code constant (* 6.4.4 *)
= "0", single quote char (* 6.56W,
single quoted character (* 64.2.1 *

binary constant (* 644 *)
= binary constant indicator (* 6.4.4 1
binary digit char A* 652 *),
{ binary digit char/(* 652 *) } ;

binary constant Andidcator (* 644 *)
= "O0b" ;

octal constant (* 644 *)
= octal ‘eonstant indicator (* 644 *
octt@l*digit char (* 6.52 *),
{soctal digit char (* 652 *) } ;

€ctdl constant indicator (* 6.4.4 *)
= "0o" ;

hexadecimal constant (* 6.4.4 *)
= hexadecimal constant indicator (*
hexadecimal digit char (* 652 *),
{ hexadecimal digit char (* 6.52 *)

hexadecimal constant indicator (* 6.4.4
= " Ox" ;

An integer constant is unsigned. Negati
defined by the term syntax (6.3.1.2).

A character code constant denotes the value
according to the collating sequence (6.6).

6.4.5 Floating point numbers

e integers are

pf the character

= anonymous variable (* 643 *)

| named

anonymous
= varia

variable (* 643 *) ;

variable (* 6.4.3 *)
ble indicator char (* 643 *) ;

named variable (* 643 *)

= varia

ble indicator char (* 64.3 *),

alphanumeric char (* 6.52 *),
{ alphanumeric char (* 652 *) }

| capit

al letter char (* 652 *),

{ alphanumeric char (* 652 *) } ;

variable indicator char (* 643 *)
= underscore char (* 652 *) ;

LI10al TIUIDel LCORKEIl \9)
= integer constant (
fraction (* 64.5 *)

[exponent (* 645 *) 1 ;

A5y
* 644 %),

’

fraction (* 6.4.5 *)
= decimal point char (* 645 *),
decimal digit char (* 652 *),
{ decimal digit char (* 652 *) } ;

exponent (* 6.4.5 *)
= exponent char (* 645 *),
sign (* 645 *),
integer constant (* 644 *) ;

sign (* 64.5 *)
= negative sign char (* 64.5 *)

23

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

| [positive sign char (* 645 *) 1 ;

positive sign char (* 645 *) = "+" ;
negative sign char (* 645 *) = "-" ;
decimal point char (* 645 *) = "." ;
exponent char (* 645 *) = "e" | "E" ;

NOTE — A float number token is unsigned. Negative
floating point values are defined by the term syntax (6.3.1.2).

© ISO/IEC 1995

It would be a valid extension of this part of ISO/IEC 13211 to
define a back gquoted string as denoting a character string
constant.

6.4.8 Other tokens

open token (* 648 *)

= open char (* 653 *) ;
close token (* 648 *)

= close char (* 653 *) ;

bttt ol (X 648 %)\
- ?

6.4.6 Double quoted lists

A double quoted list token denotes a term which depends
on the value of fhe Prolog flag double_quotes (7.11.2.5)
at the time the gead-term or Prolog text is input.

A double quoted list token can be spread over two or
more lines by njeans of continuation escape sequences.

A double quotefd list token D) containing one or more
continuation esdape sequences shall be equivalent to the
double quoted [list token which would be obtained by
removing the cqntinuation escape sequences from D(Q).

double quoted [list token (* 64.6 *)
= double qudte char (* 6.5.5 *),
{ double quoted item (* 646 *) } ,
double qudte char (* 655 *) ;

double quoted fitem (* 6.4.6 *)

= double qudted character (* 642.1 *)
| continuatjon escape sequence (* 642 *) ;

6.4.7 Back quoted strings

A back quoted [string is a sequence oft back quote chars
appearing withif the back quoted-string.

A back quoted| string can/bespread over two or more
lines by means [of contintiation escape sequences.

A back quoted ptring-BS containing one or more contin-
uation escape sequehces shall be equivalent to the back

= open list char (* 6.53 *) ;
close list token (* 64.8 *)

= close list char (* 653 *) ;
open curly token (* 6.4.8 *)

= open curly char (* 6.5.3 *) ;
close curly token (* 648 *)

= close curly char (* 653¢)
head tail separator token (*64.8 *)

= head tail separator char (* 6.53 *) ;
comma token (* 6.4.8 *)

= comma char (* 6.89/%) ;

end token (* 648 %)
= end char (% 648 *) ;

end char 4¢* 648 *) = "." ;

Anlend char shall be followed by a layout charpcter or a

[
o.

NOTES

1 A, (comma) has three different meanings, depending on
the context where it appears: it can separate arguments of a
compound term (6.3.3), it can separate elements of a fist (6.3.5),
or can be equivalent to the operator ', (6.3.4.2).

2 A read-term is terminated by . (end char).
3 The eager consumer rule applies to the parsing|of an end
token. An end char is not an end token if it cojild be one
character of a graphic token (6.4.2), so a layput char

is necessary to separate an end char from a btacketed
comment.

6.5 Processor-character-set

quoted string which would be obtained by removing the
continuation escape sequences from BS.

back quoted string (* 6.4.7 *)
= back quote char (* 6.5.5 *),
{ back quoted item (* 64.7 *) } ,
back quote char (* 6.5.5 *) ;

back quoted item (* 64.7 *)

= back quoted character (* 6.4.2.1 *)
| continuation escape sequence (* 642 *) ;

NOTE — This part of ISO/IEC 13211 does not define a token
(or term) based on a back quoted string.

24

The processor character set PC'S is an implementation
defined character set. The members of PC'S shall include
each character defined by char (6.5).

PC'S may include additional members, known as extended
characters. It shall be implementation defined for each
extended character whether it is a graphic char, or an
alphanumeric char, or a solo char, or a layout char, or a
meta char.

char (* 65 *)
= graphic char (* 6.5.1 *)

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

alphanumeric char (* 6.52 *)
solo char (* 6.53 *)

layout char (* 654 *)

meta char (* 655 *) ;

NOTES

1 Prolog text and data input from text streams consist of a
sequence of characters taken from PCS.

ISO/TEC 13211-1 : 1995(E)

l ("A" ! "an) | ("B" | "Hr) | ("Cn I
| ("D" | vdn) ’ ("E" I ten) I ("F" I

— 7

underscore char (* 652 *)

An alphanumeric character denotes itsel
character.

nen)
(EAD)

f in a quoted

NOTE — The alphanumeric characters can be concatenated to

form:

2 Examplgs of extended characters are single-octet characters
such as GI graphic characters in ISO 8859-1, or multi-octet
characters $uch as Chinese, Japanese, or Korean characters.
Examples of extended small letter char (6.5.2) are small letters
with grave| or acute accent and Japanese Kanji characters.
Examples ¢f extended capital letter char (6.5.2) are capital
letters with [grave or acute accent.

6.5.1 Graphic characters

graphic char (* 6.5.1 *)
| N T T S T B T BT
I o/ l I DI I RN I TN Y

n e
7

A graphic |character denotes itself in a quoted character.

6.5.2 Alphanumeric characters

alphanumefic char (* 652 *)
= alphg char (* 652 *)
| decinfal digit char (* 652 *) ;

alpha chaf (* 652 *)
= undeyscore char (* 6.52 *)
| lettgr char (* 652 *) ;

letter char (* 652 *)
= capiflal letter charn (* 6.52 *)
| small letter chaxr\[* 6.52 *) ;

small letfer chakr™* 652 *)

a) an atom when they 1ollow a small Iettd

b) a variable when they follow anunde
capital letter char.

Two such atoms and variables that are adjacent 1
by a layout character or comiment.

6.5.3 Solo characters

solo char f*'6.5.3 *)
= cut, char (* 653 *)
| opem\char (* 6.53 *)
| close char (* 653 *)
[N\eomma char (* 6.5.3 *)
|/semicolon char (* 6.53 *)
| open list char (* 6.53 *)
| close list char (* 6.5.3 *)
| open curly char (* 6.5.3 *)
| close curly char (* 6.5.3 *)
| head tail separator char (* 653 *
| end line comment char (* 653 *) ;

cut char (* 653 *) = "1

open char (* 653 *) = "(" ;

close char (* 653 *) =)"

comma char (* 653 *) = ", " ;
semicolon char (* 653 *) = ;" ;

open list char (* 653 *) = "[" ;
close list char (* 653 *) = "] ;
open curly char (* 6.53 *) = "{" ;
close curly char (* 653 *) = "}
head tail separator char (* 653 *) ="
end line comment char (* 653 *) = "g"

r char, or

score char or a

nust be separated

character.

single character

text or a Prolog

= "at | "b* fect | »a» | ver | "f* | "g" | "h" A solo character denotes itself in a quoted

l nim | " 3 " ' ko I nim | "m" ’ " l ngn l upn

} 'q i V| st | e |t | v | mwe | NQTE — An unaguoted solo character is a

wyn |z F a4 X

capital letter char (* 652 *) token except that % and thp remaining characters on the line are

= A" | *B* | "C* | "D | "E* | *F* | "G* | "H" a comment that has no significance in Prolog

| »T* | 3% | *k* | *L* | "M | "N" | vo" | v read-term.

| " Q " l n"R" I ngn l wpn | ngn | nyn | W l '))

|y | oz A solo character need not be separated from the previous and
decimal digit char (* 6.52 *) following tokens by a layout character or comment.

= Q" | nyn ' nwym | w3 | wgn

| wse | wen | w7 | g | 9v
bm_ar}g 'fillgfiﬂcr‘ar (¥ 652 %) 6.5.4 Layout characters
octal digit char (* 6.5.2 *)

= nQ" I g l wom I n3n | ngn layout char (* 654 *)

| g I ngn ! wgn = space char (* 654 *)
hexadecimal digit char (* 652 *) | horizontal tab char (* 6.54 *)

= nQ" | ey | g | n3u I g [new line char (* 654 *)

| ngn | ng | nyn | ngn I ngn

25

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

space char (* 6.54 *) = " " ;
horizontal tab char (* 6.54 *)

= implementation dependent ;
new line char (* 6.54 *)

= implementation dependent ;

A space char denotes itself in a quoted character.

NOTE — An unquoted layout character is sometimes necessary
to separate tokens, but is not itself a token or part of a token.

© ISO/IEC 1995

The collating sequence integer for a quoted character
(6.4.2.1) which is not a control escape sequence
or an octal escape sequence Or a hexadecimal
escape sequence is the collating sequence integer for
the unquoted character that the quoted character denotes.

The collating sequence integer for a quoted character
which is a control escape sequence is implementation
defined.

6.5.5 Meta characters

meta char (* 6.5[5 *)
= backslash ¢har (* 6.5.5 *)
| single quote char (* 655 *)
| double quote char (* 6.5.5 *)
| back quote|char (* 655 *) ;

single quote chlar (* 655 *) wen
double quote char (* 6.5.5 *)
back quote char (* 6.55 *) = "*" ;

backslash char |(* 6.5.5 *) = "\" ;

o

NOTE — A mgta character modifies the meaning of the
following charactefs, for example:

a) A backslash character starts an escape sequence in a

quoted token, §
code constant;
graphic chal

b) A single qy
of a quoted tok|

¢) A double
end of a doublg

d) A back qu
of a back quotd

double quoted list token, and a character
but in a graphic token, it behaves like a
F (6.5.1) (see 6.4.2).

ote char is used to indicate the start and end
bn (see 6.4.2).

juote char is used to indicate the\start and
quoted list token (see 6.4.6),

te char is used to indicate the start and end
d string.

6.6 Collating|sequence

The collating sequence <is:defined implicitly by associating
a unique collating sequénce integer with each character.

The—cottatimg—sequence—mteger—for—a—quoted—character
which is an octal escape sequence is the-valjie of the
octal characters interpreted as an octal integer:

The collating sequence integer for_a quoted [character
which is a hexadecimal escapesequence is the value
of the hexadecimal characters ifiterpreted as a hexjadecimal

integer.

The collating sequence\ integer for each extended [character
shall also be implementation defined.

NOTE — These requirements on the collating sequence are
satisfied byothi”ASCII and EBCDIC.

7<~Language concepts and semantics
This clause defines the semantic concepts of Projog:

a) Subclause 7.1 defines a type to be associfited with
each term,

b) Subclause 7.2 defines an ordering for any tyo terms,

c) Subclause 7.3 defines unification in Prolog

d) Subclause 7.4 defines the meaning of Prolog text,
e) Subclause 7.5 defines the database,

f) Subclause 7.6 defines the process of cpnverting
terms to goals, and vice versa,

The collating sequence integer for an unquoted character
(6.5) is implementation defined subject to the restrictions:

a) The collating sequence integers for each capital
letter char from A to z shall be monotonically
increasing.

b) The collating sequence integers for each small
letter char from a to z shall be monotonically
increasing.

c) The collating sequence integers for each decimal
digit char from 0 to 9 shall be monotonically
increasing and contiguous.

26

g) Subclause 7.7 defines the execution of a goal,

h) Subclause 7.8 defines the control constructs of
Prolog,

i) Subclause 7.9 defines the evaluation of a Prolog
term as an expression.

j) Subclause 7.10 defines input/output concepts,
k) Subclause 7.11 defines flags,

1) Subclause 7.12 defines errors.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

7.1 Types

The type of any term is determined by its abstract syntax
(6.1.2).

Every term has one of the following mutually-exclusive
types: V (variables), I (integers), F' (floating point values),
A (atoms), CT" (compound terms).

A term with type I, F'. or A is an atomic term.

ISO/IEC 13211-1 : 1995(E)

NOTES

1 For example, f(X,Y), £(Y,X),
witnesses of the variable set { X, v }.

X+Y,

2 The concept of a witness is required when de
(8.10.2) and setof/3 (8.10.3).

Y-1-X are all

fining bagof/3

7.1.1.3 Existential variables set of a term

Built-in prddicates which test explicitly the type of a term
are defined|in 8.3.

NOTE — Pfolog is not a typed language, and an argument of
a compound term or predication can be any term whatsoever.
Nonetheless| some predications can be satisfied only when the
arguments fjossess particular properties, and some evaluable
functors are| defined only when the operands (3.121) possess
some particylar property. Note also that although the control
constructs, built-in predicates and evaluable functors are defined
for all arguments and operands (3.120), it is often an error
unless an arfument has a particular sort of value.

It is therefdre convenient when defining Prolog to classify a
term as beldnging to one of several disjoint types.

7.1.1 Varjable

A variable |is a member of a set V' (see 6.1.2 a). (While
a goal is b¢ing executed, unification may cause a-variable
to become unified with another term.

NOTE — The syntax of a variable is definedir 6.3.2 and 6.4.3.

7.1.1.1 V3riable set of a terin

The variable set, Sy, of~a term T is a set of variables
defined recfirsively as:

a) If T|is an.atomic term then Sy is the empty set,

The existential variables set, £V, of a terr
variables defined recursively as follows:

h T is a set of

a) If T is a variable or an atomic term then E'V is the

empty set,
b) Else if T unifies ‘with ~ (v, G) th
union of the variable set (7.1.1.1) of v and

variables set of dhé-term G,

c) Else EV-is the empty set.

en BV is the
the existential

NOTE —¢For example, { X, Y } is the exiftential variables

set of.each of the terms X"Y"£(X,Y,Z2), (X,
and. (X+Y) 3.

7.1.1.4 Free variables set of a term

The free variables set, F'V, of a term T wi
term vV is a set of variables defined as the]

)" £(2,Y,X),

th respect to a
set difference

of the variable set (7.1.1.1) of T and BV where BV is a

set of variables defined as the union of the
v and the existential variables set (7.1.1.3)

NOTES

variable set of
of T.

1 For example, { X, Y } is the free variables set of X+Y+Z
with respect to £(2), and also of Zz" (A+X+Y+z) with respect

to A.

2 The concept of a free variables set is requirdd when defining

bagof/3 (8.10.2) and setof/3 (8.10.3).

b) Else if T is a variable then Sy is the set { T },

¢) Else if T is a compound term then Sy is the union
of the variable sets for each of the arguments of T.

NOTE — For example, { X, Y } is the variable set of each of
the terms £ (X,Y), £(Y,X), X+Y, and Y-X-X.

7.1.1.2 Witness of a variable set

A witness of a set of variables is a term in which each of
those variables occurs exactly once.

7.1.2 Integer

An integer is a member of a set I (see 6.1.2 c¢) where [
is a subset of Z characterized by one or three parameters.

The first parameter is

bounded € Boolean (whether the

set I is finite)

If bounded is false, it is the only parameter. In this case,

I1=2Z

If bounded is true, the other two parameters are

27

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

minint € Z
mazxint € Z

(the smallest integer in I)
(the largest integer in I)

minint and mazint shall satisfy:
mazxint > 0

and one of: minint = —(mazint)

minint = —(mazint + 1)

(© ISO/IEC 1995

7.1.3 Floating point

A floating point value is a member of a set F' (see 6.1.2 d)
where F' is a finite subset of R characterized by five
parameters:

reZ (the radix of F')
peEZ (the precision of F')
emin € Z (the smallest exponent of F)

emax € Z (the largest exponent of F)

Given specific v§lues for mazint and mimnint,

I ={z € Z| minint <z < mawxint}

NOTES

1 When boundeld is false, expressions with an integer value
will not have a vajue int_overflow, but might produce a resource
error (7.12, 7.12.2 h) because of exhaustion of resources.

2 During execufion the values of the parameters bounded,
minint, and magint are values associated with various flags
(see 7.11.1).

3 A processor 1pay provide as an extension more than one
integer type. Each integer type shall have a distinct set of the
operations describpd in 9.1.3.

4 The abstract fyntax of an integer number is defined in
6.3.1.1 and 6.3.1R2. The token syntax of a (positive) integer
token is defined iph 6.4.4.

7.1.2.1 Bytes
B, a set of bytek, is a subset of [where:

B={iel|0Ki<255}

7.1.2.2 Charagter codes

CC, a set of character codes, is a subset of I where:

CC={i€el| Be€& G i = character_code(c)}

denorm € Boolean (whether I'_contains
denormalized values)

These parameters shall satisfy:

r>2
Ap>2
Ap—2<—eming, P — 1
A p <emar <P 1

These parameterssshould also satisfy:

r is evell
AP > 100
A (emin — 1) < =2x(p—1)
A emax >2x(p—1)
AN —2<(emin—1)+emar <2

Given specific values for r, p, emin, emax, and|denorm,

Fn={0,xi*rc?
| i,e€ Z, P71 <i<rP — 1, emin < e K emaz}

Fp={gixre™n=P | i€ Z, 1<i<rP~ ! —|1}

F =FyUFp if denorm = true
=Fy if denorm = false

The members of Fy are called normalized floajing point
values because of the constraint r?~! <4 < rP |- 1. The
members of Fp are called denormalized floating point
values.

where character_code(c) is a function giving the collating
sequence integer (6.6) for a character ¢ (7.1.4.1) of the
processor character set (6.5).

The mapping between a character code and a sequence of
bytes shall be implementation defined.

NOTE — A character code may correspond to more than
one byte in a stream. Thus, inputting a single character may
consume several bytes from an input stream, and writing a
single character may output several bytes to an output stream.

There is a one-to-one mapping between members of C
(characters) (7.1.4.1) and members of CC (character codes).

28

The type F is called normalized if it contains only
normalized values, and called denormalized if it contains
denormalized values as well.

NOTES

I This part of ISO/IEC 13211 does not advocate any particular
representation for floating point values. However, concepts such
as radix, precision, and exponent are derived from an abstract
model of such values described in the rationale (annex A) of
ISO/IEC 10967-1 — Language Independent Arithmetic (LIA).
The constraints on the parameters are also justified and explained
there.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

2 The floating point type has commonly, but misleadingly,
been known as “real” in many Prolog processors.

3 The terms normalized and denormalized refer to the mathe-
matical values involved, not to any method of representation.

4 The abstract syntax of a floating point number is defined
in 6.3.1.1 and 6.3.1.2. The token syntax of a (positive) float
number token is defined in 6.4.5.

7.1.3.1 Additienal-fleating peint-constants—and-sets

ISO/IEC 13211-1 : 1995(E)

7.14.2 Boolean

Bool is a subset of A.

Bool = { true , false }

When an argument of an option (see for example, 7.10) is
Bool, a member of Bool shall be provided, and omitting

to specify such an option shall be equivalent to providing
that option with argument false.

For convenience, five constants, and an unbounded set are
defined:

fmaz |=maz {z€F | z>0}
(1 —=r=P)xpemaer

fminy [=min {z€ Fy | 2> 0}

emin—1

=r
fminp [=min {z € Fp | z >0}
— ,remz'n-p

fmin |Emin {z€ F | 2> 0}
= fminp if denorm = true
= fminy if denorm = false

epsilon| = r!"P (the maximum relative error in £})

F*=F
U {|xi*reP

|de€Z, P! <i<rP -1, e> emar}

NOTES

1 F* confains values beyond fhose that are representable in
the type F|

7.14 At¢m

An atom i§ asmember of the set A (see 6.1.2 b) and serves
for example,\as a predicate name, or a functor name, or

7.1.5 Compound term

A compound term is a member“of a set (JT" (see 6.1.2 e)
and is an arbitrary data structure. It has 3 functor which
is an identifier with an‘apity, and a number of terms as
the arguments.

Arguments are-numbered from 1.
NOTE — The“syntax of a compound term is defined in 6.1.2 e,
6.3.3, 6.3:4; and 6.3.5.

7.1.6 Related terms
7.1.6.1 Variants of a term

Two terms are variants if there is a bijgction s of the
variables of the former to the variables of] the latter such
that the latter term results from replacing pach variable X
in the former by Xs.

NOTES

1 For example, £ (A, B, A) is a variant qf £(X, Y, X),
g(A, B) is a variant of g(_, _), and P+Q is a variant of
P+Q.

2 The concept of a variant is required when d¢fining bagof/3
(8.10.2) and setof/3 (8.10.3).

as a programmer’s mnemonic for one of several distinct
items.

7.1.4.1 Characters and one-char atoms

C, a set of characters, is an implementation defined subset
of PCS, the processor character set (6.5),

Any member of C' is represented in a Prolog term by a
one-char atom whose name is that member of C.

NOTE — There is a one-to-one mapping between members of
C (characters) and members of CC (character codes) (7.1.2.2).

7.1.6.2 Renamed copy of a term

A term T2 is a renamed copy of a term T1 if:
a) T2 is a variant of T1, and
b) None of the variables in the variable set of T2
occur in any structure created during the execution of a

goal (7.7).

NOTE — The concept of a renamed copy of a term is required
when defining the execution of a user-defined procedure (7.7.10),
and the built-in predicates functor/3 (8.5.1), copy-term/2
(8.5.4), clause/2 (8.8.1), etc.

29

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

7.1.6.3 Iterated-goal term

The iterated-goal term G of a term T is a term defined
recursively as follows:

a) If T unifies with

~(_, Goal) then G is the

iterated-goal term of Goal,

© ISO/IEC 1995

7.1.6.6 Predicate indicator
pI is a predicate indicator if it is a compound term
*/' (A, N) where A is an atom and N is a non-negative

integer.

The predicate indicator '/’ (A, N) indicates the procedure
whose identifier is A and whose arity is N.

s A/N or

b) Else G is T.
NOTE — In Prolog text and this part of ISO/IEC 13211 a
predicate indicator /' (A, N) is normally written
NOTES (A) /N depending on whether or not A is an operatof.

1 For example,
foo(X)).

2 The concept
defining bagof/3

7.1.6.4 Proper

foo (X) is the iterated-goal term of " (X,

f an iterated-goal term is required when
(8.10.2) and setof/3 (8.10.3).

sublist of a list

SL is a proper sgblist of a list L if:

a) SL is an gmpty list, or

b) SL is a proper sublist of the tail of L, or

¢) The heads|

of sL and L are identical, and the tail of

SL is a proper| sublist of the tail of L.

NOTES

1 For example,
proper sublists of

2 The concept 9
bagof/3 (8.10.2

7.1.6.5 Sorted
SL is the sorted

a) L_elemen
an element of

[1,3,4], [2,3], are all

[1,2,3,4,5].

[5], and []

f a proper sublist is required.when defining
and setof/3 (8.10.3).

list of a list
list of a Jist\L if:

- is(an‘element of SL iff L_element is
Iy and

7.1.6.7 Predicate indicator sequence

PI_sequence is a predicate indicator sequencq if it is
a compound term ’,’ (PI.1f*PIn) where P[_1 is a
predicate indicator, and PI=n i$ a predicate indigator or a
predicate indicator sequence:

The predicate indicater sequence ', (A/N, PIln) indi-
cates the procedur¢”whose identifier is A and whose arity
is N, together With all the procedures indicated by PI.n.

NOTE >,/ A predicate indicator sequence ‘,’[(P1/Al,
¢, ' (P2YA2, P3/A3)) is normally written as| P1/Al,
P2 /A2, P3/A3.

7.1.6.8 Predicate indicator list

PI.list is a predicate indicator list if it is a cpmpound
term ‘.’ (PI_1, PI_n) where PI_1 is a predicate jndicator,
and PI_n is an empty list or a predicate indicatdr list.

The predicate indicator list * .’ (A/N, PIn) indfcates the
procedure whose identifier is A and whose arity {s N, and,
if PI_n is not the empty list, all the procedures [indicated
by PI_n.

NOTE — A predicate indicator list * .’ (P1/Al, '.'|[(P2/A2,
[1)) is normally written as [P1/Al, P2/A2].

7.2 Term order

b) Ll_element

elements of
L2_element

and L2_element are successive
SsL iff Ll_element term_precedes
during the creation of the sorted list

(see 7.2 especially 7.2.1).

NOTES

1 For example, [1,2,3] is the sorted list of [2,3,1,2,1];
and [X,Y,-X,-Y] (butnot [X,Y,-Y,-X]) may be the sorted
list of [-X,Y,-Y,X].

2 The concept of a sorted list is required when defining
setof/3 (8.10.3).

30

An ordering term_precedes (3.181) defines whether or
not a term X term-precedes a term Y.

If x and Y are identical terms then X term_precedes Y
and Y term_precedes X are both false.

If x and Y have different types: x term_precedes Y iff the
type of X precedes the type of Y in the following order:
variable precedes floating point precedes integer
precedes atom precedes compound.

NOTE — Built-in predicates which test the ordering of terms
are defined in 8.4.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

7.2.1 Variable

If x and Y are variables which are not identical then
X term_precedes Y shall be implementation dependent
except that during the creation of a sorted list (7.1.6.5,
8.10.3.1 j) the ordering shall remain constant.

NOTE — If X and Y are both anonymous variables then they
are not identical terms (see 6.1.2 a).

ISO/IEC 13211-1 : 1995(E)

1) if, for all I less than N, Xi is the Ith argument
of X and Yi is the Ith argument of v then '==' (Xi,

Yi), and

2) if xn is the Nth argument of X and YN the Nth

argument of Y and XN term_precedes

7.3 Unification

YN.

Unification—is—a—basic—feature—ofProlog—which affects the

7.2.2 Flohting point

If X and Y fare floating point values then X term_precedes
vy iff ‘< (K, Y).

7.2.3 Intd¢ger

If X and Y jre integers then X term_precedes v ift "<’ (X,
Y).

7.24 Atom

If x and Y|are atoms then X term_precedes Y iff:
a) X is|[the null atom and Y is not the null atom, or

b) the Value in the collating sequence (6.6) of the first
charactef] of the name of x (6.1.2 b) is less than:the
value in|the collating sequence of the first chatracter of
the nam¢ of v, or

c) the [value in the collating sequemce of the first
character| of the name of X is equal to the value in the
collating| sequence of the first character of the name of
v, and XT term_precedes YT-Where XT is the atom
whose npme is obtained by.deleting the first character
of the npme of X, andyT-1s the atom whose name is
obtained| by deleting~the first character of the name of
Y.

NOTE — The collating sequence 6.6 is implementation defined.

o
success or failure of goals, and cause$ tll;e instantiation

of variables. It is defined on terms (@s-sps
abstract syntax.

Built-in predicates which unify' two terms
defined in 8.2.

7.3.1 The mathematical definition

A substitutiomo is a unifier of two terms

of these terms by the substitution are ident
o isa unifier of ¢; and t, iff {;0 and t,d
It 4s\also a solution of the equation ¢
analogy is called the unifier of the equatid
of unifier extends straightforwardly to se
equations. Terms or equations are said to
there exists a unifier for them. They arg
otherwise.

A unifier is a most general unifier MGU (
unifier of these terms is an instance of it. 4

cified by their

explicitly are

f the instances
ical. Formally,
r are identical.
t,, which by
n. The notion
veral terms or
be unifiable if
not unifiable

f terms if any
A most general

unifier always exists for terms if they are upnifiable. There

are infinitely many equivalent unifiers thrg
A substitution is idempotent if successive
itself yields the same substitution (it is eq
that no variable of its domain occurs i
terms). There is only one most general ide
for terms, whose domain is limited to the Y

ugh renaming.
application to
hivalent to say

the resulting
mpotent unifier
ariables of the

terms, up to a renaming. It is sometimes called the unique

most general unifier.

732 ne;hl;and_algnrithm

7.2.5 Compound

If x and Y are compound terms then X term_precedes Y
iff:

a) The arity of X is less than the arity of v, or
b) X and Y have the same arity, and the functor name
of X is FX, and the functor name of Y is FY, and FX

term_precedes FY or

¢) X and Y have the same functor name and arity, and
there is a positive integer N such that:

A non-deterministic algorithm, called the “Herbrand algo-
rithm”, computes the unique most general unifier MGU of
a set of equations.

It is given with the sole purpose to define the concepts
(NSTO, STO) presented in 7.3.3. Conforming processors
are not required to implement this algorithm.

The Herbrand algorithm is:

Given a set of equations of the form ¢; =7, apply in any
order one of the following non-exclusive steps:

31

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/TEC 13211-1 : 1995(E)

a) If there is an equation of the form:

1) f =g where f and g are different atomic terms,
or

2) f = g where f is an atomic term and g is a
compound term, or f is a compound term and g is
an atomic term, or

functors, or,

© ISO/IEC 1995

Table 8 — Unification examples

M are diff¢rent.

being a variabple, then remove it.

an atomic terfn, then remove it.

a variable an
the equation

X does not occur, and

of the variablle X by the term #.

Step The set of equations
: 3=3
3 ...) = g¢(...) where and are different
) f() = g() f g (732 0
(7.3.2 h) success (unifiable)
4y f(ay,dp,...an) = f(bi,ba,...bps) where N and MGU= { }
X=Y
then exit witH failure (not unifiable). (7.3.2 h) success (unifiable)
MGU= {X — Y¥or
b) If there |s an equation of the form X = X, X MGU= {y — X}
If there if tion of the f = ¢, ¢ bei 3 =4
c) ere ip an equation of the form ¢ = ¢, ¢ being (732 al) failure-(nof unifiable)
d) If there i an equation of the form f(a;, a,...an) = 3 = F(X)) '
f(b1,b2,...b) then replace it by the set of equations (732 a2) ‘failure (not unifiable)
F(X) = 9(X)
e) If there i$ an equation of the form ¢ = X, X being (1:3:2 a3) failure (not unifiable)
t a non-variable term, then replace it by
2 7(X) = f(g(X), 1)
(7.3.2 a4) failure (not unifiable)
f) If there i$ an equation of the form X =t where:
: . - : F(X) = f(X)
1) X is a|variable and t a term in which the, variable (732d) X=X
(732 b)
. . . (7.3.2 h) success (unifiable)
2) the vagiable X occurs in some other equation, MGU={ }
then substitufe in all other equations“every occurrence
fX, Y)=F(g(Y), a)
(732d) X=g9Y), Y=a
g) If there fis an equation of the form X =t such (732 1) X =g(a), Y=a
variable—~and t is a non-variable term (7.3.2 h) success (unifiable)

that X is

which contaips this.variable, then exit with failure (not

unifiable, postive(occurs-check).

MGU={X — g(a), Y — a}

(unifiable).

This algorithm always terminates.

(vi =t v2=1t,..., o8 = tN)

defines an MGU

J(X, X, X) = f(Y, g(Y), a)
h) If no otherstepts—applicablethemrexit-withsteeess (F32dh—H =¥ X =¢(¥}—N =g
73210 a=Y, a=g%), X =a
(732e) Y=a,a=g%), X=a
If it terminates with (71321 Y=a, a=g(a), X=a
success (unifiable) the remaining set of equations (732 a2) failure (not unifiable)
X, X, X)= f(Y, g(Y), a)
(732d) X=Y, X=g9Y), X=a
(7321 X=Y, Y=9(), Y=a
(7.3.2 g) failure (not unifiable, positive occurs-check)

{vi = t1,v2 = ta, ..., o8 = tNn}

Examples in table 8 show the operation of the algorithm.
The final two examples show that the result of the

algorithm is not necessarily unique.

32

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

7.3.3 Subject to occurs-check (S70) and not subject
to occurs-check (NSTO)

A set of equations (or two terms) is “subject to occurs-
check” (STO) iff there exists a way to proceed through
the steps of the Herbrand Algorithm such that 7.3.2 g
happens.

A set of equations (or two terms) is “not subject to
occurs-check” (NSTO) iff there exists no way to proceed

ISO/IEC 13211-1 : 1995(E)

3 Most implementations do not include the occurs-check test
for efficiency reasons, and are compatible with this definition of
unification. In the undefined cases, their unification algorithm
may or may not terminate. But most practical programs are
NSTO, and for those that are STO, existing implementations
often have the same behaviour. This is why (=)/2 is not
defined when its arguments are STO.

4 STO and NSTO are decidable properties for a single
unification. However processors are not required to include such

a test.

through tHe steps of the Herbrand Algorithm such that
7.3.2 g happens.

A Prolog [text (including goals) is NSTO if and only if
all unifications during its execution are NSTO. It is STO
otherwise.

7.3.4 Normal unification in Prolog
Unification] of two terms is defined in Prolog as:
a) If tywo terms are STO then the result is undefined.

b) If fwo terms are NSTO and the two terms are
unifiablg, then the result is an MGU.

c) If two terms are NSTO and the two terms are not
unifiabld, then the result is failure.

This definjtion of unification applies both to the normal
unification|built-in predicate (=) /2 (8.2.1) andJalso when
unification| is invoked implicitly in this part of ISO/IEC
13211.

It is the rgsponsibility of the programmer to ensure that
Prolog text will be NSTO when ‘executed on a standard-
conforming processor. Programs are standard-conforming
with respe¢t to unification, iff:

a) theyl are NSTO/on a standard-conforming processor
or,

b) all umifications witicii are 570 are made using
built-in predicate unify with_occurs_check/2 (8.2.2).

NOTES

1 When a built-in predicate can be called in a way which
is undefined by this part of ISO/IEC 13211 because there is
implicit unification of two terms which are STO, the examples
accompanying the definition of the built-in predicate often
include one such example.

2 A standard-conforming processor might consistently succeed,
loop, or fail for a unification that is formally undefined by this
part of ISO/IEC 13211.

5 The property STO (or NSTOJ for a prograi
However there are tests which guarante¢/ tl

is not decidable.
hat for a given

processor, a program is NSTO. These (tests qre just sufficient

conditions.

6 Although the NSTO property\i§ undecidah
to avoid testing for it by using explicitly a
occurs-check in a program, |# This will gu
execution of a program rémains defined by this
13211. It is thus possible to apply explicitly
occurs-check whenever it is needed by cal
predicate unify with_occurs_check/2 wh

a) If twoterms are unifiable, then the res

b),, If-two terms are not unifiable, then the

7.3.4.1 Example

The built-in predicate unify with_occur
ables the programmer to avoid unsafe unifi
they are explicit (replacing calls of (=)
for example when seeing which clause heal
with a goal. But in the latter case, care

le, it is possible
unification with
arantee that the
part of ISO/IEC
unification with
ing the built-in
ose semantics is:

it is an MGU.

result is failure.

5_check/2 en-
Cations whether
2) or implicit,
s are unifiable
is needed, for

example consider the user-defined procedure append/3

defined by the clauses:

append([], L, L) :-
is_list(L).

append ([H|L1], L2, [H|L12]) :-
append (L1, L2, L12).

The goals
append([], L, [a|L])
and

append([f(X,Y,X)], [], [f(g(X),

g (Y),Y)])

safe_append/3 which is defined as:

safe_append([], L1, L2) :-
unify_with_occurs_check(Ll, L2),
is_list(L1).

safe_append([H1|L1], L2, [H2|L12]) :-
unify_with_occurs_check (H1, H2),
safe_append (L1, L2, L12).

7.4 Prolog text

he programmer
ard-conforming,

then calls of append/3 must be replaced by calls of

Prolog text specifies directives and user-defined procedures

in a textual form.

33

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

NOTES

1 The concrete and abstract syntax for Prolog text is defined
in 6.2 and 6.2.1.

2 Preparing a Prolog text for execution is defined in 7.5.1.

7.4.1 Undefined features

© ISO/IEC 1995

7.4.2.1 dynamic/1

A directive dynamic (PI) where PI is a predicate indicator,
a predicate indicator sequence, or a predicate indicator list
specifies that each user-defined procedure indicated by PI
is dynamic.

No procedure indicated by PI shall be a control construct
or built-in predicate.

This part of ISOJIEC 13211 leaves undefined:

a) The mechpnisms for converting clause-terms and
directive-terms| of Prolog text into procedures of the
database,

b) The complete rules for combining Prolog text
occurring in T’lore than one text unit into a single
equivalent seqyence of Prolog text, and

c) The actiof] to be taken if the read-terms forming
Prolog text do|not conform to the requirements of this
part of ISO/IEC 13211.

NOTE — This par} of ISO/IEC 13211 does not define a built-in

predicate consul§/1, nor any similar built-in predicate.

7.4.2 Directives

The characters of a directive-term in Prolog text (6.2:1.1)
shall satisfy the same constraints as those required; to-input
a read-term durifg a successful execution of:the" built-in
predicate read-ferm/3 (8.14.1). The principal functor
shall be (:-)/1) and its argument shall\be. a directive.

A directive in Prplog text (6.2.1.1) specifies:

a) properties |of the proedures defined in Prolog text,
or

b) the formaf and/syntax of read-terms in Prolog text,

Fhe—first—directive gy mramctBH) that speerﬁes;l a user-
defined procedure P to be dynamic shall precedé/all clauses
for p. Further, if P is defined to be a dynamic\progedure in
one Prolog text, then a directive dynamic (PI) indicating

P shall occur in every Prolog text which' contain§ clauses
for p.

NOTE — More than one directive, dynamic (PI) mgy specify
a user-defined procedure P td be dynamic in a Prolog text.

7422 multifide/d

A directive nultifile(PI) where PI is a predicate
indicatory a“predicate indicator sequence, or a predicate
indicatar list specifies that the clauses for each usef-defined
procedure indicated by PI may be read-terms |of more
than”one Prolog text.

No procedure indicated by PI shall be a control ronstruct
or built-in predicate.

Each Prolog text that contains clauses for the user-defined
procedure P shall contain a directive multifile (PI) indi-
cating the procedure p. The first directive multifjile (PI)
indicating procedure P shall precede all clauseg for the
procedure P.

NOTE — More than one directive multifile (PI) may
specify a user-defined procedure P to be multifile.

7.4.2.3 discontiguous/1

A directive discontiguous (PI) where PI is a [predicate

or

c) a goal to be executed after the Prolog text has been
prepared for execution, or

d) another text unit of Prolog text which is to be
prepared for execution.

A processor shall support correctly any directive whose
directive indicator is specified in subclause 7.4.2.x.

NOTE — The usage and semantics of directives may be altered
in Part 2 (Modules) of ISO/IEC 13211.

34

indicator, a predicate indicator sequence, or a predicate
indicator list specifies that each user-defined procedure
indicated by PTI may be defined by clauses which are not
consecutive read-terms of the Prolog text.

No procedure indicated by discontiguous (PI) shall be
a control construct or built-in predicate.

If Prolog text contains a directive discontiguous (PI),
then that directive may occur any number of times in
that Prolog text. The first directive discontiguous (PI)
indicating procedure P shall precede all clauses for the
procedure P.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

(© ISO/IEC 1995

NOTE — More than one directive discontiguous (PI)
may specify the clauses of the user-defined procedure P to be
discontiguous.

7424 op/3

A directive op (Priority, Op.specifier, Operator)
enables the operator table (see 6.3.4.4 and table 7) to be
altered.

ISO/IEC 13211-1 : 1995(E)

7.4.2.8 ensure_loaded/1

A directive ensure_loaded(P_text) specifies that the
Prolog text being prepared for execution shall include
the Prolog text denoted by P_text where P_text is an
implementation defined ground term designating a Prolog
text unit.

When multiple directives ensure_loaded (P-text) exist
for the same Prolog text, that Prolog text is included in

The argumgnts Priority, Op_specifier, and Operator
shall satisfly the same constraints as those required for a
successful ¢xecution of the built-in predicate op/3 (8.14.3),
and the opprator table shall be altered in the same way.

It shall be implementation defined whether or not an opera-
tor defined|in a directive op (Priority, Op.-specifier,
operator] shall affect the syntax of read-terms in other
Prolog texts or during execution.

7.4.2.5 char_conversion/2

A directivgl char_conversion (In_char, Out_char) en-
ables Con{c, the character-conversion mapping (3.46), to
be altered.

The arguments In_char and Out_char shall satisfy:the
same constraints as those required for a successful .€xecution
of the built}in predicate char_conversion/2,(8)14.5), and
Convc shill be altered in the same way.

It shall Bbe implementation defined~” whether or not
the charagter-conversion mapping, defined in a direc-
tive char.¢onversion (In.cHay,; Out_char) shall affect
Convc in jother Prolog texts or during execution.

74.2.6 ipitialization/1

A directivg initialization(T) converts the term T to

the Prolog text prepared for executionsomly once. The
position where it is included is implethentdtion defined.

7.4.29 set_prolog_flag/2

A directive set_prologuflag(Flag, Valye) enables the
value associated with a Prolog flag to be ajtered.

The argument§ Flag and value shall sa
constraints.as_those required for a successf]
the built-in predicate set_prolog_flag/32
Value shall be associated with flag Fla
way.

It shall be implementation defined whe
directive set_prolog_flag(Flag, Valug
the values associated with flags in other
during execution.

7.4.3 Clauses

A clause-term in Prolog text (6.2.1.2) enah
a user-defined procedure to be added to th

The characters of a clause-term shall sa
constraints as those required to read a reag
successful execution of the built-in predicatg
(8.14.1).

A clause clause of a clause-term Clausq.

Lisfy the same
1l execution of

(8.17.1), and
y in the same

her or not a
) shall affect
Prolog texts or

les a clause of
e database.

isfy the same

-term during a
read-term/3

shall satisfy

the same constraints as those required fg

a goal G and includes it in a set of goals which shall
be executed immediately after the Prolog text has been
prepared for execution. The order in which any such goals
will be executed shall be implementation defined.

7.4.27 include/1

If F is an implementation defined ground term designating
a Prolog text unit, then Prolog text P1 which contains
a directive include(F) is identical to a Prolog text P2
obtained by replacing the directive include(F) in P1 by
the Prolog text denoted by F.

r a successful

execution of the built-in predicate assertz(Clause)
(8.9.2), except that no error shall occur because Clause
refers to a static procedure, and Clause shall be converted
to a clause ¢ and added to the database in the same way.

The predicate indicator p/N of the head of Clause shall
not be the predicate indicator of a built-in predicate or a
control construct.

If no clauses are defined for a procedure indicated by
a directive with directive indicator dynamic/1 (7.4.2.1),
multifile/1 (7.4.2.2), or discontiguous/1 (7.4.2.3),
then the procedure shall exist but have no clauses.

35

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

All the clauses for a user-defined procedure P shall be
read-terms of a single Prolog text unless there is a directive
multifile (UP) where UP indicates P in each Prolog text
in which there are clauses for Pp.

All the clauses for a user-defined procedure P shall be
consecutive read-terms of a single Prolog text unless there
is a directive discontiguous (UP) directive indicating P
in that Prolog text.

(© ISO/IEC 1995

The means by which a Prolog processor is asked to prepare
standard-conforming Prolog texts (6.2) for execution shall
be implementation defined. The manner in which a Prolog
processor prepares standard-conforming Prolog texts for
execution shall be implementation dependent. This process
converts the read-terms in a Prolog text to the clauses of
user-defined procedures in the database.

All clauses of a procedure are ordered for execution
according to the textual (or temporal) order of these

7.5 Database

The database is |the set of user-defined procedures which
currently exist djiring execution.

The complete dafabase is the collection of procedures with
respect to which execution is performed. Each procedure
is:
a) a control [construct, or
b) a built-in|predicate, or
¢) a user-defined procedure.
Each procedure {s identified by a unique predicate indicator

(3.131).

the processor. They have properties which are defined.\by
the clauses in this part of ISO/IEC 13211. In particular,
they cannot be [altered or deleted during execution (see
7.5.2).

Built-in predicaz%s and control constructs are provided, by

A user-defined procedure is a sequenceof (zero or more)
clauses prepared for execution.

Attempts to perfform invalid <operations on the complete
database cause 4 permission¢error (7.12.2 e).

NOTES

Thauses a5 they were preparedfor execution:

Any effects of reordering, adding or removing clauses by
directives during preparation for execution*are implemen-
tation defined.

The clauses of different procedutes have no temporal or
spatial correlation.

The effect of directives.while preparing a Prolog text for
execution is defined in '(7.4.2).

7.5.2 Static ‘and dynamic procedures

Each procedure is either dynamic or static. Each built-in
predicate and control construct shall be stati¢, and a
uset-defined procedure shall be either dynamic or static.

By default a user-defined procedure shall be static, but (1)
a directive with directive indicator dynamic/1 fn Prolog
text overrides the default, and (2) asserting a clpuse of a
non-existent procedure shall create a dynamic procedure.

A clause of a dynamic procedure can be altered| a clause
of a static procedure cannot be altered.

NOTES

1 While Prolog was implemented as a simple [nterpreted
system, it was sufficient to classify procedures| as built-
in (and static) or user-defined (and dynamic). But the
subsequent development of compilers and libraries [requires a
more sophisticated classification in order to achieve greater
efficiency.

1 There is a difference between a procedure which does not
exist, and one which exists but has no clauses, for example see
7.1.7, 89.4.

2 A procedure may have no clauses if (1) it is specified in a
directive but no clauses are defined for it, or (2) it is dynamic
and all clauses have been retracted.

7.5.1 Preparing a Prolog text for execution

Preparing a Prolog text for execution shall result in the
complete database and processor being in an initial state
of execution.

36

2 The restriction that only dynamic procedures can be altered
enables “partial evaluation” to be performed on any procedure
which is static.

3 The distinction between static and dynamic is also important
for users, for example, when developing a library, procedures
can be dynamic during development, but then be made static
for users of the library.

7.5.3 Private and public procedures

Each procedure is either public or private. A dynamic
procedure shall be public. Each built-in predicate and

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

control construct shall be private, and a static user-defined
procedure shall be private by default.

A clause of a public procedure can be inspected, a clause
of a private procedure cannot be inspected.

NOTE — An additional directive public/1 that specifies some
user-defined procedures to be public would be an extension.

7.5.4 A logical database update

ISO/IEC 13211-1 : 1995(E)

Table 9 — Principal functors and cont

rol constructs

Any change in the database that occurs as the result of
executing [a goal (for example, when the activator of a
subgoal isja call of assertz/1 or retract/1) shall affect
only an acfivation whose execution begins afterwards. The
I not affect any activation that is currently
ted.

hus the database is frozen during the execution of
a goal, and| the list of clauses defining a predication is fixed at
the momen{ of its execution (see 7.7.7 e).

7.6 Converting a term to a clause, and a clause
to aj term

Prolog provides the ability to convert Prolog data to
and from [code. But an argument of a goal is a term,
while the pomplete database contains procedures with the
user-defingd procedures being formed from clauses.~Some
built-in predicates (for example asserta/1) .convert a
term to a|corresponding clause, and others,(for example
clause/2) convert a clause to a corresponding term.

NOTES

1 Convertjng a term T to asbody B and back may result in
non-identicgl term T’.

2 Part 2 (Modules) ©0f ISO/IEC 13211 may require additional
operations when converting a term to a body.

7.6.2 Converting a term to the body of

A term T can be converted to a goal G wh
of a clause:

Principal functor Control construct
(r,")/2 Conjunction
(;)/2 Disjunction
(=>)/2 If-then
1/0 Cut
call/l Call
true/0 True
fail/o Fail
catch/3 Catch
throw/1 Throw

a) If T is a ‘variable then G is the ¢
call (7.8.3)/ whose argument is T.

bys If T is a term whose principal fun
table 9 then G is the corresponding cq
If the principal functor of T is call/1l
throw/1 then the arguments of T and
else if the principal functor of T is (’,
or (->)/2 then each argument of T
converted to a goal.

c¢) If T is an atom or compound term
functor FT does not appear in table
predication whose predicate indicator
arguments, if any, of T and G are identi

a clause

ich is the body

ntrol construct

ctor appears in
ntrol construct.
or catch/3 or
G are identical,
y/2 or (;)/2
shall also be

vhose principal
D then G is a
s FT, and the
Cal.

NOTES

1 A variable X and a term call (X) are conyerted to identical
bodies.

2 If T is a number then there is no goal which corresponds
to T.

7.6.1 Cohvertinga—termto-the - head-ef-a—elause

A term T can be converted to a predication which is the
head H of a clause:

a) If T is a compound term whose functor name is
FT then the predicate name PH of H is FT, and the
arguments of T and H are identical.

b) If T is an atom denoted by the identifier A then the
predicate name PH of H is A, and H has no arguments.

NOTE — If T is a number or variable, then T cannot be
converted to a head.

7.6.3 Converting the head of a clause to a term

A head H with predicate indicator P/N can be converted
to a term T:

a) If N is zero then T is the atom Pp.

b) If N is non-zero then T is a renamed copy (7.1.6.2)
of TT where TT is the compound term whose principal
functor is P/N and the arguments of H and TT are
identical.

37

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

7.6.4 Converting the body of a clause to a term

A goal ¢ which is a predication with predicate indicator
P/N can be converted to a term T:

a) If nis zero then T is the atom P.
b) If N is non-zero then T is a renamed copy (7.1.6.2)

of TT where TT is the compound term whose principal
functor is P/N and the arguments of G and TT are

© ISO/IEC 1995

b) To satisfy the initial goal (that is, to give a positive
answer in an implementation defined form) with respect
to the complete database, and perhaps instantiating some
or all of the variables of the initial goal.

7.7.2 Data types for the execution model

The execution model of Prolog is based on a execution
stack S of execution states £'S.

identical.

¢) If G is a fontrol construct which appears in table
9 then T is 4 term with the corresponding principal
functor. If the principal functor of T is call/l or
catch/3 or throw/1 then the arguments of G and T are
identical, else [if the principal functor of T is (', ") /2
or (;)/2 or (}>)/2 then each argument of G shall also
be converted tp a term.

7.7 Executing a Prolog goal

This subclause defines the flow of control through Prolog
clauses as a goal is executed.

NOTES

1 This descriptign is consistent with the formal definition in
annex A.

2 This subclause] does not define:
a) The meaniijg of each built-in predicate,

b) The check{ to see whether or not an .errof condition is
satisfied,

¢) Side effecty, for example database updates, input/output.

3 The execution| model desgribed here is based on a stack
(4.2) of execution|states.

7.7.1 Executior

ES is a structured data type with componentss

S_index — A value defined by the eufrent nhimber of
components of S.

decsglstk — A stack of rdecorated subgoal]s which
defines a sequence of activators that might be |activated
during execution.

subst — A substitution which defines the stgte of the
instantiations Of +he variables.

BI — <Backtrack Information: a value which defines
howto.ye-execute a goal.

Thedehoicepoint for the execution state E.S;yq is IS;.

A decorated subgoal DS is a structured data type with
components:

activator — A predication prepared for gxecution
which must be executed successfully in order fo satisfy
the goal.

cutparent — A pointer to a deeper execufion state
that indicates where control is resumed should| a cut be

re-executed (see 7.8.4.1).

currstate, the current execution state, is tof(S5). It
contains:

a) An index which identifies its position in J, and

Execution is a sequence of activations which attempt to
satisfy a goal. Side effects (7.7.9) may occur during
execution.

Each execution step is represented by a sequence of
execution states.

Execution may or may not terminate. If it does, the result
shall be to realize side effects during execution and:

a) To fail the initial goal (that is, to give a negative

answer in an implementation defined form) with respect
to the complete database, or

38

b) The current decorated subgoal stack (i.e. the current
goal), and

¢) The current substitution, and
d) Backtracking information.

currdecsgl, the current decorated subgoal, s

top(decsglstk) of currstate. It contains:
a) The current activator, curract, and

b) its cutparent.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

Table 10 — The execution stack after initialization

S. Decorated Substi- BI
index subgoal stack tution
1 ((goal, 0), newstackps) {} nil
newstackgs

BI has a value:

ISO/IEC 13211-1 : 1995(E)

Table 11 — The goal succeeds

S Decorated Substi- BI
index subgoal stack tution
N (newstackps) z nal

1 ((goal, 0), newstackps) {}

nil — |Its initial value, or

ctrl — | The procedure is a control construct, or

bip — |The activated procedure is a built-in predicate,
or

up(CL)|— CL is alist of the clauses of a user-defined
procedufe whose predicate is identical to curract, and
which afe still to be executed.

NOTES
1 Thus th¢ data structures are:
S =(ESM, ESn—1, ESNn_2, ... ES|, newstackgs)
ES; = (S;,|currentgoal;, subst;, BI;)

currstate F top(S) = ESn

currentgod] = (decoratedsubgoaly, .. décoratedsubgoal;,

newstackpls)
currdecsgl|= decoratedsubgoal ;
decoratedspbgoal; = (activator;, cutparent;)
curract is fhe activator\of~currdecsgl.

2 The corfcept of 'a stack is defined in 4.2.

newstackgs

Table 12 — The goal fails

S Decorated Substi-| BI
index subgoal stack tution

fiewstackgs

NOTE —*A processor may support the concep} of a query, that
is a goal-given as interactive input to the top level. But this
part~0f ISO/IEC 13211 does not define a means of delivering a
goalAo the processor except that Prolog text njay include a set
of goals to be executed immediately after it h@s been prepared
for execution (7.4.2.6).

Nor does this part of ISO/IEC 13211 defipe a means of
instructing a processor to find multiple solutior}s for a goal.

7.74 A goal succeeds

A goal is satisfied, i.e. execution succdeds when the
decorated subgoal stack of currstate is empty, as in Table
11. A solution for the goal goal is repiesented by the
substitution X.

7.7.5 A goal fails

Execution fails when the execution stack [S is empty, as
in-table 12

7.7.3 Initialization

The method by which a user delivers a goal to the Prolog
processor shall be implementation defined.

A goal is prepared for execution by converting it into an
activator.

Table 10 shows the execution stack after it has been
initialized and is ready to execute goal after it has been

converted into an activator.

Execution can then begin (7.7.7).

7.7.6 Re-executing a goal

After satisfying an initial goal, execution may continue by
trying to satisfy it again.

Procedurally,
a) Pop currstate from S.

b) Continue execution at 7.7.8.

39

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

7.7.7 Selecting a clause for execution

Execution proceeds in a succession of steps:

a) The processor searches in the complete database
for a procedure p whose predicate indicator corresponds
with the functor and arity of curract.

b) If no procedure has a functor and arity agreeing
with the functor and arity of curract, then action

© ISO/IEC 1995

NOTES

1 The control constructs true, fail and throw can never be
re-executed because they are removed from currstate as they
are executed.

2 The control constructs call, cut, conjunction, disjunction,
if-then, and catch are all re-executed in this semantic model
of Prolog so that S shows more clearly the history of the
execution. However they all fail immediately when they are
re-executed.

depends on thg value of the flag unknown (/.11.2.4):

error — |There shall be an error
existernce_error (procedure, PF)
where PF if the predicate indicator of curract, or

warning —+ an implementation dependent warning
shall be ggnerated, and curract replaced by the
control congtruct fail, or

fail — durract shall be replaced by the control
construct fafl.

c) If p is 4 control construct (true, fail, call, cut,
conjunction, [disjunction, if-then, if-then-else, catch,
throw), then BI is set to ctrl and continue execution
according to the rules defined in 7.8,

d) If p is a|built-in predicate BP, BI is set to bip,
and continue ¢xecution at 7.7.12,

e) If p is § user-defined procedure, BI is, et to

up(C'L) wherg CL is a list of the current clagses of p
and continue gxecution at 7.7.10.

7.7.8 Backtradking

The processor Hacktracks (1)_if\a goal has failed, or (2)
if the initial gogl has beendsatisfied, and the processor is

asked to re-exechte it.

Procedurally, bafktracking shall be executed as follows:

3 The control construct if-then-else is re-execufed)|(after the
+f fails) so that the else can be executed.

4 Step 7.7.8 e happens after the etther branch of a disjunction
*; ' (either, or) has failed.

7.7.9 Side effects

Side effects that ocqurduring the execution of a goal shall
not be undone if theyprogram subsequently backtracks over
the goal. Examples include:

a) Changes to the database, for example by execut-
ing“the built-in predicates abolish/1, asgerta/l,
assertz/1l, retract/1.

b) Changes to the operator table (see 6.3.4.4) by
executing the built-in predicate op/3,

c) Changes to the values associated with Pro-
log flags (7.11) by executing the built-in |predicate
set_prolog_flag/2,

d) Changes to Convc, the character-cpnversion
mapping by executing the built-in |predicate
char_conversion/2 (8.14.5),

e) Input/output, for example, stream selegtion and
control, character, byte, and term input/output (8.11,
8.12, 8.13, 8.14).

a) Examine the value of BI for the new currstate.

b) If BI is up(CL) then p is a user-defined procedure,
remove the head of C'L and continue execution at 7.7.10.

c¢) If BI is bip then p is a built-in predicate, and
continue execution at 7.7.12 b.

d) If BI is ctrl then p is a control construct, and the
effect of re-executing it is defined in 7.8.

e) If BI is nil, then the new curract has not yet
been executed, and continue execution at 7.7.7.

40

7.7.10 Executing a user-defined procedure

Procedurally, a user-defined procedure shall be executed
as follows:

a) If there are no (more) clauses for p, BI has the
value up([]) and continue execution at 7.7.11.

b) Else consider clause ¢ where BI has the value
up([c|CT]),

c) If ¢ and curract are unifiable, then it is selected
for execution and continue execution at 7.7.10 e,

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

d) Else BI is replaced by a value up(CT) and continue
execution at 7.7.10 a.

e) Let ¢ be a renamed copy (7.1.6.2) of the clause ¢
of up([el).

f) Unify the head of ¢’ and curract producing a most
general unifier MGU.

ISO/IEC 13211-1 : 1995(E)

Table 13 — Before executing a rule p (X, Y)

Substi-
tution

S- Decorated
index subgoal stack

BI

N ((p(x,), CP), >
)

up([Pr] Pr))

g) Ap Ly the substitution MGL to the I\ndy of ¢/

h) Make a copy CCS of currstate. It contains a
copy of|the current goal which is called CCG.

1) Apply the substitution MGU to CCG (so that
variabley of C'C'G which are variables of curract
become [instantiated).

1) Replace the current activator of CCG by the MGU-
modified body of ¢’.

k) Set|BI of CCS to nil.

1) Set the substitution of C'C'S to a composition of the
substitutfjon of currstate and MGU.

m) Set|cutparent of the new first subgoal of the decor-
ated subgoal stack of C'CS to the current choicepoint.
Note that the cutparent of the other decorated-subgoals
are unalfered.

n) Push CCS onto S. It becomes the new currstate,
and the previous currstate becomes its choicepoint.

o) Conftinue execution at™7-7.7.

NOTES

1 BI has|thevalue up([]) when (a) all the clauses of p have
s A

7.7.10.1 Example — A user-defined (rule

If the first clause P; of the usersdefined pi
p(M, W) :- m(M), £(W);

ocedure p/2 is

then the body of this clause. in the datapase will be a

conjunction:
(pM, W), ', 'Am (M), £(W)))

and Table 13 shows-the execution stack rg
a curract p (X, \¥) using this clause.
The actigns, te' execute this subgoal:

= (pmM, WwW), ‘" (mm), £
b) MGU={X — MM, Y — WW}
¢) Applying MGU to the ¢’ body, ‘', ' (m

d) Make a copy CCS of currstate,
CCS=(@Ex,), CP), ..)X up(

e) Apply MGU to CCS
f) Replace the activator by the body of
g) Set BI to nil

h) Set cutparent of subgoal to the curre
so that now

CCS=((C," " (mm), £@ww)), N—1
{X—=MM, Y — WW } o X, nil

i) Push CCS onto S.

Takl 1.4 L +h '

ady to execute

(Ww)))

(MM) , £ (WW))
P1|Pr])
C/

nt choicepoint

D, o),

toal £+
TAaoTC— T —STTO W s thiC—CXCCttr oS tatic—arter

executing the

tloas L. <l 1 s ihall
e eat—ant—curracr—arc—ahaotes

been examiked—to—see—if
or (b) p has no clauses at all.

2 choicepoint will be re-executed if backtracking becomes
necessary (7.7.8).

3 The choicepoint is the next execution state, but cutparent
points to the execution state below choicepoint because
backtracking a cut removes the total activation of a procedure
including its activator and choicepoint.

4 When the clause which is selected for execution is a fact,
then its body is true with an activator ¢rue whose activation
is described in (7.8.1.1).

subgoal p (X, Y) using the clause (p(M, W
£(w))).

7.7.10.2 Example — A user-defined fact

),y (M),

If the first clause M| of the user-defined procedure m/1 is

m(pete) .

then the body of this clause in the database will be true
because the clause is a fact. Table 15 shows the execution

stack ready to execute a curract m(X) usi

The actions to execute this subgoal:

ng this clause.

41

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

Table 14 — After executing a rule p (X, Y)

© ISO/IEC 1995

Table 16 — After executing a fact m(pete)

Table 15 — Before executing a fact m(pete)

S DEcorated Substi- BI
index subpoal stack tution

N ((x), CP), z up([M,|Mr))
(£ W), CP),
)

a) clause_copy = (m(pete), true)
b) MGU = {|X — pete}
c) Applying MGU to the clause_copy body, trie

d) Make a cqpy CCS of currstate,
CCS = (mK), CP), (Ew), CP),)X, nil

e) Apply MQU to CCS
f) Replace the activator by the. body of clause_copy
g) Set BI to| nil

h) Set cutpatent of’subgoal to the current choicepoint
so that now

S_ Decorated Substi- BI S Decorated Substi- BI
index subgoal stack tution index subgoal stack tution
N4+1 (', (m(), {X — MM, nil N+1 ((true, N —1), {X — pete} nil
f(ww)), N —1), Y — WW} (f(w), CP), o X
) o X)
N ((p(x, V), CP),) up([P1|Pr]) N ((m(x), CP), 2 up([M,|Mr))
...) (£(w), CP),
)

value up([]), it shall be executed as follows:
a) Pop currstate from S.

b) Continue éxeeution at 7.7.8.

NOTE — THe current substitution (whatever was contgibuted by
the current MGU) is thereby lost forever.

Execition has failed completely when S is empty (seg 7.7.5).

7.7.12 Executing a built-in predicate
A built-in predicate BP shall be executed as follows:

a) Unify curract and the callable term repfesenting
the built-in predicate BP producing a mosf general
unifier MGU.

b) Make a copy CCS of currstate. It contains a
copy of the current goal which is called CCG|

c) Push CCS onto S. It becomes the new currstate,
and the previous currstate becomes its choicgpoint if
backtracking becomes necessary (7.7.8).

d) _Execute. or_re-execute after backtracking (7.7.8),

CCS = ((true, N — 1), (E(w), CP), ...),
{X — pete } o Z, nil

i) Push CCS onto S.

Table 16 shows the execution stack after executing the
subgoal m(x) using the clause (m(pete), true).

7.7.11 Executing a user-defined procedure with no
more clauses

When a user-defined procedure has been selected for
execution (7.7.7) but has no more clauses, i.e. Bl has a

42

curract and perform any side effects according to the
rules for BP (see 8) This sometimes leads to a further
instantiation of variables in the activator; if so the
substitution is applied to the appropriate variables of the
current goal.

e) If the activation of BP succeeds, then replace the
current activator of CCG by an activator true whose
activation is described in (7.8.1.1).

f) Else if the activation of BP fails, then replace the
current activator of CCG by an activator fail whose
activation is described in (7.8.2).

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

NOTE — Strictly speaking a new stack entry is needed only
if the built-in predicate is designated as re-executable. Then
its activator could lead to re-activation of that built-in predicate
and thereby to different substitutions.

7.8 Control constructs

This definition of each control construct gives its logical

meaning, the procedural effect of satisfying it (by describing
the Change on—the execution stack Q)’ the effect of re-

ISO/IEC 13211-1 : 1995(E)

Table 17 — Before executing true

S_ Decorated Substi- BI
index subgoal stack tution

N ((true, N —2), > ctrl
(fw), CP),
)

executing if, and some examples.
The formaf and notation of the definition of each control
construct iy consistent with that used for built-in predicates

(8.1) excep| that a mode goal indicates that the argument
is a goal rather than a term.

NOTES
1 A contrgl construct is static.

2 The coijtrol constructs are defined formally in subclause
AS5.1.

7.8.1 trug/0
7.8.1.1 Description
true is trye.

Procedurallly, a control construct true, dengted by true,
shall be expcuted as follows:

a) Popleurrdecsgl, i.e. (true;OP), from currentgoal
of currdtate.

b) Set |BI to nil jindicating that a new activation of
the new |curract @S\fo take place.

¢) Confinue‘execution at 7.7.7.

Table 18 — After executing) tfue

S- Decorated Substi-| BI
index subgoal stack tution

N (() CP), x nil
o)

7.84.3 Errors

None.

7.8.1.4 Examples

Tables 17 and 18 show the execution stgck before and
after executing the control construct true.

true.
Succeeds.

7.8.2 fail/0
7.8.2.1 Description

fail is false.

Procedurally, a control construct fail, denpted by fail,

NOTES

1 No new execution stack entry is created, and the current
substitution remains unchanged.

2 Execution is complete when all activators have been replaced
by true and deleted so that the decorated subgoal stack becomes
empty (see 7.7.4).

7.8.1.2 Template and modes

true

shall be executed as follows:
a) Pop currstate from S.

b) Continue execution at 7.7.8.

NOTES

1 The current substitution (whatever was contributed by the
current MGU) is thereby lost forever.

2 Execution has failed completely when S is empty (see
7.7.5).

43

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

Table 19 — Before executing fail

)

S_ Decorated Substi- BI
index subgoal stack tution
N+1 ((fail, CP),)Y ctrl
)
N ((f(Y), CP), z up([I1] Fr))

© ISO/IEC 1995

b) Set BI of CCS to nil.

¢) Pop currdecsgl (= (call(e),CP)) from
currentgoal of CCS.

d) If the term G is a variable, there shall be an
instantiation error (7.12.2 a),

e) Else if the term G is a number, there shall be a
type error (7.12.2 b)

Table 20 — After executing fail

S Decorated Substi- BI
index subgoal stack tution
N ({£(¥), CP), pX up([F1]Fr])
)

7.8.2.2 Template and modes

fail

7.8.2.3 Errors

None.

7.8.2.4 Examples

Tables 19 and
after executing

fail.
Fails.
7.8.3 call/l

D0 show the exécution stack before and

he control conStruct fail.

NOTE — Executing a call has the effect that:

7.8.3.2 Template and modes

call (+callable term)

f) Else convert the term G to a goal gogl’(7,6.2).

g) Let NN be the S_index ¢f the choicgpoint of
currstate.

h) Push (goal, NN) on to currentgoal of {CCS.
i) Push CCS onlorS.

j) Continug _execution at 7.7.7.
k) Rop‘currstate from S.

)" Continue execution at 7.7.8.

call(G) is re-executable. On backtracking, continue at
7.8.3.1 k.

a) If goal should fail, then the call will fail, angl
b) goal can be re-executed, and

¢) Any cut inside goal is local to goal bg¢cause the
cutparent for goal is the choicepoint for the cdll.

7.8.3.1 Description

call(G) is true iff G represents a goal which is true.

When G contains ! as a subgoal, the effect of ! shall not

extend outside G.

Procedurally, a control construct call, denoted by call(G),
shall be executed as follows:

a) Make a copy CC'S of currstate.

44

7.8.3.3 Errors

a) G is a variable
— instantiation_error.

b) G is neither a variable nor a callable term
— type_error (callable, G).

¢) G cannot be converted to a goal
— type_error(callable, G).

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

Table 21 — Before executing call (G)

S- Decorated Substi- BI
index subgoal stack tution

N ((call(e), CP), > ctrl
)

ISO/IEC 13211-1 : 1995(E)

call((z=!, a(X), z)).
Succeeds, unifying X with 1, and Z with !.
On re-execution, succeeds, unifying X with 2,

and Z with !.

On re-execution, fails.
[This behaviour arises because the
argument of call/l is converted to a goal
before it is executed, and ’‘Z’ becomes the
goal ‘call(z)’, and is executed as ‘call(!)’
which is equivalent to true.]

call ((write(3), X))

Thble 22 — After executing call (G)

Sl Decorated Substi- BI
index subgoal stack tution
N +1 (G N-=1), z nil
)

N ((call(c), CP), z ctrl
)

7.8.3.4 Ekamples

Tables 21 |and 22 show the execution stack before and
after execufting the control construct call(G).

The examples defined in this subclause assume the'database
has been cfeated from the following Prolog text:

b(X) :-
Y = (wfite(X), X),
call(y]).

a(l).
a(2).

call(!).
Succeedls.

call(faill.
Fails.

Outputs ‘3’, then
instantiation_error.

call ((write(3), call(l)).
Outputs ‘3’, then
type_error (callable, 1)"

call(X).
instantiation_errox.

call(l).
type_error(callable, 1).

call((faid;7 1)) .
type_‘error (callable, (fail, 1)).

call(write(3), 1)).
type_error (callable, (write(3), 1)

call((1l;true)).
type_error (callable, (1;true)).

7.84 !/0 - cut
7.8.4.1 Description
! is true.

Procedurally, a control construct cut, denoted by !, shall
be executed as follows:

a) Make a copy CCS of currstate.
b) Set BI of CCS to nil.

¢) Replace the curract, !, of CCS byl true.

d) Push CCS on to S.

call((fail;X)7.
Fails.

call((fail, call(1l))).

Fails.
b(_).
Outputs characters representing a variable,
then instantiation_error.
b(3).
Outputs ‘3’, then
type_error (callable, 3).
Z =1, call((2=!, a(X), Z)).

Succeeds, unifying X with 1, and Z with !.
On re-execution, fails.

e) Continue execution at 7.7.7.
f) Make a copy cut of cutparent of currstate.
g) Pop currstate from S.

h) If cut = S_index of top(S) then top(S) becomes
the new currstate, and continue execution by back-
tracking at 7.7.8.

1) Else continue execution at 7.8.4.1 g.

! is re-executable. On backtracking, continue at 7.8.4.1 f.

45

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

Table 23 — Before executing cut

© ISO/IEC 1995

S Decorated Substi- BI
indez subgoal stack tution Table 24 — After executing cut
N ((1, CP), z ctrl S_ Decorated Substi- BI
) index subgoal stack tution
N4+1 ((true, CP), z nil
)
N ((, CP), z ctr
NOTES)

1 Executing a ¢
a) A cut alwag

b) No attemp|
between the cu

c¢) Re-executiq]
the choicepoin
of S are poppe
equals the S_in}

2 The execution
has a cut as curre
decorated subgoal
executed because
But these (dead) ¢
indicates how the

t has the effect that:
ys succeeds, but

s are made to re-execute the goals on S
and its cutparent.

g a cut always fails, but unlike fail where
¢ for currstate is then re-executed, elements
i until the cutparent associated with the cut
dex for currstate.

states between a current execution state which
ht activator, and the cutparent of the current
, could be removed as soon as the cut is
they can never be reached by backtracking.
xecution states are left on .S so that it always
current state of execution has been reached.

7.84.2 Templdte and modes

7.84.3 Errors

None.

7.8.4.4 Exampfes

Table) 25 — Before re-executing cut

57 Decorated Substi- B[I
index subgoal stack tution
N ((!’ CP)a Z ct ‘l
)
CP (& v),CP), o up([P|Pr])
)

Tables 23 and 24 show the execution stack before and
after executing the control construct !.

Tables 25 and 26 show the effect of re-executing a cut.

The following examples assume the database contains the
following clauses:

twice(!) :-
twice (true)

goal ((twice
goal (write(

46

write('C).
:- write(’'Moss).

(),).
'Three ")) .

Table 26 — After re-executing cut

Substi- BI
tution

S_ Decorated
index subgoal stack

CcP ((pix, V), CP), o
)

up([P1|Pr])

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

(© ISO/IEC 1995

Succeeds.

(', fail; true).

ISO/IEC 13211-1 : 1995(E)

d) Push CCS onto S.

e) Continue execution at 7.7.7.

Fails.
f) Pop currstate from S.
(call(!), fail; true).
Succeeds. g) Continue execution at 7.7.8.
twice(_), !, write(’'Forwards ‘), fail. , o . .
outputs *C Forwards . , .(Flrst, Second) is re-executable. On backtracking,
Fails. continue at 7.8.5.1 f.
(! ; writg@('No ’)), write(’'Cut disjunction '),
fai}. NOTES
Outputg "Cut disjunction ",
Fails.
aiss 1 Step 7.8.5.1 d makes CCS the new curfstate, and the
twice (), |(write('No *); 1), write(cut *), fail. i)hrevmus currst;zt;f bfcomes éts chozc;pz;lmiplt.t first begomes
outputd "C No cut cut *, e new curract, if it succeed$\second shall he executed.
Fails. R
The cutparent of the newnfirst subgoal of the decorated subgoal
twice(_), |(!, fail; write('No ’)). stack of CC'S is the same as the previous choifepoint because
Outputg "C ", a conjunction is tragsparent to cut.
Fails.
2 Executing.a\conjunction has the effect that:
twice(X), |call(X), write('Forwards ‘), fail.
Outputy "C Forwards Moss Forwards ", a) Thetactivator first must succeed, and then the activator
Fails. second- must succeed for the conjunctiop to -effectively
. . sucteed, and
goal(X), dall(X), write(’'Forwards '), fail.
td "C F Th F . ..
g:ti:?sl orwards ree Forwards b) Conjunction is transparent to cut becausg the cutparent
’ for first and second are the same as that for|the conjunction.
twice (), [\+(\+(!)),
writgq (’'Forwards ‘), fail.
Outputg "C Forwards Moss Forwards ", 7.8.5.2 Template and modes
Fails.
) ", ' (goal, goal)
twice(_), |once(!),
writg(’'Forwards ‘), fail. L, .
outputy "C Forwards Moss Forwards NOTE — ', ' is a predefined infix operator.
Fails.
twice(_), |call(!), 7.8.5.3 Errors
writg (’Forwards ‘), fails
Ou?puts "C Forwards Moss Forwards ", None
Fails.
7.8.5 (7’a) 2 — conjunction 7.8.54 Examples
7.8.5.1 Description Tables 27 and 28 show the execution stack before and after
executing the control construct *, ’ (First| second).

©, " (First, Second) is true iff First is true and
Second is true.

Procedurally, a control construct conjunction of two
activators first and second denoted by ’,’ (First,
Second), shall be executed as follows:

a) Make a copy CCS of currstate. It contains a
copy of the current goal which is called CCG.

b) Replace the current activator of CC'G by a pair of
activators first and second.

¢) Set BI of CCS to nul.

', (X=1, var(X)).
Fails.

r, " (var (X), X=1).
Succeeds, unifying X with 1.

", (X = true, call(X)).
Succeeds, unifying X with true.

7.8.6 (;)/2 — disjunction
A disjunction control construct whose first activator is an

if-then control construct (7.8.7) shall be an if-then-else
control construct, see 7.8.8.

47

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

Table 27 — Before executing a conjunction

(© ISO/IEC 1995

Table 29 — Before executing a disjunction

S- Decorated Substi- BI S_ Decorated Substi- BI
index subgoal stack tution index subgoal stack tution
N ((", (First, z ctrl N (('; ' (Either, z ctrl
Second), CP), or), CP),
))
Table 28 {— After executing a conjunction
NOTES
S Decorated Substi- BI
index subgoal stack tution 1 Step 7.8.6.1 f makes CCG1 the hew currstatp and the
execution state CCG?2 is now a chogcepoint of execution state
N+1 |[((rirst, CP), T il CCaGl.
(second, C'P), . L .
) 2 Executing a disjunction has the effect that:
o a) If either shauld® fail, then or will be expcuted on
N (", " (First, z ctrl backtracking, and
Second), CP),
) b) Disjunctien is transparent to cut because the futparent
for either and or are the same as that for the digjunction.
7:8.6.2 Template and modes
7.8.6.1 Description '; 7 (goal, goal)
;" (Either, ¢r) is true iff Either is true or Or\\I§ NOTE — ;' is a predefined infix operator.
true.
Procedurally, a dontrol construct disjunction of ¢wo activa- 7.8.6.3 Errors
tors either and |or, denoted by ’;’ (Eithér,* Or), shall
be executed as follows: None.
a) Make twq copies CCS1 and JCS2 of currstate.
) 7.8.6.4 Examples
b) Set BI of CCS1 and«€G'S2 to nil.
. Tables 29 and 30 show the execution stack bgfore and
¢) Replace the current.activator curract of CCG2 by .n ton .
or after executing the control construct ; ’ (Eithef, Or).
L , fail).
d) Push CCl20n 10 S e
e) Replace the current activator curract of CCG1 by “ir((, fail), true).
either. Fails.
[Equivalent to (!, fail).]
f) Push CCG1 on to S. (1 call(3)).
. . Succeeds.
g) Continue execution at 7.7.7. [Equivalent to !.]
h) Pop currstate from S. r((X=1, 1), X =2).
Succeeds, unifying X with 1.
i) Continue execution at 7.7.8. (i (x=1, X=2), ':'(true, 1)).
. . . Succeeds, unifying X with 1.
;" (Either, or) is re-executable. On backtracking, On re-execution, succeeds, unifying X with 1.
continue at 7.8.6.1 h. On re-execution, fails.

48

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

(© ISO/IEC 1995

Table 30 — After executing a disjunction

ISO/IEC 13211-1 : 1995(E)

Table 31 — Before executing an if-then

S_ Decorated Substi- BI S_ Decorated Substi- BI
index subgoal stack tution index subgoal stack tution
N+2 ((Either, CP), z nil N (("->"(1f, by ctrl
L) Then), C'P),
)
N +1 ((ox, CP), z nil
)
N ((*;’ (Either, > ctrl
or), C'P),
) NOTES
1 Executing an if-then has the jeffect that:
a) If ¢f should fail, then the if-then will fail, and
7.8.7 (->)/2 - if-then b) If ¢f should succeed, then then will bg executed, and
An if-then|control construct which is the first activator of c) If 1f should succeed and then later fail}, the ¢f will not

a disjuncti
if-then-else

pbn control construct (7.8.6) shall be part of an
control construct, see 7.8.8.

7.8.7.1 Description

'->'(If,
is true for

Procedural
if and tH

Then) is true iff (1) If is true, and (2) Then
the first solution of If.

y, a control construct if-then of two activators
en, denoted by ’->'(If, Then), $hall be

executed z]; follows:

a) Ma
b) Set

c) Pop
current

d) Let
currsta

e a copy C'CS of currstate.
BI of CCS to nil.

currdecsgl (= (" £>y(1f, Then),CP)) from
yoal of CCS.

NN be the=S_index of the choicepoint of
e.

e) Puslln @hen, CP) on to currentgoal of CCS.

be re-exeqtted’because of the cut which has been executed,

and

d)X¢The ¢f in an if-then is not transparent to cut because
the cutparent for ¢f is the choicepoint for the if-then

conditional.

e) A cut in then is transparent to if-then because its

cutparent is the same as that for the if-then.

7.8.7.2 Template and modes

'->'(goal, goal)

NOTE — '->' is a predefined infix operator.

7.8.7.3 Errors

None.

7.8.7.4 Examples

Ll 2.1 h |

T 29 1 L M
tabtes—3t—and—32—show—the—cxcegtron—st vk befOI‘e and

f) Push (!, NN) on to currentgoal of CCS.

g) Push (if, NN) on to currentgoal of CCS.

h) Push CCS on to S.

i) Continue execution at 7.7.7.

J) Pop

currstate from S.

k) Continue execution at 7.7.8.

r->'(If,

Then) is re-executable. On backtracking,

continue at 7.8.7.1 j.

after executing the control construct '->’ (If, Then).

‘->'(true, true).
Succeeds.

‘->'(true, fail).
Fails.

r->'(fail, true).
Fails.

‘=>'(true, X=1).
Succeeds, unifying X with 1.
On re-execution, fails.

49

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

Table 32 — After executing an if-then

© ISO/IEC 1995

f) Push (then, CP) on to currentgoal of CCS.

Else),

S Decorated Substi- BI
. _ Push (1, NN t tgoal of i
index subgoal stack tution g) Push () on to currenigoal of CC'S
h) Push (if, N to cu tgoal of CCS.
N+l (e N—1), 5 il) Push (zf, N) on to currentgoal o
¢, N -1,) Push CCS on t
o S.
(Then, C'P),) Pus on
=) j) Continue execution at 7.7.7.
N ((=>"(If, z ctrl Y Make a copy CCS of currstate
Then), C'P), N
) 1) Set BI of CCS to nil.
m) Pop currdecsgl (*; ' (*->' (If, Then),
CP) from currentgoal of CCS:
n) Push (else, CP) on toleurrentgoal of C{'S.
ro>t (7 (X=1, XE2), true).
Succeeds, unfifying X with 1.
On re-executfion, fails. 0) Push (1, NN) qndo currentgoal of CCY.
'->'(true, ‘;’'(K=1, X=2)).

Succeeds, unfifying X with 1.

On re-executfion,
On re-executfion,

7.8.8 (5)/2 - if-

NOTE — (;)/2
whether or not th
functor (->) /2.

succeeds, unifying X with 2.
fails.

hen-else

serves two different functions depending on
e first argument is a compound term with

See (7.8.6) for th¢ use of (;)/2 for disjunctive goals; that
is when the first afgument of ' ;’ (-, _) does not unify with
Te>0 (s, 2).

7.8.8.1 Description

>
and (1b) Then is
If is false and H

Procedurally, a

" (If, Then), Else) ds‘true iff (1a) If is true,

true for the fitst solution of If, or (2)
1se is tgue,

control construct if-then-else of three

activators 7f, th{

nnard else, denoted by ;' ('->' (If,

'

P (W% (IE,
backtracking, continue at 7.8.8.1 k.

p) Push CCSlon to S.
q) Contipu¢ execution at 7.7.7.
is re-executable.

Then), Else)

The cut (7.8.8.1 o) prevents an if-then-else from being

re-executed a second time.

NOTES

1

Executing an if-then-else has the effect that:

a) If if should fail, then the if-then-else will be refexecuted,
and

b) If if should succeed, then then will be execufed, and

¢) If if should succeed and then later fails, the iftthen-else
will not be re-executed because of the cut which [has been
executed, and

Then), Else), shall be executed as follows:

a) Make a copy CCS of currstate.

b) Set BI of CCS to nil.

c) Pop currdecsgl (*;'('->'(If, Then), Else),
CP) from currentgoal of CCS.

d) Let N be

e) Let NN

currstate.

50

the S_index of currstate.

be the S_indexr of the choicepoint of

—The—if—in-an-if-then else is not transparent to ciit because
P

the cutparent for if is the S_index for the if-then-else.

e) A cut in then is transparent to then because its
cutparent is the cutparent for the if-then-else.

Re-executing an if-then-else has the effect that:
a) The else will be executed, and

b) If else later fails, the if-then-else will not be re-executed
again because of the cut which has been executed, and

¢) A cutin else is transparent to else because its cutparent
is the cutparent for the if-then-else.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

(© ISO/IEC 1995

Table 33 — Before executing an if-then-else

ISO/IEC 13211-1 : 1995(E)

Table 35 — After re-executing an if-then-else because
1f failed.

S Decorated Substi- BI
index subgoal stack tution S Decorated Substi- BI
index subgoal stack tution
N (s (r=>"(1£, xz ctrl
Then), Else), N +1 (¢, N=1, z nil
CP), (else(w), C'P),
))
N (i (r=>"(If, p3 ctrl
Then), Else),
CP),
Tabl¢ 34 — After executing an if-then-else)
S_ Decorated Substi- BI
indef subgoal stack tution
N+ ((1f, N), z nil
(!sfv'— 1% Succeeds.
(Then, CP), fir(r->' (trué,\fail), fail).
.) Fails.
N ((;"(r=>"(1f, ¥ ctrl ’;’(’T>’(fail, true), fail).
Then), Else), FQgls-
C)P)’ /" ("->'" (true, X=1), X=2).
) Succeeds, unifying X with 1.
foi(r->(fail, X = 1), X = 2).
Succeeds, unifying X with 2.

7.8.8.2 T¢mplate and modes

"' ("->"{goal, goal), goal)

NOTE — ‘|;* and '->' are predefined, infix operators so that
(If ->|Then ; Else)
is parsed as

;' ('-p' (If, Then), \Else)

7.8.8.3 Efrors

None.

‘(' =>' (true, ';’(X=1, X=2)), true).
Succeeds, unifying X with 1.
On re-execution, succeeds, unifying X with 2.

it (r=>0('; " (X=1, X=2), true), true).
Succeeds, unifying X with 1.

it (r->'(!,fail), true), true).
Succeeds.

7.8.9 catch/3
The catch and throw (7.8.10) control constructs enable

execution to continue after an error withqut intervention
from the user.

7.8.8.4 Examples

Tables 33 and 34 show the execution stack before and after
executing the control construct ‘; (’->’(If, Then),
Else).

Table 35 shows what happens after (‘;' ('->'(If,
Then), Else) is re-executed because If failed.

"' ('->'(true, true), fail).
Succeeds.
‘' ('->'(fail, true), true).

catch(Goal, Catcher, Recovery) Is similar to
call(Goal), however when throw(Ball) is called,
the current flow of control is interrupted, and control
returns to a call of catch/3 that is being executed. This
can happen in one of two ways:

a) Implicitly, when one or more of the error conditions
for a built-in predicate are satisfied, and

b) Explicitly, when the program executes a call of

throw/1 because the program wishes to abandon the
current processing, and instead to take alternative action.

51

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

NOTES

1 The names of the arguments have been chosen because
throw/1 behaves as though it is throwing a ball to be caught
by an active call of catch/3.

2 There are several advantages for this method of error
recovery:

a) The programmer can localise such code at points where
it is convenient,

(© ISO/IEC 1995

Table 36 — Before executing catch(G, C, R)

Substi- BI
tution

S_ Decorated
index subgoal stack

N ((catch(G, ¢, rR), CP), z ctrl

)

b) The trap is|placed round a goal, rather than being simply
switched on by| asserting clauses into an error handler. Thus
there is much|less chance of a program looping because
unanticipated efrors are trapped,

¢) Unforeseer] errors in an application embedded in Prolog
need no longef suddenly print Prolog error messages and
diagnostics to 4§ mystified user.

3 One use of this mechanism is error handling. Typically
a simple interactijve program might have a top level looking
something like:

main :-
repeat,
catch(run,
fail.

FFault, recover (Fault)),

7.8.9.1 Description

catch(G, C, H) is true iff (1) call(G) is true, or (2)

the call of G is

interrupted by a call of throw/1 whose

argument unified with ¢, and call(R) is true.

Procedurally, a

control construct catch, . denoted by

catch (G, ¢C, R, shall be executed as follows:

a) Make a gopy CCS of currstate:

b) Replace qurract of CC'S by call(G).
¢) Set BI t§ nzl.
d) Push CCS on-to S.

e) Continue

Table 37 — After executing catch(G, C,| R)
S Decorated Substi-| BI
index subgoal stack tution
N +1 ((call(a), CP), z nil
)
N ((catch(a/, e/ R), CP), z ctrl
)
7.8.9.3% Errors
a) G is a variable
— instantiation_error.
b) G is neither a variable nor a callable terni
— type_error(callable, G).
7.8.9.4 Examples
Tables 36 and 37 show the execution stack bgfore and
after executing the control construct catch(G, [, R).
The following examples assume the database coptains the
following clauses:
foo(X) :-
Y is X * 2, throw(test(Y)).

execution at 7.7.7.

f) Pop currstate from S.

g) Continue

catch(G, C,

execution at 7.7.8.

R) is re-executable. On backtracking,

continue at 7.8.9.1 f.

7.8.9.2 Template and modes

catch(?callable_term,

52

?term, ?term)

bar (X) :-
X =Y, throw(Y).
coo(X) :-
throw (X) .
car(X) :-
X = 1, throw(X).
g :-
catch(p, B, write(h2)),
coo(c) .
p.
p -
throw(b) .

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

catch(foo(5), test(Y), true). Table 38 — Before executing throw(B)

Succeeds, unifying Y with 10.

S_ Decorated Substi- BI
catch(bar(3), 2z, true). index subgoal stack tution
Succeeds, unifying Z with 3.
catch(true, _, 3). N + M ((throw(B), CPZ), Z CtT’l
Succeeds.)
catch(true, C, write(demoen)), throw(bla).
system_error.
catch(car(X), Y, true). N ((catch(G, c, rR), CP1), o ctrl
Succeefls, unitying Y with I.)
catch (number_chars(x, ['1’, 'a’, '0’']),
err¢r (syntax_error(_), _), fail).
Fails - number_chars raises a syntax error.
catch(g, ¢, write(hl)).
Succeefls, unifying C with ¢ and writing hl.
On re-¢xecution, fails. g) Replace curract by)¢all(r).
catch(cooX), Y: t§ue). ' h) Set BI to il
Succeefls, unifying Y with
errof (instantiation_error, Imp_def)
where [Imp_def’ is an implementation defined i) Contifiug-execution at 7.7.7.

term.
['throyw(X)’ is causes a goal

throw(grror (instantiation_error, Imp_def))
to be ¢xecuted].

NOTE -£ Executing a catch and throw has th¢ effect that:

a)/ A catch is initially the same as a [call of its first
argument, and

7.8.10 throw/1 b) A throw (or error), like a cut, pops execution states from
S until a particular condition is satisfied. [No attempts are
7.8.10.1 Description made to re-execute the goals on S betweep the throw and

the first suitable catch, which is then replaged by a call of

. . . its third argument.
throw(B) |is a control construct that is neither true nor

false. It exists only for its procedural effect-of causing

the normal flow of control to be transférred back to an 7.8.10.2 Template and modes
existing cajl of catch/3 (see 7.8.9).

h

Procedurally, a control consfruet throw, denoted by throw (+nonvar)

throw (B) | shall be executed ‘as’/follows:

7.8.103 E

a) Make a renamed)copy CA of curract, and a copy 3 Errors

CP of ¢utparent. . .
utpa a) B is a variable

b) Pop curkstate from S. — 1lnstantiation_error.

| AN 1 + s wtlo—tlo o
¢) It shall be a system error (7.12.2 j) if S iIs now b—s—does—mot—untfy—with—the—e—argument of any call
empty of catch/3

— system_error.

d) Else if (1) the new curract is a call of the control
construct catch/3, and (2) the argument of C'A unifies

with the second argument c of the catch with most 7.8.10.4 Examples

general unifier MGU, and (3) the cutparent for the new

curract is less than C'P, then continue at 7.8.10.1 f. Tables 38 and 39 show the execution stack before and
after executing the control construct throw(B), assuming

e) Else replace C'P by the cutparent for the new u 1s the substitution which resulted from unifying B and

curract, and continue at 7.8.10.1 b. C.

f) Apply MGU to currentgoal. See also 7.8.9.4.

53

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

Table 39 — After executing throw(B)

Substi- BI
tution

S_ Decorated

index subgoal stack

N ((call(r), CP1),
)

@w o o nil

© ISO/IEC 1995

b) E is a compound term and an argument of E is a
variable
— instantiation_error.

¢) E is an atom or compound term and the principal
functor F/N of E is not an evaluable functor
— type_error (evaluable, F/N).

d) The value of an expression is float_overflow
— evaluation_error (float_overflow).

7.9 Evaluatirjg an expression

This subclause defines the evaluation of a Prolog term as
an expression.

7.9.1 Descriptipn

Procedurally, a Prolog term T is evaluated as an expression
as follows:

a) IfTisan
R, then proce

integer or floating point value with value
eds to 7.9.1 e,

b) If T is 4 compound term, then evaluates, in an

implementatio
T as an expre

¢) Selects th
able functor o

h dependent order, each argument A; of
sion giving a value V;,

b operation F' corresponding to the evalu<
[T and the types of Vi,

d) Computeq the value R of the operation* /' with

operands (3.17

e) The valug

NOTES

1 An error occu

D Vi,

of the expression is-f%:

rs if TSs~an atom or variable.

2 The built-in pgredicates for arithmetic evaluation (8.6) and

e) The value of an expression is int_overfloy
— evaluation_error (int_overflow].

=

f) The value of an expression is underflow
— evaluation_error (underfilow).

¢) The value of an expression is zero_divisof
— evaluation_error\(zero_divisor).

h) The value of(an ‘expression is undefined
— evaluatioeri_error (undefined).
7.10 Input/output
7.10,1" Sources and sinks
A source/sink (3.161) is a fundamental notion. A program
can output results to a sink or input Prolog dafa from a

source.

A source/sink always has a beginning, but has an[end only
if it is finite.

A source/sink may be a file, the user’s terminal, or
other implementation defined possibility permitt¢d by the
processor.

Each source/sink is associated with a finite or potentially
infinite sequence of bytes or characters.

A source/sink is specified as an implementatiop defined
ground term in a call of open/4 (8.11.5). All spibsequent

arithmetic comparison (8.7) evaluate terms as expressions.

3 The evaluable functors supported by this part of ISO/IEC
13211 are defined in subclause 9.

7.9.2 Errors

The following errors may occur during the evaluation of
an expression E:

a) E is a variable
— instantiation_error.

54

references to the source/sink are made by referring to a
stream-term (7.10.2) or alias (7.10.2.2).

The effect of opening a source/sink more than once is
undefined in this part of ISO/IEC 13211.

7.10.1.1 Input/output modes

An input/output mode is an atom which defines in a
call of open/4 the input/output operations that may be
performed on a source/sink. A processor shall support the
input/output modes:

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

(© ISO/IEC 1995

read — Input. The source/sink is a source. If it is
a file, it shall already exist and input shall start at the
beginning of that source.

write — Output. The source/sink is a sink. If the
sink already exists then it shall be emptied, and output
shall start at the beginning of that sink, else an empty
sink shall be created.

append — Output. The source/sink is a sink. If the
sink already exists then output shall start at the end of

ISO/IEC 13211-1 : 1995(E)

NOTES
1 A stream may be associated with more than one alias.

2 All built-in predicates which have a stream-term as an
input argument also accept a stream alias as that argument.
However, built-in predicates which (can) return a stream-term
do not return or allow a stream alias. For example, a goal
current_input (some_alias) can never succeed because
current_input/1 unifies its argument with a stream-term.

that sinkl else an empty sink shall be created.

NOTES

1 If the sipk is a file which already exists, and the input/output
mode is wrlte, the initial contents are lost.

2 A procegsor may support additional input/output modes, such
as a mode for both inputting and outputting.

7.10.2 Streams

A stream provides a logical view of a source/sink.

7.10.2.1 Stream-term

A stream-term identifies a stream during a call of .af
input/outpyt built-in predicate. It is an implementatioh
dependent |ground term which is created as a result of
opening a [source/sink by a call of open/4 (8:H.5). A
stream-tern} shall not be an atom.

A standard{conforming program shall make no assumptions
about the fprm of the stream-term, except that:

a) It is|]a ground term.
b) It is|not an atom.

¢) It ugiquely identifies a particular stream during the
time tha{ the stream is open.

It is impldmentation dependent whether or not the pro-

7.10.2.3 Standard streams

Two streams are predefined and open during the execution
of every goal: the standard input-stream| has the alias
user-input and the standard’eutput strean has the alias
user_output.

The stream-term for these streams shall be jmplementation
dependent.

NOTES
1 Table 40 defines the properties of the standard streams.

2{ A goal which attempts to close either [standard stream
succeeds, but does not close the stream (see 8{11.6).

7.10.2.4 Current streams

During execution there shall be a currenf input stream
and a current output stream. By defauft, the current
input and output streams shall be the stanfdard input and
output streams, but the built-in predicates| set_input/1
and set_output/1 can be used to change|them.

When the current input stream is closed, thq standard input
stream shall become the current input strepm. When the
current output stream is closed, the standard output stream
shall become the current output stream.

NOTE — The standard input and output strfpams cannot be
closed, and so the current input and output strpams are always
open streams.

cessor uses the same stream-term to represent different
source/sinks at different times.

NOTE — A stream-term is not an atom so that it can be
distinguished from an alias.

7.10.2.2 Stream aliases

Any stream may be associated with a stream alias which
is an atom which may be used to refer to that stream.
The association is created when a stream is opened, and
automatically ends when the stream is closed. A particular
alias shall refer to at most one stream at any one time.

7.10.2.5 Target stream

The input/output built-in predicates defined in subclauses
8.12, 8.13, and 8.14 shall input from or output to a target
stream which is:

a) the stream associated with S_or_a when a built-
in predicate has an argument S_or_a whose mode is
@stream_or_alias,

b) the current input stream when an input built-in
predicate has no explicit stream or alias argument,

55

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

¢) the current output stream when an output built-in
predicate has no explicit stream or alias argument,

The target stream is identified in the error terms for these
built-in predicates as 7'S which denotes:

a) S.or_a when a built-in predicate has an argument
S_or_a whose mode is @stream_or_alias,

b) current_input_stream when an input built-in
predica[e has pe nvp“f\“‘ stream-or-alias qr‘gnmpr‘lt7

© ISO/IEC 1995

input shall be identical to those output, except that an
implementation defined number of zero-valued bytes may
be appended to the end of the data input.

NOTE — get_byte/1 inputs data from a binary stream and

returns a byte.

7.10.2.8 Stream positions

The stream position of a stream identifies an absolute

¢) current_utput_stream when an output built-in
predicate has ho explicit stream or alias argument.

7.10.2.6 Text ftreams

It shall be implementation defined whether record-based
streams, non-recprd-based streams, or both are supported.

A text stream |s a sequence of characters where each
character is a mpember of C (7.1.4.1). A text stream Iis
also regarded a4 a sequence of lines where each line is
a possibly emptly sequence of characters followed by an
implementation flependent new line character (6.5, 6.5.4).

A processor may add or remove space characters at the
ends of lines in| order to conform to the conventions for
representing tex} streams in the operating system. Any
such alterations| to the stream shall be implementatiod
defined.

It shall be implgmentation defined whether the last line in
a text stream is|followed by a new line character. If so,
closing a streamp which is a sink shall causé a new line
character to be putput if the stream does not already end
with one.

The effect of ofitputting a control character (6.4.2.1) to a
text stream shal| be implemgntation defined.

NOTES

position of the source/sink to which the stream ds.¢onnected
and defines where in the source/sink the next-irpufor output
will take place. It shall be implementationndefined whether
or not the stream position of a particular sourcg/sink can
be arbitrarily changed during exegution of a Prglog goal.
If it can, then:

a) A stream position (s jan implementation dependent
ground term.

b) At any tim€) the stream can be reposifioned by
calling set_$tream position/2 (8.11.9).

A standard-conforming program shall make no agsumption
about ‘the form of a stream position term, excepj that:

a) It is a ground term.
b) It uniquely identifies a particular pgsition in
source/sink to which the stream is connected quring the

time that the stream is open.

When an output stream is repositioned, further oytput shall
overwrite the existing contents of the sink.

When an input stream is repositioned, the contepts of the
stream shall be unaltered, and can be re-input.

7.10.2.9 End position of a stream

When all a stream S has been input (for expmple by
get_byte/2 or read_term/3) S has a strean} position

1 When a stream is connected to a record-based stream, each
record is regarded as a line during Prolog execution.

2 get_char/2 inputs data from a text stream and returns a
one-char atom denoting a character. get_code/2 inputs data
from a text stream and returns a character code.

7.10.2.7 Binary streams
A binary stream is a sequence of bytes (7.1.2.1).

If bytes are output to a sink via a binary stream, and then
input from that sink via a binary stream, then the bytes

56

end-of-stream. At this stream position a goal to input more
data shall return a specific value to indicate that end of
stream has been reached. When one of these terminating
values has been input, the stream has a stream position
past-end-of-stream.

When a stream has stream property reposition(true),
the terms P denoting stream positions end-of-stream and
past-end-of-stream in stream property position (P) shall
be implementation defined.

NOTE — A stream need not have an end, in which case its
stream position is never end-of-stream or past-end-of-stream.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

7.10.2.10 Flushing an output stream

Output to a stream may not be sent to the sink connected
to that stream immediately. When it is necessary to be
certain that output has been delivered, this can be done by
executing the built-in predicate £lush_output/1 (8.11.7).

NOTES

1 Output is normally buffered, and flush output will be

ISO/IEC 13211-1 : 1995(E)

It shall be implementation defined which eof_action
is the default.

If the stream-options list contains contradictory stream-
options, the rightmost stream-option is the one which
applies.

A processor may support one or more additional stream-
options as an implementation specific feature.

necessary When, for example, the program has output a question
which a user is required to answer.

2 A streapn is always flushed when it is closed (8.11.6.1 b).

7.10.2.11 | Options on stream creation

A stream-pptions list is a list of stream-options which
define properties of a stream created with open/4 (8.11.5).

The streanp-options supported shall include:

type (T} — Specifies whether the stream is a text
stream ¢r a binary stream. T shall be:

text|— the stream is a text stream, or
binaty — the stream is a binary stream.

When np type (T) stream-option is specified, the sfream
shall be|a text stream.

reposition (Bool) — If Bool (7.1.4.2)%s true then
it shall e possible to reposition the stréam, else if Bool
is falsge it shall be implementation defined whether or
not it is| possible to reposition the.stream.

alias(h) — Specifies that the atom A is to be an
alias for the stream.

eof_acfion (Actien) — The effect of attempting to
input frpm a stream whose stream position is past-end-
of—strealr shall) be specified by the value of the atom

Action

NOTES

I It depends on the particular source/sink| whether or not
repositioning is possible, for example, it is impossible when the
source/sink is a terminal.

2 It is an emror (8.11.53)When reposition(true) is
specified for a particular "sotirce/sink and repogitioning it is not
possible.

7.10.2.12 Options on stream closure

A closesoption modifies the behaviour of close/2 (8.11.6)
if anderror condition is satisfied while trying to close a
stream.

The close-options supported shall include:

force(false) — This is the default. If an error
condition is satisfied, the stream is not ¢losed.

force(true) — If a Resource Hrror condition
(7.12.2 h) or System Error conditiof (7.12.2 j) is
satisfied, there shall be no error; insteafd the stream is
closed and the goal succeeds.

A processor may support one or more afiditional close-
options as an implementation specific featyire.

NOTE — A force(true) close-option closgs the stream but
data and results may be lost, and the stream rpay be left in an
inconsistent state. The purpose of force/1 dption is to allow
an error handling routine to do its best to reclaim resources.

error — There shall be a Permission Error
(7.12.2 e) signifying that no more input exists in
this stream.

eof_code — The result of input shall be as if the
stream position is end-of-stream (7.10.2.9).

reset — The stream position shall be reset so that
it is not past-end-of-stream, and another attempt is
made to input from it. This is likely to be useful when
inputting from a source such as a terminal. There
may also be an implementation dependent operation
to reset the source to which the stream is attached.

7.10.2.153 dStream properties

The properties of streams can be found using the built-
in predicate stream property(Stream, Property)
(8.11.8). The stream properties supported shall include:

file_name(F) — When the stream is connected to a
source/sink which is a file, F shall be an implementation
defined term which identifies the file which is the
source/sink for the stream.

mode (M) — M is unified with the input/output mode

(7.10.1.1) which was specified when the source/sink was
opened.

57

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

Table 40 — Properties of the standard streams

user_input

user_output

mode (read)
input
alias (user_input)
eof_action(reset)
reposition (false)

mode (append)
output
alias (user_output)
eof_action(reset)
reposition(false)

© ISO/IEC 1995

variable.names (VN.list) — After inputting a
term, VN.list shall be unified with a list of ele-
ments where: (1) each element is a term A = v, and
(2) v is a named variable of the term, and (3) A is an
atom whose name is the characters of V.

singletons (VN_1list) — After inputting a term,
VN_list shall be unified with a list of elements
where: (1) each element is a term A = v, and (2) V is

type (text) type (text) a named variable which occurs only once in the term,
amrd32tsan-atom-whose—name—is—the-charaefers of V.
input — THis stream is connected to a source. A processor may support one or more additiopal read-
. . . options as an implementation specific feature.
output — This stream is connected to a sink.
alias(A) — | If the stream has an alias, then A shall NOTES

be that alias.

position(P)

— If the stream has a reposition prop-

erty, P shall b¢ the current stream position (7.10.2.8) of

the stream.

end_of_streap(E) — If the stream position is end-
of-stream then| E is unified with at else if the stream
position is pgst-end-of-stream then E is unified with
past else E if unified with not.

1 Anonymous variables (64:3) are included in a ljst Vars.
Anonymous variables are motsincluded in a list VN_1ist.

2 The process of jnputting a term and the effect of a syntax
error are defined in~7.4.3 and 8.14.1.

7.10.4 Write-options list

A Write-options list is a list of write-options which
affects write_term/3 (8.14.2) and its bootstrapped built-

eof_action(d) — If a stream-option (7.10.2.11)
eof_action(fction) was specified when the stream
was opened, then A is unified with Action, else ArJS
unified with tHe implementation defined action whichis
associated with that stream.

reposition(Bool) — If repositioning is‘possible on
this stream th¢n Bool is unified with true else Bool
is unified with false.

type (T) — [The value of Twdefines whether the stream
is a text streain (T == text) or a binary stream (T ==
binary).

Table 40 defines|the, properties of the standard streams.

in predicates. The write-options supported shall {nclude:

quoted (Bool) — Iff Bool (7.1.4.2) is txue each
atom and functor is quoted if this would be pecessary
for the term to be input by read_term/3.

ignore_ops (Bool) — Iff Bool (7.1.4.2) [is true
each compound term is output in functional| notation
(6.3.3). Neither operator (6.3.4.3) notation| nor list
notation (6.3.5) is used when this write-optjon is in
force.

numbervars (Bool) — Iff Bool (7.1.4.2) i} true a
term of the form ‘$VAR’ (N), where N is an integer, is
output as a variable name consisting of a capital letter
possibly followed by an integer. The capital letter is
the (i+1)th letter of the alphabet (see the syntax rule

A processor may support one or more additional stream
properties as an implementation specific feature.

7.10.3 Read-options list

A read-options list is a list of read-options which af-
fects read_term/3 (8.14.1) and its bootstrapped built-in
predicates. The read-options supported shall include:

variables (Vars) — After inputting a term, Vars

shall be a list of the variables in the term input, in
left-to-right traversal order.

58

for capital letter char, 6.5.2), and the integer is
j, where

i = N mod 26
j =N // 26

The integer j is omitted if it is zero. For example,

'SVAR’ (0) is written as A
"$VAR’ (1) is written as B

'$VAR’ (25) is written as Z
"SVAR’ (26) 1is written as Al
'SVAR' (27) is written as Bl

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

A processor may support one or more additional write-
options as an implementation specific feature.

If the write-options list contains contradictory write-options,
the rightmost write-option is the one which applies.

NOTE — The current operators do not affect output when
there is a write-option numbervars (true). This write-
option is provided so that the built-in predicates write/1 and
writeq/1l (8.14.2) are compatible with existing practice, but
this write-option is more useful when the processor provides

ISO/IEC 13211

-1 : 1995(E)

f) Else if Term has a principal functor which is not
a current operator, or if there is an effective write-
option ignore_ops (true), then the term is output in

canonical form, that is:

1) The atom of the principal functor is output.

2) ((open char) is output.

3) Each argument of the term is output by recursively

the built-in predicaie numbervars/3 as an exiension.

7.10.5 Writing a term

When a terfn Term is output using write_term/3 (8.14.2)
the action which is taken is defined by the rules below:

a) If Tkrm is a variable, a character sequence repre-
senting fhat variable is output. The sequence begins
with _ (underscore) and the remaining characters are
implemehtation dependent. The same character sequence
is used for each occurrence of a particular variable in
Term. A different character sequence is used for each
distinct yariable in Term.

b) If Tkrm is an integer with value Nj, a character
sequence representing N; shall be output. The first
character| shall be - if the value of N; is negative. The
other chpracters shall be a sequence of decimal digit
chars (6)5.2). The first decimal digit char shall-b€,0 iff
the valu¢ of Term is zero.

c) If derm is a float with value Ky~ a character
sequence representing Fy shall be~oufput. The first
charactey shall be - if the value of ¥} is negative. The
other chpracters shall be an implementation dependent
sequence of characters which conform to the syntax for
floating point numbers (6'4.5).

If there ik an effectivé Write-option quoted (true), then
the charjcters oufput shall be such that if they form a
number With (value F3 in a term input by read_term/3,
then

h) If Term has a principal functor
operator, and there is an

form, that is:

h N +lo 1
Cll_)ylyllls IILST TUIUS.,

4) , (comma char) is output between
pair of arguments.

5)) (close char) is output.

bach successive

g) Else if Term has\the form ‘.’ (Heqd,Tail), and
there is an effectige ywrite-option ignord-ops (false),
then Term is ohtput using list notation, that is:

1) [.(opeén list char) is output.

2) \Head is output by recursively
tules.

3) If Tail has the form '.’ (H,T)
char) is output, set Head:=H, Tail:=1

4) If Tail is [] then a closing brach
char) is output,

applying these

hen , (comma
, and goto (2).

et 1 (close list

5) Else a | (head tail separator char) is output,

Tail is output by recursively applyi
and finally, 1 (close list char) is outpu

effectivg
ignore_ops (false), then the term is ou

1) The atom of the principal fun
in front of its argument (prefix opel
its arguments (infix operator), or afte

hg these rules,
t.

which is an
b write-option
tput in operator

ctor is output
ator), between
r its argument

(postfix operator).

In all cases, a space is output

Fy =713

d) If Term is an atom then if (1) there is an effective

to separate an operator from its argument(s) if any

ambiguity could otherwise arise.

write-option quoted(true) and (2) the sequence of
characters forming the atom could not be input as a
valid atom without quoting, then Term is output as a
quoted token, else Term is output as the sequence of
characters defined by the syntax for the atom (6.1.2 b,

6.4.2).

e) If Term has the form ’'$vAR’ (N) for some pos-
itive integer N, and there is an effective write-option
numbervars (true), a variable name as defined in

subclaus

e 7.10.4 is output,

2) Each argument of the term is output by recursively
applying these rules. When an argument is itself
to be output in operator form, it is preceded by (
(open char) and followed by) (close char) if: (i) the
principal functor is an operator whose priority is so
high that the term could not be re-input correctly with
same set of current operators, or (ii) the argument is
an atom which is a current operator.

NOTE — A processor may output the floating point value 1.5
as "1.5" or "1.5E+00" or "0.15el".

59

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/TEC 13211-1 : 1995(E)

Table 41 — Flags defining I parameters

Parameter Flag

bounded bounded
minint min_integer
mazint max_integer

Table 42 — Further flags for I

Feature _Flag

© ISO/IEC 1995

Default value: implementation defined
Changeable: No

Description: If the value of this flag is true, integer
arithmetic is performed correctly only if the operands
(3.121) and mathematically correct result all lie in the
closed interval (min_integer, max.integer).

If the value of this flag is false, inte-

rndy integer_rounding_function

7.11 Flags

A flag is an atorh which is associated with a value that is
either implementation defined or defined by the user.

Each flag has § permitted range of values; any other
value is a Domdin Error (7.12.2 ¢). The range of values
associated with Jome flags can be extended with additional
implementation §pecific values.

The definition df each flag indicates whether or not its
value is changedble during execution.

NOTE — A built-in predicate current_prolog_flag(Flag,
Value) (8.17.2)|enables a program to discover all the flags
supported by a prpcessor and their current values.

A built-in predicate set_prolog-flag(Flag, Valuge)
(8.17.1) enables p program to change the current yalue of
a flag whose valug is changeable.

7.11.1 Flags defining integer type [

The properties of the arithmetic type J which are provided
by the processof are available,to-the program as values
associated with |various flags.

Table 41 identifies the parameters which define the integer
type I (see 7.1.2) with)the corresponding flags.

TTT arrthmretic—Ts a}wayo pvxfulxllvd eorregtly (ex-
cept when there is a system errox) and a
goal current_prolog.flag(max-intedex; N) or
current_prolog.flag (min_integer, ‘N)* will [fail.

7.11.1.2 Flag: max_integer
Possible value: The default yalue only
Default value: implémentation defined
Changeable: No

Description® If the value of flag bounded is tfrue then
the valte” of this flag is the largest integer $uch that
integer arithmetic is performed correctly if the [operands

and” mathematically correct result all lie in the closed
mterval (min_integer, max.integer).

7.11.1.3 Flag: min_integer
Possible value: The default value only
Default value: implementation defined
Changeable: No

Description: If the value of flag bounded is frue then
the value of this flag is the smallest integer [such that
integer arithmetic is performed correctly if the|operands
and mathematically correct result all lie in the closed
interval (min_integer, max_integer).

Table 42 identifie C10967-— Language
Independent Arithmetic (LIA) integer rounding function
(see 9.1.3.1) with the flag whose value indicates the precise
methods adopted by the processor.

NOTE — The value of these flags is fixed and imple-
mentation defined. But it might be possible to set the
values of some flags before execution begins, for example,
integer_rounding_function. This possibility would be
an extension.

7.11.1.1 Flag: bounded

Possible value: true, false

60

NOTE — The possible values are required to be -M or - (M+1)
where M is the value of the flag max_integer.

7.11.1.4 Flag: integer_rounding_function
Possible values: down, toward.zero
Default value: implementation defined
Changeable: No

Description: The value of this flag determines the precise
definition of integer division (//) /2 and integer remainder

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

(rem)/2 (9.1.3.1). A value down indicates that the
rounding function is |z], and a value toward.zero
indicates that it is ¢r(z).

7.11.2 Other flags
7.11.2.1 Flag: char_conversion

Possible values: on, off

ISO/IEC 13211-1 : 1995(E)

7.11.24 Flag: unknown

Possible values: error, fail, warning
Default value: error

Changeable: Yes

Description: Defines the effect of attempting to execute a
procedure which does not exist in the complete database

Default vajue: on
Changeabl¢: Yes

Description: If the value is on, (1) unquoted characters
in Prolog texts being prepared for execution are converted
according [to the mapping Conve (3.46) defined by
previous executions of the directive char_conversion/2
(7.4.2.5), pnd (2) unquoted characters in Prolog read-
terms are [converted according to the mapping Convc
defined by| previous executions of the built-in predicate
char.conyersion/2 (8.14.5).

If the valde is off, unquoted characters in Prolog texts
and read-t¢grms are not converted.

NOTE — I} is implementation defined whether or not Conye
during exeqution is affected by Convc created while Proleg
text is preppred for execution (see 7.4.2.5).

7.11.2.2 Flag: debug

Possible v3lues: on, off

Default value: off

Changeabl¢: Yes

Description: When (the 'value is off, procedures have the
meaning defined by this part of ISO/IEC 13211; when

the value is ¢n,-the effect of executing any goal shall be
implementation defined

(see 7.5, T.T.T B).

7.11.2.5 Flag: double_quotes
Possible values: chars, codes, atom
Default value: implementation defined
Changeable: Yes

Descriptipn: ~This flag determines the abstract syntax of
a doublenquoted list token appearing in a| Prolog text or
in a‘term input by read.-term/3 (8.14.1).| When value is
chars, a double quoted list is input as a |ist of one-char
atoms; when value is codes, a double quojed list is input
as a list of character codes; when value is ptom, a double
quoted list is input as an atom.

7.12 Errors

An error is a special circumstance which capises the normal
process of execution to be interrrupted.

The error conditions for each control constjuct and built-in
predicate are specified in the clauses definjng them.

Other error conditions are defined in this fart of ISO/IEC
13211 where it states: “It shall be an errof if ...

When more than one error condition is satjsfied, the error
that is reported by the Prolog processor is implementation
dependent.

7.11.2.3 Flag: max_arity

Possible values: The default value only

Default value: implementation defined

Changeable: No

Description: The maximum arity allowed for any com-

pound term, or unbounded when the processor has no
limit for the number of arguments for a compound term.

NOTE — Errors may also occur if:

a) There is an attempt to execute a goal for which there is
no procedure (see 7.7.7 b, 7.11.2.4).

b) The processor is too small, or execution requires too
many resources (see 7.12.2 h).

¢) Execution cannot be completed because of some event
outside the Prolog processor, for example a disc crash or
interrupt (see 7.12.2 j).

d) The value of an evaluable functor is one of the exceptional
values (9.1.2).

61

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/MEC 13211-1 : 1995(E)

7.12.1 The effect of an error

When an error occurs, the current goal shall be replaced by
a goal throw(error (Error_term, Imp_def)) where:

Error_term — is a term that supplies information
about the error, and

© ISO/IEC 1995

io_mode,
non_empty-list,
not_less_than_zero,
operator_priority,
operator.specifier,
prolog_flag,
read_option,
source._sink,

Imp_def — is an implementation defined term. stream,
stream_option,
NOTE — This part—oftSOABE—32+H—defines—features—for -

continuing executipn in a manner specified by the user, see the
control construct gatch/3 (7.8.9).

7.12.2 Error classification

stream_position,
stream_property,
write_option

Errors are classifled according to the form of Error_term: and Culprit is the argument-Of one of its components
which caused the error.
a) There shall be an Instantiation Error when an
argument or ofe of its components is a variable, and an d) There shall be an Existence Error when the object
instantiated arfument or component is required. It has on which an operation is to be performed does not
the form instlantiation_error. exist. It has the.ferm existence_error (ObjeftType,
Culprit) where
b) There shdll be a Type Error when the type of an
argument or ope of its components is incorrect, but not ObjectType € {
a variable. It|has the form type_error(validType, procedure,
Culprit) where source_sink,
stream
validType € { I
atom,
atomif, and culprit is the argument or one of its conponents
byte, which caused the error.
callaple,
charalcter, e) There shall be a Permission Error when|it is not
compofund, permitted to perform a specific operation. It hag the form
evalugble, permission_error (Operation, PermissipnType,
in_byte, Culprit) where
in_character,
intedler, Operation € {
list, access,
numbgr, create,
predilcate”indicator, input,
variaIble modify,
}’ open
output,
and culprit is the argument or one of its components reposition

which caused the error.

c) There shall be a Domain Error when the type of an
argument is correct but the value is outside the domain
for which the procedure is defined. It has the form
domain_error (ValidbDomain, Culprit) where

ValidDomain € {
character_code_list,
close_option,
flag_value,

62

and

PermissionType € {
binary_stream
flag,
operator,
past_end_of_stream,
private_procedure,
static.procedure,

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

source_sink,
stream,
text_stream

|8

and Culprit is the argument or one of its components
which caused the error.

f) There shall be a Representation Error when an
implementation defined limit has been breached. It has

ISO/IEC 13211-1 : 1995(E)

2 Most errors defined in this part of ISO/IEC 13211 occur
because the arguments of the goal fail to satisfy a particular
condition; they are thus detected before execution of the goal
begins, and no side effects will have taken place. The
exceptional cases are: Syntax Errors, Resource Errors, and
System Errors.

3 A Resource Error may happen for example when a calculation
on unbounded integers has a value which is too large.

4 A System Error may happen for example (a) in interactions

the form[Tepresentation_erToT (FIag) WIere

Flalg € {

¢haracter,
¢haracter_code,
in_character._code,
nax.arity,
fax_-integer,
min-integer

}.

g) Thete shall be a Evaluation Error when the operands
(3.121) |of an evaluable functor are such that the
operation has an exceptional value (9.1.2). It has the
form ev@luation_error (Error) where

Errpr € {
float_overflow,
int_overflow,
ndefined,
underflow,
gero_divisor

}.

h) Thege shall be a Resource Error at any stage
of execftion when the processor has insufficient re-
sources [to complete executions It has the form
resourde_error (Resouxrce)) where Resource is an
implemeptation dependent.atom.

i) Therg shall bela~Syntax Error when a sequence
of characters which are being input as a read-term
do not |[conform to the syntax. It has the form
syntaxJer¥or (imp_dep_atom) where imp._dep.atom

with the operating system (for example, a disc cfash or interrupt),
or (b) when a goal throw(T) has been execyted and there is
no active goal catch/3.

8 Built-in predicates
A built-in predicate~is a procedure whi¢h is provided
automatically by\a,standard-conforming prdcessor.

NOTES

I') A built-in predicate is static, and its execution is described
in*7.7.12.

2 The built-in predicates described in subclausp 8.x are defined
formally in subclause A.5.x.

3 The use of any built-in predicate (and pprticularly those

concerned with input/output - 8.11, 8.12, 8.13,
a Resource Error (7.12.2 h) because, for exam

8.14) may cause
ble, the program

has opened too many streams, or a file or dfsk is full. The
use of these built-in predicates may also cause] a System Error

(7.12.2 j) because the operating system is repo

ting a problem.

The precise reason for such errors, and the ways they can be
circumvented is not specified in this part of ISO/IEC 13211.

8.1 The format of built-in predicate|definitions

These subclauses define the format of thg definitions of

denotes am Tmpiementation dependent atonT.

j) There may be a System Error at any stage of
execution. The conditions in which there shall be a
system error, and the action taken by a processor after
a system error are implementation dependent. It has the
form system_error.

NOTES

1 A Type Error occurs when a value does not belong to
one the types defined in this part of ISO/IEC 13211 and a
Domain Error occurs when the value is not a member of an
implementation defined or implementation dependent set.

built-in predicates.

8.1.1 Description

The description of the built-in predicate assumes that no
error condition is satisfied, and is in two parts: (1) the
logical condition for the built-in predicate to be true, and
(2) a procedural description of what happens as a goal is
executed and whether the goal succeeds or fails.

Most built-in predicates are not re-executable; the descrip-
tion mentions the exceptional cases explicitly.

63

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

© ISO/IEC 1995

64

8.1.2 Template and modes iomode — an input/output mode (7.10.1.1),
A specification for both the type of arguments and which list — as terminology,
of them shall be instantiated for the built-in predicate to
be satisfied. The cases form a mutually exclusive set. nonvar — an atomic term or compound term,
When appropriate, a “Template and modes” subclause number — as terminology,
includes a note that the predicate name is a predefined
operator (see 6.3.4.4, table 7). operator_specifier — one of the atoms: xf, yf,
xfx, xfy, vix, f£x, fy,
8.1.2.1 Type of an argument predicate_indicator — as terminology,
The type of edch argument is defined by one of the read_options_list — a read-options list (7.10.3),
following atoms
source_sink — as terminglogy,
atom — an [atom (3.12),
stream — as terminology;
atom or_atomf_list — an atom or a list of atoms,
stream.options ~~\Ya list of stream| options
atomic — hn atomic term (3.15), (7.10.2.11),
byte — a hyte (7.1.2.1), stream.or(alias — a stream or an alias (J/.10.2.2),
callable_tefrm — as terminology, stpeaw/position — a stream position (7.10.2.8),
character - a one-char atom, stream_property — a stream property (7.]0.2.13),
character_cpde — a character code (7.1.2.2), term — as terminology,
character_clode_list — a list of character cod¢s write_options_list — a write-options li§t (7.10.4,
(7.1.2.2), 7.14.2).
character_llist — a list of one-char atoms,
8.1.2.2 Mode of an argument
clause — ps terminology,
The mode of each argument defines whether ¢r not an
close_optiohs — a list of closé options (8.11.6), argument shall be instantiated when the built-in| predicate
is executed. The mode is one of the following gtoms:
compound._tefrm — as {erminology,
+ — the argument shall be instantiated,
evaluable + an‘€xpression (3.69),
? — the argument shall be instantiated or af variable,
flag — anlatom associated with a Prolog flag (see
7.11), @ — the argument shall remain unaltered,
head — as terminology, - — the argument shall be a variable that will be
instantiated iff the goal succeeds.
inbyte — a byte or the integer -1,)))
NOTE — When the argument is an atomic term, there is no
. difference between the modes + and @. The mode @ is therefore
in.character — a one-char atom or the atom used only when the argument may be a compound term.
end_of_file,
in_character_code — a character code or the integer 8.1.3 Errors
_1,
A list of the error conditions and associated error terms
integer — an integer, for the built-in predicate.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

i

© ISO/IEC 1995

NOTES

1 When the type of an argument is term, the argument can
be any term and no error is associated with this argument.

2 The effect of an error condition being satisfied is defined in
subclause 7.12.

3 When a built-in predicate has a single mode and template,
an argument whose type is not term and whose mode is + or @
is always associated with two error conditions: an instantiation
error when the argument is a variable, and a type error when

ISO/IEC 13211-1 : 1995(E)

8.2.1 (=)/2 - Prolog unify
8.2.1.1 Description

If X and Y are NSTO (7.3.3) then "=’ (X, Y) is true iff X
and Y are unifiable (7.3).

Procedurally, ‘=’ (X, Y) is executed as follows:

a) If the two terms X and Y are STO (7.3.3), the goal

the argumeft is neither a variable nor of the correct type.

4 When { built-in predicate has a single mode and template,
an argument whose mode is ?, and type is not term is always
associated pith an error condition: a type error when the
argument ig neither a variable nor of the correct type.

5 When { built-in predicate has a single mode and template,
an argumenf whose mode is - is always associated with an error
condition: 3 type error when the argument is not a variable.

6 When 4 built-in predicate has more than one mode and
template, afn argument whose mode is either - or + is always
associated pith an error condition: a type error when the
argument iy neither a variable nor of the correct type.

8.1.4 Examples

An example is normally a predication executing the built-
in predicaje as a goal, together with a statement saying
whether the goal succeeds or fails or there is an error. \The
statement falso describes any side effect and upification
that occurd.

Sometimeq the examples start by defining\an environment
in which if is assumed the goal appears:

8.1.5 Bo¢tstrapped built-in predicates

Sometimeq several built-in ‘predicates have similar func-
tionality. In such cases; ‘one or more bootstrapped built-in
predicates |are defined,'as special cases of a more general
built-in pr¢dicate:

The description” of a bootstrapped built-in predicate states

IS undefined,

b) Else if the two terms X and)"Y [are NSTO and
unifiable, computes and applies a’ most| general unifier
of X and v, and the goal suceeeds,

¢) Else if the two téems x and Y are|NSTO and not
unifiable, the goal fails.

NOTE — This built-in” predicate can be implempnted much more
efficiently than/ unify.with_occurs_checK (X, Y) and in
practice it jS—easy for programmers to avoid ficcidental use of
the undefined cases.

8:2.1.2 Template and modes

‘='(?term, ?term)

NOTE — = is a predefined infix operator (sed 6.3.4.4).

8.2.1.3 Errors

None.

8.2.14 Examples

r=0(1, 1).
Succeeds.
= (X, 1).

Succeeds, unifying X with 1.

"= (X, Y).
Succeeds, unifying X with Y.

how it relates to the general built-in predicate, usually
followed by a definition in Prolog that defines the logical
and procedural behaviour of the bootstrapped built-in
predicate when no error conditions are satisfied.

The error conditions and examples for a bootstrapped

built-in predicate are included in the appropriate clauses
of the general built-in predicate.

8.2 Term unification

These built-in predicates are concerned with the unification
of two terms as defined in 7.3.

s).
Succeeds.

(X, Y), '='(X, abc).
Succeeds, unifying X with abc, and Y with abc.

‘(f(X, def), f(def, Y)).
Succeeds, unifying X with def, and Y with def.

(1, 2).
Fails.

"

(1, 1.0).
Fails.

" g(X),

65

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

fF(E(X))).
Fails.

= (£(X, 1),
f(a(x))).
Fails.

=1 (f(X, Y, X).
f(a(xX), a(y), Y, 2)).
Fails.

r=0 (X,
a(x)).

8.2.2.3 Errors

None.

8.2.2.4 Examples

© ISO/IEC 1995

Undefined.

(£(X, 1)),
f(a(x), 2)|).
Undefined.

= (£(1, X, 1),
£(2, a(x),| 2)).
Undefined.

I

o £(1, X)|
f(2, a(X))]).
Undefined.

= (£(X, Y, X, 1),
f(a(x), a(y), Y, 2)).
Undefined.

8.2.2 unify_with occurs_check/2 — unify
unify with_ocqurs_check(X, Y) attempts to compute

and apply a most general unifier of the two terms x and
Y.

8.2.2.1 Description

unify_with_ocdqurs_check (X, Y) is true iff X and v are
unifiable (7.3).

Procedurally, unf fy_with occuxs_check (X, Y) is exe-
cuted as follows

a) If x and |¢ arg-unifiable, computes and applies a
most general ynifier-of X and Y, and the goal succeeds.

unify_with_occurs_check (1, 1).

Succeeds.

unify with_occurs_check (X, 1).
Succeeds, unifying X with 1%

unify with_occurs_check (X) YJ).
Succeeds, unifying Xswith Y.

unify _with_occurs_checkd_, _).

Succeeds.

unify with_ocecurs_check (X, Y),

unify_with_occurs_check(X, abc).

Succeeds, unifying X with abc,

and Y with abc.

unify<with_occurs_check(f (X, def), f(def, Y)).
Succeeds, unifying X with def,

wnify with_occurs_check(1l, 2).

Fails.

unify with_occurs_check(1l, 1.0).

Fails.

unify with_occurs_check(g(X),

Fails.

unify_with_occurs_check(£(X, 1),

Fails.

£(E£(X))

f (a(X)

unify with_occurs_check(f (X,

Fails.

f(a(x),

unify_with_occurs_check(X,

Fails.

a(x)).

)

and Y with def.

).

).

b) Else if X and Y are not unifiable, the goal fails.

NOTE — For any arguments unify_with_occurs_check (X,
Y) always succeeds or fails; there is never an error or an
undefined result.

This built-in predicate can be implemented much less efficiently
than (=) /2 (8.2.1). In practice it is easy for programmers to
avoid accidental use of the undefined cases.

8.2.2.2 Template and modes

unify_with_occurs_check(?term, ?term)

66

unify_with_occurs_check(f (X,

Fails.

f(a(X),

unify with_occurs_check(f(1, X,
£(2, a(X), 2)).

Fails.

unify with_occurs_check(f(1, X)
£(2, a(X))).

Fails.

unify_with_occurs_check(f (X,

Fails.

f(a(X),

v

Y, X).
a(y), v, 4))
1),
2)).

1),

Y, X, 1),
a(y), Y, 2)).

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

8.2.3 (\=)/2 — not Prolog unifiable

8.2.3.1 Description

ISO/IEC 13211-1 : 1995(E)

\=(£(X, 1),

undefined,

f(a(x))).
Succeeds.
A\='(£(X, Y, X),
If X and Y are NSTO (7.3.3) then \=(X, Y) is true iff X f(a(x), a(y), ¥, 2)).
and Y are not unifiable (7.3). Succeeds.
. \=(X,
Procedurally, \=(X, Y) is executed as follows: a(x)).
Undefined.
a) If the two terms x and Y are STO, the goal is) L eix)
f(a(xX), 2)).
Undefined.
b) Elsq if the two terms X and Y are NSTO and
unifiabld, the goal fails, W=t (£, X, b,
£(2, a(x), 2)).
. Undefined.
c) Elsd if the two terms X and Y are NSTO and not
unifiabld, the goal succeeds. \=(£(2, X),
f(2, a(x))).
Undefined.
8.2.3.2 Tpmplate and modes = (£(X, N\ X, 1),
flafxX,/ aly), Y, 2)).
Undefinéd.

‘\\=' (@Qterm, @term)

1 \= is a|predefined infix operator (see 6.3.4.4).

2 The quted atom ‘\\=' is identical to the unquoted atom
\= (see 6.42.1).

8.2.3.3 Hrrors

None.

8.2.3.4 HExamples

8.37) Type testing

These built-in predicates test the type asgociated with a
term as defined in 7.1.

A goal executing any of these built-in prgdicates simply

succeeds or fails; there is no side effect,| unification, or
erTor.

8.3.1 var/l

8.3.1.1 Description

“\\= (1,). var (X) is true iff X is a member of the spt V (7.1.1).
Fails.
\=(X, 1).
Fails. 8.3.1.2 Template and modes
"\\=' (X,)< var (@term)
Fails.
A=l) 8.3.1.3 Errors
Fails. e

\=(f (X, def), f(def, Y)).
Fails.

"\N\=' (1, 2).
Succeeds.

\=(1, 1.0).
Succeeds.

"\N\='(g(X),
f(E(X))).
Succeeds.

None.

8.3.14 Examples

var (foo) .
Fails.

var (Foo) .
Succeeds.

foo=Foo, var (Foo).

67

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

Fails.

var (_) .
Succeeds.

8.3.2 atom/1
8.3.2.1 Description

atom(X) is true-iff x is a member of the set A4 (7.1.4)

© ISO/IEC 1995

8.3.3.4 Examples

integer(3).
Succeeds.

integer (-3).
Succeeds.

integer(3.3).
Fails.

integer (X) .

8.3.2.2 Templdte and modes

atom(@term)

8.3.2.3 Errors

None.

8.3.2.4 Examples

atom(atom) .
Succeeds.

atom(’string’)|.
Succeeds.

atom(a (b)) .
Fails.

atom(Var) .
Fails.

atom([]).
Succeeds.

atom(6) .
Fails.

atom(3.3).
Fails.

8.3.3 integer/]

P
TS

integer (atom) .
Fails.

8.3.4 float/l
8.3.4.1 Description

float (X) is true iff & is”a member of the set {* (7.1.3).

8.3.4.2 Template and modes

float (@term)

8:3.4.3 Errors

None.

8.3.4.4 Examples

float(3.3).
Succeeds.

float (-3.3).
Succeeds.

float (3).
Fails.

float (atom) .
Fails.

float (X) .
Fails.

8.3.3.1 Description

integer (X) is true iff X is a member of the set I (7.1.2).

8.3.3.2 Template and modes

integer (@term)

8.3.3.3 Errors

None.

68

8.3.5 atomic/l
8.3.5.1 Description
atomic (X) is true if X is a member of the set A or I or

F (714, 7.1.2, 7.1.3) and is false if X is a member of
the set V or CT (7.1.1, 7.1.5).

8.3.5.2 Template and modes

atomic (@term)

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

8.3.5.3 Errors

None.

8.3.54 Examples

atomic (atom) .
Succeeds.

atomic(a(b)).

ISO/IEC 13211-1 : 1995(E)

8.3.7 nonvar/l
8.3.7.1 Description

nonvar (X) 1is true iff X is not a member of the set V
(7.1.1).

8.3.7.2 Template and modes

Fails.

atomic (Var) .
Fails.

atomic(6) .
Succeeds.

atomic(3.3).
Succeeds.

8.3.6 compoynd/1
8.3.6.1 Descifiption

compound (X) |is true iff X is a member of the set CT
(7.1.5).

8.3.6.2 Tempjate and modes

compound (@té¢rm)

8.3.6.3 Erroxns

None.

8.3.6.4 Examples

compound (33.3) .
Fails.

compound (-33 .[3) .
Fails.

nonvar (@term)

8.3.7.3 Errors

None.

8.3.74 Examples

nonvar (33 .8).
Succeéds.

nonvayr (foo) .
Succeeds.

nonvar (Foo) .
Fails.

foo = Foo, nonvar (Foo).
Succeeds.

nonvar (_) .
Fails.

nonvar (a(b)) .
Succeeds.

8.3.8 number/1

8.3.8.1 Description

number (X) is true iff X is a member of the pet I or F

compound (-a) .
Succeeds.

compound (_) .
Fails.

compound (a) .
Fails.

compound (a (b)) .
Succeeds.

compound ([]) .
Fails.

compound([a]) .
Succeeds.

(7.1.2, 7.1.3) and is false if X is a member of the set V,
Aor CT (7.1.1, 7.1.4, 7.1.5).

8.3.8.2 Template and modes

number (@term)

8.3.8.3 Errors

None.

69

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

8.3.8.4 Examples

© ISO/IEC 1995

8.4.1.4 Examples

number (3) . ‘@=<'(1.0, 1).
Succeeds. Succeeds.

number (3.3) . ‘@<’ (1.0, 1).
Succeeds. Succeeds.

number (-3) . ‘\N\=='(1, 1).
Succeeds. Fails.

number (a) . '@=<"' (aardvark, zebra).
Fails. Succeed

number (X) . ‘@=<' (short, short).
Fails. Succeeds.

8.4 Term compparison

These built-in pre¢dicates test the ordering of two terms as
defined in 7.2.

A goal executing any of these built-in predicates simply
succeeds or faild; there is no side effect, unification, or
error.

8.4.1 (@=<)/2{ term less than or equal, (==)/2 — term
identical,| (\==)/2 — term not identical, (@<)/2
— term l¢ss than, (@>)/2 — term greater than,
(@>=)/2 {- term greater than or equal

8.4.1.1 Description

r@=<' (X, Y) iy true iff X term_precedes Y (7.2),~0r X
and Y are identidal terms (3.87).

Procedurally, '@f<’ (X, Y) is executed as follows:
a) If x and Y are identical, the goal\succeeds.
b) Else if X ferm_precedes ¥, the goal succeeds,

¢) Else the goal fails.

8.4.1.2 Templalte and’/modes

'@=<' (short, shorter).
Succeeds.

'@>=' (short, shorter).
Fails.

'@<’ (foo(a, b), north(a)).
Fails.

'@>' (foo(b), foofa)).
Succeeds.

‘@<’ (foadad X), foo(b, Y)).
Suceeeds .

'@<{Nfoo (X, a), fool(Y, b)).
Implementation dependent.

"@=<' (X, X).
Succeeds.

r==' (X, X).
Succeeds.

r@=<’ (X, Y).
Implementation dependent.

r=='(X, Y).
Fails.

\==(_, _).
Succeeds.

t==r(l,).

Fails.

re=<r(_, _).
Implementation dependent.

'@=<' (@term, @term)
'=='(@Qterm, @term)
‘\\=='(@term, @term)
@<’ (Qterm, @term)
'@>' (@term, @term)
'@>='(@term, @term)

NOTE — @=<, ==, \==, @<, @>, and @>= are predefined infix
operators (see 6.3.4.4).

8.4.1.3 Errors

None.

70

"@=<"'(foo (X, a), foo(Y, b)).
Implementation dependent.

8.4.1.5 Bootstrapped built-in predicates

The built-in predicates (==) /2 (term identical), (\\==)/2
(term not identical), (@<)/2 (term less than), (@>)/2
(term greater than), and (@>=)/2 (term greater than or
equal) also test the identity and term-precedence of their
arguments:

The goals '=='(X, ¥), '\\=='(X, Y), '@<' (X, Y),

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

(© ISO/IEC 1995 ISO/TEC 13211-1 : 1995(E)

'@>' (X, Y), and '‘@>=' (X, Y) are defined as follows: i) Else if Name is an atom and Arity is an integer
greater than zero, then instantiates Term with a term that

a) ‘=='(X, Y) is true iff X and Y are identical terms has functor with identifier Name and arity Arity, and
(3.87), Arity distinct fresh variables, and the goal succeeds,
b) ‘\\==’(X, Y) is true iff X and Y are not identical j) Else the goal fails.
terms,
c) @<’ (X, Y) is true iff X term_precedes Y (7.2), 8.5.1.2 Template and modes
d) re> ; t t - - 7 e

functor (+nonvar, ?atomic, ?integetn
e) '@>3’' (X, Y) is true iff Y term_precedes X, or X

and Y ar¢ identical terms.
8.5.1.3 Errors

8.5 Term creation and decomposition a) Term and Name arg ‘both variables
— instantiation_érror.

These built-in predicates enable a term to be assembled

from its cofnponent parts, or split into its component parts, b) Term and Arity are both variables
or copied. — instantiation_error.

c) Te¥m 'is a variable and Name is neither a variable
8.5.1 fungtor/3 noy an-atomic term

£-\type_error (atomic, Name).

8.5.1.1 De¢scription

d) Term is a variable and Arity is neither a variable
functor (Jerm, Name, Arity) is true iff: nor an integer

] — type.error (integer, Arity).
— Terfn is a compound term with a functor whose

identifierf is Name and arity Arity, or e) Term is a variable, Name is a constant but not an
)) atom, and Arity is greater than zero
— Terfun is an atomic term equal to Name(and Arity — type.error (atom, Name).
is 0.
) f) Term is a variable and Arity is an |integer greater

Procedurally, functor (Term, Name, ‘Afity) is executed than the implementation defined integer max_arity
as follows: — representation_error (max_arity)) .

a) If Tdrm is an atomic t€rm; then proceeds to 8.5.1.1 d, g) Term is a variable and Arity is an|integer that is

less than zero

b) If Term is a ¢émpound term, then proceeds to __ domain.error (not.less.than.zerd, Arity).

8.5.1.1 f
c¢) If Te¢rmas-a variable, then proceeds to 8.5.1.1 h, 8.5.1.4 Examples
d) If Name unifies with Term, and Arity unifies with functor (foo(a, b, c), foo, 3).
0, the goal succeeds. Succeeds.
. functor (foo(a, b, c), X, Y).
e) Else the goalfaﬂs' Succeeds, unifying X with foo, and Y with 3.
f) If Name unifies with the identifier of the functor of functor (X, foo, 3). e
Term, and Arity unifies with the arity of the functor Succeeds, unifying X with fool_, _.).
of Term, the goal succeeds, functor (X, foo, 0).

Succeeds, unifying X with foo.

g) Else the goal fails.

functor (mats (A, B), A, B).

. . i . Succeeds, unifying A with ‘mats’,
h) If Name is an atomic term and Arity is 0, then and B with 2).

unifies Term with Name, and the goal succeeds,

71

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

functor (foo(a), foo, 2).
Fails.

functor (foo(a), fo, 1).
Fails.

functor (1, X, Y).
Succeeds, unifying X with 1, and Y with 0.

functor (X, 1.1, 0).
Succeeds, unifying X with 1.1.

© ISO/IEC 1995

b) Term is a variable
— instantiation_error

¢) N is neither a variable nor an integer
— type_error (integer, N).

d) Term is neither a variable nor a compound term
— type_error (compound, Term).

e) N is an integer less than zero

functor ([_|_], ———te—=2>
Succeeds.

functor ([], []] 0).
Succeeds.

functor(X, Y, B).
instantiatifpn_error.

functor (X, foo| N).
instantiatijon_error.

functor (X, foo|, a).
type_error (Jinteger, a).

functor (F, 1.5, 1).
type_error (atom, 1.5).

functor (F, fool(a), 1).
type_error (atomic, foo(a)).

current_prolog flag(max_arity, A),
X is A H 1,
functor (I, foo, X).
representatfion_error (max_arity).
Minus_1 is 0 - 1,

functor (JF, foo, Minus_1).
domain_errdr (not_less_than_zero, -1).

8.5.2 arg/3
8.5.2.1 Description

arg (N, Term, [Arg) is true iffithe Nth argument of Term
s Arg.

Procedurally, ang (N, ~Term, Arg) is executed as follows:

a) If Arg unifies with the N-th argument (7.1.5) of

— domain_error (not_less_than_zero, N)|

8.5.2.4 Examples

arg(l, foo(a, b), a).
Succeeds.

arg(l, foo(a, b), X).
Succeeds, unifying,X-with a.

arg(l, foo(X, b) . a).
Succeeds, un¥fying X with a.

arg(l, foo(X,) b), Y).
Succeéds, unifying X with Y.

arg(1y foo(a, b), b).
Fails.

arg(0, foo(a, b), foo).
Fails.

arg(3, foo(3, 4), N).
Fails.

arg(X, foo(a, b), a).
instantiation_error.

arg(l, X, a).
instantiation_error.

arg(0, atom, A).
type_error (compound, atom) .

arg(0, 3, A).
type_error (compound, 3).

arg(l, foo(X), u(X)).
Undefined.

compound term Term, then the goal succeeds,

b) Else the goal fails.

8.5.2.2 Template and modes

arg (+integer, +compound-term, ?term)

8.5.2.3 Errors

a) N is a variable
— instantiation.error

72

8.5.3 (=.)/2 — univ

8.5.3.1 Description

'

=..'(Term, List) is true iff:

— Term is an atomic term and List is the list whose
only element is Term, or

— Term is a compound term and List is the list
whose head is the functor name of Term and whose tail
is a list of the arguments of Term.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

Procedurally, '=. .’ (Term, List) is executed as follows:

a) If Term is an atomic term, then proceeds to 8.5.3.1 d,

b) If Term is a compound term, then proceeds to
8.5.3.1f,

c¢) If Term is a variable, then proceeds to 8.5.3.1 h,

d Ifr

ist unifies with a list whose only element is

ISO/MIEC 13211-1 : 1995(E)

€) List is a list whose head H is a compound term,
and whose tail is the empty list
— type_error (atomic, H).

f) Term is a variable and List is the empty list
— domain_error (non_empty_list, List).

g) Term is a variable and the tail of List has a
length greater than the implementation defined integer
max.arity

— representation error (max arity).

Term, then the goal succeeds.

e) Elsg

the goal fails.

f) If List unifies with a list whose head is the functor

name of
of Term

g) Elsg

h) If o

Term and whose tail is a list of the arguments
then the goal succeeds,

the goal fails.

ist is a list whose only element is an atomic

term, then instantiates Term with the single element of
List, apd the goal succeeds,

i) Else|
term CT
of List]
of List
succeeds

J) Else

if List is a list and there exists a compound
such that the functor name of CT is the head
and a list of the arguments of CT is the tail
then instantiates Term with CT, and the goal

the goal fails.

8.5.3.2 Template and modes

‘=..' (+n
'=..'(-n
NOTE — H..
8533 E

bnvar, ?list)
bnvar, +list)

is a predefined infix operator (see 6.3.4.4).

'rors,

8

’

'=.." (fooX+ b), [foo, a, YI).

‘=..'(foo(a, b), [foo, b, al).

'=..' (X, [foo, a | Y]).

‘=0 (X, [1.1, fool).

‘=000 (X, la(b), 11).

.5.3.4 Examples
=..'(foo(a, b), [foo, a, bl).
Succeeds.

=..' (X, [foo, a, b]).
Succeeds, unifying“X with foo(a, b) .

=..' (foo(a, A K .
Succeeds,,unifying L with [foo, a,|b].
Succeeds, unifying X with a, and Y|with b.

=\, [1]).
Succeeds.

Fails.

=..' (X, Y).
instantiation_error.
instantiation_error.

=..' (X, [foo|bar]).
type_error (list, [foo|bar]).

=.."'(X, [Foo, barl).
instantiation_error.

=.. (X, [3, 1]).
type_error (atom, 3).

type_error(atom, 1.1).

type_error(atom, a(b))

a) Term is a variable and List is a partial list

— inst

b) Lis

antiation_error.

t is neither a partial list nor a list

— type_error (list, List).

¢) Term is a variable and List is a list whose head

is a vari

able

— instantiation_error.

d) Lis

t 1s a list whose head H is neither an atom nor

a variable, and whose tail is not the empty list
— type_error (atom, H).

=L (X, 4) .

type_error(list, 4).

= (EX), [f, u(X)]).
Undefined.

8.54 copy_term/2

8.5.4.1 Description

copy-term(Term.1, Term_2) is true iff Term_2 unifies
with a term T which is a renamed copy (7.1.6.2) of
Term_1.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

Procedurally, copy_term(Term.1, Term_2) is executed
as follows:

a) Let T be a renamed copy (7.1.6.2) of Term 1.
b) If Term.2 unifies with T, then the goal succeeds,

¢) Else the goal fails.

NOTE — If the variable sets of Term.1 and Term. 2 are

© ISO/IEC 1995

8.6.1 (is)/2 — evaluate expression
8.6.1.1 Description

"is’ (Result, Expression) is true iff the value of
evaluating Expression as an expression is Result.

Procedurally, ‘is’ (Result, Expression) is executed
as follows:

disjoint, then evefi 1 the goal sSucceeds, Term I witl be
unaltered, and the|variable sets of both arguments will remain
disjoint.

8.5.4.2 Template and modes

copy-term(?teym, ?term)

8.5.4.3 Errors

None.

8.5.4.4 Examp

[+

S

copy_term(X, YJ).
Succeeds.

copy_term(X, 3
Succeeds.

copy_term(_, a
Succeeds.

copy_term(a+X, [X+b) .
Succeeds, upifying X with a.

copy_term(_, _].
Succeeds.

copy_term (X+X+Y, A+B+B).
Succeeds, upifying A with B.

copy_term(a, b].
Fails.

el . .
T Cvalmates EXpress o as—at—CXPressioh (79) to

produce a value c,
b) If Result unifies with ¢, then the goal sycceeds,

¢) Else the goal fails.

8.6.1.2 Template and modes

is (?term, Qevaluable)

NOTE — is is‘ predefined infix operator (see 6.3.4.4).

8.6.1.30) Errors

d) Expression is a variable
— instantiation_error.

NOTE — The evaluation of Expression may alsq result in
errors (see 7.9.2).

8.6.1.4 Examples

'is’ (Result, 3+11.0).
Succeeds, unifying Result with 14.0.

X = 1+2, Y is X * 3.
Succeeds, unifying X with 1+2, and Y with 9.

"is’ (3, 3).
Succeeds.

‘is’ (3, 3.0).
Fails.

copy_term(a+X, =¥
copy_term(a+X, X+b).
Fails.

copy_term(demoen (X, X), demoen(Y, £(Y))).
Undefined.

NOTE — No unifications take place in the examples above
unless explicitly described.

8.6 Arithmetic evaluation

This built-in predicate causes an expression to be evaluated
(7.9) and a value to be unified with a term.

74

'is’ (foo, 77).
Fails.

"is’ (77, N).
instantiation_error.

8.7 Arithmetic comparison

These built-in predicates cause two expressions to be
evaluated (7.9) and their values to be compared.

Each arithmetic comparison built-in predicate corresponds
to an operation which depends on the types of the values

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

which are obtained by evaluating the argument(s) of the
built-in predicate.

The following table identifies the integer or floating point
operations corresponding to each built-in predicate:

ISO/IEC 13211-1 : 1995(E)

neqr(m,n) =true <= m#n

neqrr(z,n) = neqp(z, float;_ p(n))
if float;_p(n) € F
= float_overflow
if float;_,p(n) ¢ F

predicate indicator operation

(=:=)/2 €qr, eqF, eqFr, €qIF neqrr(n,y) = neqrr(y,n)
(=\=)/2 neqr, neqr, Neqryr, Neqrr

(<) /2 lssy, lssp, lsspy, lssip lssp(z,y) =true <= z<y
(=<)/2 leqr, leqr, ieqFI, leqrF

(>)/2 gtry, gtrp, gtrer, gtrip Issy(m,n) =true <= m<n
(>=)/2 geqr, geqr, geqri, geqrr

The followjing operations are specified:

eqr: F x F — Boolean
eqr: I xI — Boolean
eqrr: F x I — Boolean U {float_overflow}

eqrr: | I x F — Boolean U {float_overflow}
neqr: |F x F — Boolean
neqr: |I xI — Boolean
neqrr: | F' x I — Boolean U {float_overflow}
neqrrp: | I x F' — Boolean U {float_overflow}
lssp: F x F — Boolean
lssy: I x 1 — Boolean
Isspr: | F x I — Boolean U {float_overflow}
Issip: | I x F — Boolean U {float_overflow}
leqp: F x F — Boolean
leqr: I x I — Boolean
leqrr: | F x I — Boolean U {float_overflow}
leqrp: |I x F — Boolean U {float_overflow}
gtrp: | F' x F — Boolean
gtrr: I x I — Boolean
gtrpr: | F x I — Boolean U {float overflow}
gtrip: | I x F' — Boolean U{float_overflow}
geqrp: | F x F — Booleap
geqr: I xI — Booléan
geqrr: | F x I — Boblean U {float_overflow}
geqrp: | I x F' —{Boolean U {float_overflow}

For all z,|y €4% and m, n € I the following axioms
shall apply

Isspr(z,n) = lssp(x, floatrsp(n))
if float;_p(n) ¢ F
= float_overflow
ityfloat;.p(n) ¢ F

Issip(n,y) =geqrr(y,n)
legp(z,y)-\= true <= =<y

legr(myn) =true <= m<n

legpr(z,n) = leqp(z, float;_.p(n))
if float;_p(n) ¢ F

= float_overflow

if float;_.p(n) ¢ F

leqrr(n,y) = gtrri(y,n)
gtrp(z,y) =true <= z>y
gtry(m,n) =true <= m>n
gtrrr(z,n) = gtre(z, float;_ p(n))
if floatf_,p(n) ¢ F
= float_overflow

if float;rp(n) ¢ F

gtrir(n,y) = leqri(y,n)

geqr(z,y) =true <= x>y

eqr(z,y) =true <= z=y
eqr(m,n) =true <= m=n
eqri(z,n) = eqp(z, float;_ p(n))

if floati_p(n) € F
= float_overflow
if float;p(n) ¢ F
eqrr(n,y) = eqrr(y,n)

neqr(z,y) =true <= z#y

geqr(m,n) =true <= m>n

geqri(z,n) = geqr(z, float;_.p(n))
if float;p(n) € F
= float_overflow
if float;_p(n) & F

geqrr(n, y) = ISSFI(ZI, n)

NOTES

75

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

1 The arithmetic evaluable functors are defined in 9.1.1.

2 An Evaluation error (float_overflow) occurs when an operand
(3.121) which is a large integer cannot be converted to a floating
point value (see float;_.p, 9.1.6).

8.7.1 (=:=)/2 - arithmetic equal, (=\=)/2 — arithmetic
not equal, (<)/2 — arithmetic less than, (=<)/2 —
arithmetic less than or equal, (>)/2 — arithmetic

greater than (>=)/2 - arithmetic greater than or

8.7.1.4 Examples
r=:='(0, 1).
Fails.

'=\\='(0, 1).
Succeeds.

‘<’ (0, 1).
Succeeds.

> (0, 1).

© ISO/IEC 1995

equal
8.7.1.1 Description
The following r¢quirements are true for all P where
Pe{ =:=, :\:’ <, =<, >, >= }
"P'(E1, E2)|is true iff evaluating E1 and E2 as
expressions and| performing the corresponding arithmetic
operation on thgir values is true.

Procedurally, ' (E1, E2) is executed as follows:

a) Evaluates] E1 and E2 as an expression (7.9) to
produce valugs EV1 and EV2,

b) If the result of applying the arithmetic operation P
to values Ev1l] and EV2 is true, then the goal succeeds;

¢) Else the poal fails.

8.7.1.2 Template and modes

'=:=' (@evaluable, @evaluable)
'=\\=' (Revalfiable, Qevaluable)
‘<’ (@Qevaluable, Qevaludable)
‘=<' (Qevaluable, Qevalliable)
'>' (@evaluable, @evaltable)
'>=' (Qevaluaple,(@evaluable)

Fails.

'>='(0, 1).
Fails.

r=<'(0, 1).
Succeeds.

r=:='(1.0, 1).
Succeeds.

=\=(1.0, 1).
Fails.

<’ (1.0, 1).
Fails.

> (1,0,).
Faids.

et (1.0, 1).
Succeeds.

=<' (1.0, 1).
Succeeds.

r=:='(3*%2, 7-1).
Succeeds.

f=\\=(3*2, 7-1).
Fails.

r<r(3%2, 7-1).
Fails.

r>1(3%2, 7-1).
Fails.

'>='(3*%2, 7-1).
Succeeds.

f=<(3%2, 7-1).

NOTE — =I1=, =\=, y T~ s auu' = dlt plCdCflllCd illﬁ)\

operators (see 6.3.4.4).

8.7.1.3 Errors

a) E1 is a variable
— instantiation_error.

b) E2 is a variable
— instantiation_error.

NOTE — The evaluation of E1 and E2 may result in errors
(7.9.2).

76

succeeds.

== (X, 5).

instantiation_error.

=\=(X, 5).

instantiation_error.

< (X, 5).

instantiation_error.

‘> (X, 5).

instantiation_error.

>=' (X, 5).

instantiation_error.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

(© ISO/IEC 1995

r=<' (X, 5).
instantiation_error.

8.8 Clause retrieval and information

These built-in predicates enable the contents of the database
(7.5) to be inspected during execution.

The examples provided for these built-in predicates assume

ISO/IEC 13211-1 : 1995(E)

d) Chooses the first element of the list L, and the goal
succeeds.

e) If all the elements of the list L have been chosen,
then the goal fails,

f) Else chooses the first element of the list L which
has not already been chosen, and the goal succeeds.

clause (Head, Body) is re-executable. On backtracking,

A 1 1o o 1o £o11 - DPeal
the databagetas—beemr—created—from—the TOTTOWITZ T TOT0g

text:

: - dynamifc (cat/0) .
cat.

: - dynanifc (dog/0) .
dog :- true.

elk(X) :-| moose(X).

: - dynamifc (legs/2) .

legs (A, 6)) :- insect(a).
legs(a, 7)) :- A, call(a).
: - dynamifc (insect/1) .

insect (anjt) .
insect (befe) .

8.8.1 clapse/2
8.8.1.1 Description
clause (Hpad, Body) is true iff:
— Th¢ predicate of Head is public; and

— Thg¢re is a clause in the database which corresponds
to a terfn H :- B which unifies® with Head :- Body.

Procedurally, clause (Héad, Body) is executed as fol-
lows:

a) Seafches-Sequentially through each public user-
defined |procedure in the database and creates a list L
of all the tefms clause(H, B) such that

continue at 8.8.1.1 ¢.

NOTE — The process of convertingha’ clause to a term
(7.6.3, 7.6.4) produces a renamed copy of the term H :- B
corresponding to the clause.

8.8.1.2 Template and modes

clause(+head, ?callable_term)

8.8.1.3 (Errors

a) Head 1is a variable
=4 instantiation_error.

b) Head is neither a variable nor a pr¢dication
— type_error(callable, Head).

¢) The predicate indicator Pred of Hdad is that of a

private procedure

— permission_error (access,
private_procedure, Pred).

d) Body is neither a variable nor a callable term
— type_error(callable, Body).

8.8.1.4 Examples

These examples assume the database har been created
from the Prolog text defined at the beginnjng of 8.8.

clause(cat, true).

1) the database contains a clause whose head can
be converted to a term H (7.6.3), and whose body can
be converted to a term B (7.6.4), and

2) H unifies with Head, and

3) B unifies with Body.

b) If a non-empty list is found, then proceeds to
8.8.1.1 d,

c) Else the goal fails.

Succeeds.

clause (dog, true).
Succeeds.

clause(legs (I, 6), Body).
Succeeds, unifying Body with insect(I).

clause(legs(C, 7), Body).
Succeeds, unifying Body with (call(C), call(C)).

clause(insect(I), T).
Succeeds, unifying I with ant, and T with true.
On re-execution,

succeeds, unifying I with bee, and T with true.

clause (x, Body).

77

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

Fails.

clause(_, B).
instantiation_error.

clause (4, X).
type_error (callable, 4).

clause (elk(N), Body).
permission_error (access,

private_procedure, elk/1).

clause (atom(_), Body) .

© ISO/IEC 1995

8.8.2.2 Template and modes

current_predicate (?predicate_indicator)

8.8.2.3 Errors

a) PI is neither a variable nor a predicate indicator
— type_error (predicate_indicator, PI).

permission_grror (access,
private_grocedure, atom/1).

clause(legs (A, |6), insect(f(A))).
Undefined.

8.8.2 current_predicate/l
8.8.2.1 Description

current_predidate (PI) is true iff PI is a predicate
indicator for on¢ of the user-defined procedures in the
database.

Procedurally, current_predicate (PI) is executed as
follows:

a) Searches the database and creates a set Setany of
all the terms A/N such that (1) the database contains a
user-defined procedure whose predicate has identifier 2
and arity N, afjd (2) A/N unifies with PT,

b) If a nonfempty set is found, then progeeds to
8.8.2.14d,

c) Else the goal fails.
d) Chooses almember of Set 4 ard the goal succeeds.

e) If all the|members ¢f..Setqn have been chosen,
then the goal fails,

f) Else choo$es’a~member of Setsn which has not
already been dhosén, and the goal succeeds.

8.8.24 Examples

These examples assume the database has~been| created
from the Prolog text defined at the beginning of §8.8.

current_predicate(dog/0) .
Succeeds.

current_predicate (currefnt, predicate/1) .
Fails.

current_predicate(elk/Arity) .
Succeeds, unif¥ying Arity with 1.

current_predicate (foo/A) .
Fails.

current_predicate(Name/1) .
Sueceeds, unifying Name with elk.
©n re-execution, succeeds,
unifying Name with insect.
[The order of solutions is
implementation dependent]

current_predicate(4) .
type_error (predicate_indicator, 4).

8.9 Clause creation and destruction

These built-in predicates enable the database (7|5) to be
altered during execution.

NOTE — This part of ISO/IEC 13211 requires g “logical
database update”, see 7.5.4.

8.9.1 asserta/l

current_predicate(PI) is re-executable. On back-

tracking, continue at 8.8.2.1 e.

The order in which predicate indicators are found by
current_predicate (PI) is implementation dependent.

NOTE — All user-defined procedures are found, whether static
or dynamic.

A user-defined procedure is also found even when it has no
clauses.

A user-defined procedure is not found if it has been abolished.

78

8.9.1.1 Description
asserta(Clause) is true.
Procedurally, asserta(Clause) is executed as follows:

a) If clause unifies with ':-’ (Head, Body), then
proceeds to 8.9.1.1 c,

b) Else unifies Head with Clause and true with
Body,

c) Converts (7.6.1) the term Head to a head H,

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

d) Converts (7.6.2) the term Body to a goal G,
e) Constructs the clause with head H and body B,
f) Adds that clause before all existing clauses of the

procedure whose predicate is equal to the functor of
Head,

ISO/IEC 13211-1 : 1995(E)

asserta((atom(_) :- true)).
permission_error (modify,
static_procedure, atom/1).

After these examples the database could have been created
from the following Prolog text:

:- dynamic (legs/2).

g) The goal succeeds. legs(A, 4) :- animal(A).
legs (octopus, 8).
legs(A, 6) :- insect(A).

8.9.1.2 TJmplate and modes

asserta(@dclause)

8.9.1.3 Errors

a) Head is a variable
— instpntiation.error.

b) Headl is neither a variable nor can be converted to
a predicdtion
— typelerror(callable, Head).

¢) Body cannot be converted to a goal
— typelerror (callable, Body).

d) The|predicate indicator pred of Head is that of\a
static prgcedure
— permfission_error (modify,

static_procedure, Pred).

8.9.1.4 Examples

The examples defined in this subclause assume the database
has been cfeated from the following Prolog text:

;- dynamid¢ (legs/2).
legs (A, 6) :- insect(Al"

:- dynami¢ (insect/il) .
insect (anf
insect (bed

:- dynamic (insect/1).
insect (ant) .
insect (bee) .

:- dynamic (foo/1) .
foo(X) :- call(X), callfX)s

8.9.2 assertz/l

8.9.2.1 Deseription
assertz{(Clause) is true.
Procedurally, assertz (Clause) is execut¢gd as follows:

a) If clause unifies with ’:-’ (Head| Body), then
proceeds to 8.9.2.1 c,

b) Else unifies Head with Clause apd true with
Body,

¢) Converts (7.6.1) the term Head to alhead H,
d) Converts (7.6.2) the term Body to a|goal G,
e) Constructs the clause with head H apd body B,

f) Adds that clause after all existing [clauses of the
procedure whose predicate is equal to |the functor of
Head,

g) The goal succeeds.

asserta(legs(octopus, 8)).

Succeeds.

asserta((legs(A, 4) :- animal(a))).
Succeeds.

asserta((foo(X) :- X, call(X))).
Succeeds.

asserta(_).
instantiation_error.

asserta(4) .
type_error (callable, 4).

asserta((foo :- 4)).
type_error (callable, 4).

8.9.2.2 Template and modes

assertz(@clause)

8.9.2.3 Errors

a) Head is a variable
— instantiation.error.

b) Head is neither a variable nor can be converted to
a predication
— type.error (callable, Head).

79

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/TEC 13211-1 : 1995(E)

¢) Body cannot be converted to a goal
— type_error (callable, Body).

d) The predicate indicator Pred of Head is that of a

static procedure

— permission_error (modify,

static_procedure,

8.9.2.4 Examples

Pred).

© ISO/IEC 1995

8.9.3 retract/1
8.9.3.1 Description

retract (Clause) is true iff the database contains at
least one dynamic procedure with a clause Clause which
unifies with Head :- Body.

Procedurally, retract (Clause) is executed as follows:

The examples deffined in this subclause assume the database
has been created from the following Prolog text:

;- dynamic (legg/2) .

legs (A, 4) :- pnimal(A).
legs (octopus, B).
legs (A, 6) :- linsect(A).

: - dynamic (insfect/1) .
insect (ant) .
insect (bee) .

:- dynamic (foq/1) .

foo(X) :- calll(X), call(X

).

assertz(legs(gpider, 8)).

Succeeds.

assertz((legg(B, 2) :- bird(B))

Succeeds.

assertz((foo(X) :- X -> call(X))

Succeeds.

assertz (_).
instantiatijon_error.

assertz (4) .

type_error (callable, 4).
assertz((foo |:- 4)).

type_error (callable, 4).
assertz((ator(_) :- truel):

permission_|error (modify

static_grocedure,

After these examples the database could have been created

atom/1) .

from the following. Prolog text:

a) If clause unifies with ' :-' (Head,Bodly), then
proceeds to 8.9.3.1 c,

b) Else unifies Head with Clause and tlue with
Body,

c) Searches sequentially) through each dynamic user-
defined procedure in‘the database and createg a list L
of all the terms élause(H, B) such that

1) the database contains a clause whose |head can
be converted to a term H (7.6.3), and whose|body can
beyeonverted to a term B (7.6.4), and

2) H unifies with Head, and
3) B unifies with Body.

d) If a non-empty list is found, then prpceeds to
8.9.3.1 f,

e) Else the goal fails.

f) Chooses the first element of the list L, renoves the
clause corresponding to it from the database, and the
goal succeeds.

g) If all the elements of the list L have begn chosen,
then the goal fails,

;- dynamic (legs/2).

legs (A, 4) :- animal(A).
legs (octopus, 8).

legs (A, 6) :- insect(A).
legs (spider, 8).

legs (B, 2) :- bird(B).

;- dynamic (insect/1).
insect (ant) .
insect (bee) .

;- dynamic (foo/1).
foo(X) :- call(X), call(

X).

foo(X) :- call(X) -> call(X).

80

h) Else chooses the first clement of the list L which
has not already been chosen, removes the clause, if it
exists, corresponding to it from the database and the
goal succeeds.

retract (Clause) is re-executable. On backtracking,
continue at 8.9.3.1 g.

8.9.3.2 Template and modes

retract (+clause)

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

8.9.3.3 Errors

a) Hea

d is a variable

— instantiation_error.

b) Head is neither a variable nor can be converted to
a predication
— type_error (callable, Head).

c) The

predicate indicator Pred of Head is that of a

ISO/IEC 13211-1 : 1995(E)

retract((legs(X, Y) :- Z)).
Fails.
[legs/2 has no clauses.]

retract(insect(I)), write(I),

retract (insect (bee)), fail.
‘retract (insect (I))’ succeeds,

unifying I with ‘ant’,

noting the list of clauses to be retracted

= [insect(ant), insect(bee)],

and retracting the clause ’'insect(ant)’.
'write(ant)’ succeeds, outputting ‘ant’.
'retract (insect (bee)) ’ succeeds,

static pr
— pern
stat

8934 E

The examp
has been ¢

: - dynami
legs (A, 4
legs (octo
legs (A, 6

u:duu;
ission_error (access,
i c_procedure, Pred).

xamples

les defined in this subclause assume the database
reated from the following Prolog text:

c (legs/2) .

) :- animal(A).
pbus, 8).

) :- insect(A).

legs (spider, 8).

legs (B, 2

: - dynami
insect (an|

) :- bird(B).

c (insect/1) .
t) .

insect (beje) .

: - dynami]
foo(X) :4
foo(X) :-

retract (1
Succed

c (foo/1).
call(X), call(X).
call(X) -> call(X).

legs (octopus, 8)).
ds, retracting the clause

'lggs (octopus, 8) .

retract (1
Fails.

retract (

legs (spider, 6)).

(legs (X, 2) ¢« ™).

Succedds, unifying~T'with bird(X),

noting the list of clauses to be retracted

= [insect (bee)],

and retracting the clause (inselct (bee) ’.
'fail’ fails.

On re-execution, ’‘retract/irnsect(dee))’ fails.
On re-execution, ‘writeéVdnt)’ faills.
On re-execution, ’‘retract(insect(I]))’ succeeds,

unifying I with) "bee’,
noting the lilst~of clauses to pe retracted

= [insect (bee)],

[the cladse~" insect (bee)’ has plready
been xetracted.]

‘write (bée))" succeeds, outputting ['bee’.

'retradt(insect (bee))’ fails.
On ré-execution, ‘write(bee)’ faills.
On reérexecution, ‘retract(insect(J)))’ fails.
Fails.
retract ((foo(A) :- A, call(a))).
Undefined
[An attempt to unify two terms:
:-(foo(an), (A, call(a))) and
:-(foo(X), (call(X), call(X)))
when examining the clause
'foo(X) :- call(X), call(X)’].
retract((foo(C) :- A -> B)).

Succeeds, unifying A and B with call(C),
and retracting the clause
"foo(X) :- call(X) -> call(X)"'.

retract((X :- in_eec(Y))).
instantiation_error.

retract((4 :- X)).
type_error (callable, 4).

and retracting-the clause retract((atom(X) :- == "[1")).
"legs(BA 2) :- bird(B)’. permission_error (modify,
static_procedure, atom/1) .
retract(|(legs (X, Y) :- 2Z)).
Succeddsy unifying Y with 4,
and—Z—wi-ttr e
noting the list of clauses to be retracted 8.9.4 abolish/1
= [(legs(A, 4) :- animal(A)),
(legs(a, 6) :- insect(A)),
(legs(spider, 8) :- true) 1, 8.9.4.1 Description

and retracting the clause

On re-

'legs (A, 4) :- animal(a)’.
execution, succeeds,

unifying Y with 6, and Z with insect(X),
and retracting the clause

’

On re-

legs (A, 6) :- insect(A)’.
execution, succeeds, unifying Y with 8,

and X with spider, and Z with true,
and retracting the clause

’

Oon re-

legs (spider, 8) :- true’.
execution, fails.

abolish(Pred) is true.
Procedurally, abolish(Pred) is executed as follows:

a) If the database contains a dynamic procedure whose
predicate indicator is Pred, then proceeds to 8.9.4.1 c,

b) Else the goal succeeds.

81

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

abolish (@pred

8.94.3 Errors

ISO/IEC 13211-1 : 1995(E)

¢) Removes from the database the procedure specified
by the predicate indicator A/N and all its clauses, and
the goal succeeds.

NOTE — abolish(Pred)
state as if the proc

leaves the database in the same
edures identified by Pred had never existed.

8.9.4.2 Template and modes

cate indicator)

© ISO/IEC 1995

abolish(foo(_)).
type_error (predicate_indicator, foo(_)).

abolish(abolish/1).

permission_error (modify,
static_procedure, abolish/1).

8.10 All solutions

a) Predisa

variable

— instantiation_error.

b) Pred is a
Arity Is a val
— instantia

c) Pred is ng
— type_erro

d) Predisa
a variable nor
— type_erro

e) Predisa
variable nor arf
-— type_erro

f) Ppred is ¢
integer less th{
— domain_er

g) Pred is
integer greater|
max_arity
— represenf

h) The predi
procedure

term Name/Arity and either Name or
iable
tion_error.

ither a variable nor a predicate indicator
 (predicate_indicator, Pred).

term Name/Arity and Arity is neither
an integer
I (integer, Arity).

term Name/Arity and Name is neither a
atom
- (atom, Name).

term Name/Arity and Arity- is an
n zero

ror (not_less_than_zero,“Arity).

h term Name/Aritly)and Arity is an
than the implemenptation defined integer

ation_errdér (max_arity).

cate (indicator Pred is that of a static

These built-in predicates create a list of all the\$olutions
of a goal.

8.10.1 findall/3
8.10.1.1 Description

findall (Template/\'\Goal, Instances) Iis[true iff

Instances unifiés)with the list of values to [which a

variable X not dcclrring in Template or Goal Would be

instantiated/by“successive re-executions of
callq{Goal), X=Template

after systematic replacement of all variables in X by new

variables.

Procedurally, findall (Template, Goal, Instances)
is executed as follows:

a) Creates an empty list L,
b) Executes call(Goal),
c) If it fails, then proceeds to 8.10.1.1 g,

d) Else if it succeeds, appends the list [C|L] to L
where C'L is a renamed copy (7.1.6.2) of Template,

e) Re-executes call (Goal),

— permissiofi_error (modity,

static_procedure,

Pred).

8.9.4.4 Examples

abolish(foo/2).

Succeeds, also undefines foo/2 if there exists

a dynamic procedure with predicate indicator
foo/2.

abolish(foo/_).
instantiation_error.

abolish(foo) .
type_error (predicate_indicator, foo).

82

fr—Proceeds to 81011 =;
g) Unifies L with Instances,
h) If the unification succeeds, the goal succeeds,

i) Else the goal fails.

8.10.1.2 Template and modes

findall (?term, +callable_term, ?list)

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

8.10.1.3 Errors

a) Goal is a variable
— instantiation_error.

b) Goal is neither a variable nor a callable term
— type_error (callable, Goal). '

¢) Instances is neither a partial list nor a list
— type_error(list, Instances).

ISO/IEC 13211-1 : 1995(E)

Procedurally, bagof (Template, Goal, Instances) Iis
executed as follows:

a) Let witness be a witness (7.1.1.2) of the free
variables set (7.1.1.4) of Goal with respect to Template,

b) Let G be the iterated-goal term (7.1.6.3) of Goal,

c) Executes the goal findall (Witness+Template,
G, S),

8.10.1.4 Hxamples

findall(X,| (X=1; X=2), S).
Succeeds, unifying S with [1, 2].

findall (X4{Y, (X=1), S).
Succeeds, unifying S with [1+_].

findall (X,| fail, L).
Succeeds, unifying S with [].

findall (X,| (X=1; X=1), S).
Succeeds, unifying S with (1, 1].

findall(x,| (x=2; x=1), [1, 2]).
Fails.

findall (X,| (X=1;X=2), [X, Y]).
Succeeds, unifying X with 1, and Y with 2.

findall (X,| Goal, S).
instantliation_error.

findall(X,| 4, S).
type_enror (callable, 4).

8.10.2 bagof/3

bagof/3 assembles as a list ¢he“solutions of a goal for
each differpnt instantiation (of) the free variables in that
goal. The glements of each list are in order of solution,
but the order in which€ach list is found is undefined.

8.10.2.1 lrescription

d) If s is the empty list, then the goaDffails,
e) Else proceeds to step 8.10,2:1 1.
f) Chooses any element, W+T, of S.
g) Let wr_list be ‘the largest proper spblist (7.1.6.4)
of s such that, for.each element Ww+TT of WI_list, WW
is a variant (7.1,641) of w,
h) Let T-Iist be the list such that, fof each element
ww+TT-0f WI_list, there is a correspondjng element TT
of ¢T.1ist,
1) Let snext be the largest proper sublist of s such
that E is an element of Snext iff E is ot an element
of wr_list,

J) Replaces s by s_next,

k) Unifies Wwitness with each ww definegl in 8.10.2.1 g,

1) If T_list unifies with Instances, [then the goal
succeeds,

m) Else proceeds to step 8.10.2.1 d.

bagof (Template, Goal, Instances) i re-executable.
On backtracking, continue at 8.10.2.1 d.

NOTES

1 Step 8.10.2.1 f does not define which element of those

bagof (Template, Goal, Instances) is true iff:

— Instances is a non-empty list of Template such
that call(G) is true where G is the iterated-goal term
(7.1.6.3) of Goal, and

— Each element of Instances corresponds to an
instance of Witness where Witness is a witness
(7.1.1.2) of the free variables set (7.1.1.4) of Goal with
respect to Template, and

— The elements of Instances are in order of solution
of the iterated-goal term (7.1.6.3) of Goal.

eligible will be chosen. The order of solutions for bagof/3
is thus undefined.

2 If the free variables set of Goal with respect to Template
is empty, and Iterated-Goal succeeds, then the goal can
succeed only once.

3 The variables of Template and the variables in the exis-

tential variables set (7.1.1.3) of Goal remain uninstantiated after
each success of bagof (Template, Goal, Instances).

8.10.2.2 Template and modes

bagof (?term, +callable._term, ?list)

83

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/TEC 13211-1 : 1995(E)

8.10.2.3 Errors

a) The iterated-goal term G of Goal is a variable
— instantiation_error

b) The iterated-goal term G of Goal is neither a
variable nor a callable term
— type_error (callable, G).

© ISO/IEC 1995

a(2, £(1)).
Free variables set: {Y}.
Succeeds, unifying L with [1, 21,
and Y with £(_).

bagof (X, b(X, Y), L).
Clauses of b/2:

b(1, 1).
b(1l, 1).
b(l, 2).
b(2, 1).
. b(2, 2).
c) Instances is neither a partial list nor a list nio o)

— type_errqgr(list, Instances).

8.10.2.4 Examples

bagof (X, (X=1 | X=2), S).
Free variablles set: {}.
Succeeds, uhifying S with [1,2].

bagof (X, (X=1|; X=2), X).
Free variaPles set: {}.
Succeeds, unifying X with [1,2].

bagof (X, (X=Y |; X=Z), S).
Free varialles set: {Y, Z}.
Succeeds, unifying S with [Y, Z].

bagof (X, fail,| S).
Free varialles set: {}.
Fails.

bagof (1, (Y=1|; ¥Y=2), L).
Free varialles set: {Y}.
Succeeds, uynifying L with [1],
and Y with 1.
Oon re-execytion, succeeds, unifying L with~[1],
and Y wijth 2.
[The order |of solutions is undefined]

bagof (£ (X, Y),| (X=a ; ¥Y=b), L).
Free varialles set: {}.
Succeeds, Ynifying L with [£(&\), f(_, b)].

bagof (X, Y " ((¥=1, v=1) ; (X=2, J¥y=2)), S).
Free varialjles set: {}.
Succeeds, Unifying S/wish [1, 21].

Free variables set: {Y}.

Succeeds, unifying L with [1,1,2],
and Y with 1.

On re-execution, succeeds,
unifying L with [1,2,2], and\Y with P.

[The order of solutions is, undefined]

bagof (X, Y"Z, L).
instantiation_error.

bagof (X, 1, L).
type_error (callabde, 1).

8.10.3 setof/3

setof/3_assembles as a list the solutions of g goal for
each. different instantiation of the free variablgs in that
goal: Each list is a sorted list, but the order in which
each list is found is undefined.

8.10.3.1 Description
setof (Template, Goal, Instances) is true|iff

— 1Instance_list is a non-empty list of Template
such that call(G) is true where G is the iterated-goal
term (7.1.6.3) of Goal, and

— Each element of Instance_list correpponds to
an instance of Witness where Witness is |a witness
(7.1.1.2) of the free variables set (7.1.1.4) of Goal with

bagof (X, Y ((¥4=1 ; ¥=1)"; (X=2, Y=2)), S). respect to Template, and

Free varialples set: {}.

Succeeds, Uni¥fying S with (1, _, 2]. . .

° /i [] — Instances is the sorted list (7.1.6.5) of
bagof (X, (Y™ (X=1 ; ¥Y=2) ; X=3), S). Instance_I1st.

Free variables set: (Y}.

Warning: the procedure (7)/2 is undefined.

Succeeds, unifying S with [3], and Y with _.
[Assuming there is no definition for the
procedure (7)/2, and that the value associated
with flag ‘unknown’ is ‘warning’.]

bagof (X, (X=Y ; X=Z ; Y=1), S).
Free variables set: {Y, Z}.
Succeeds, unifying S with [Y, 2Z].
On re-execution, succeeds, unifying S with [_],
and Y with 1.

bagof (X, a(X, Y), L).

Clauses of a/2:
a(l, £()).

84

Procedurally, setof (Template, Goal, Instances) is
executed as follows:

a) Let witness be a witness of the free variables set
(7.1.1.4) of Goal with respect to Template,

b) Let G be the iterated-goal term (7.1.6.3) of Goal,

¢) Executes the goal findall (Witness+Template,
G, s),

d) 1If s is the empty list, the goal fails.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

e) Else proceeds to step 8.10.3.1 f. Free variables set: {}.
Succeeds, unifying S with [1,2].

f) Chooses any element, w+T, of s. setof (X, (X=2; X=2), S).

) Free variables set: {}.

g) Let wr_list be the largest proper sublist (7.1.6.4) Succeeds, unifying S with [2].

of s such that, for each element Ww+TT of WT_list, WW

is a variant (7.1.6.1) of w, setof (X, (X=Y; X=2), S).

Free variables set: (Y, Z}.

Succeeds, unifying S with [Y, 2] or [Z, Y].
h) Let T_list be the list such that, for each element [The solution is implementation dependent.]
ww+TT of Wr_list, there is a corresponding element TT

. tof (X, fail, S).
of T1ipe setof (ai)

Free variables set: {}.
Fails.

i) Let [s.next be the largest proper sublist of s such

that E i§ an element of S_next iff E is not an element setof (1, (¥=2 ; Y=1), L).
Free variables set: {Y}.

Wr-lisg, Succeeds, unifying L with [1], and
Y with 1.
j) Let|sT_list be the sorted list (7.1.6.5) of T_list, On re-execution, stccéeds,

unifying L with\[T1], and Y with [2.

The order of Eolutions is defined
k) Replaces S by Snext, [nhrons s un)

setof (£(X,Y), \(X¥a ; Y=b), L).
1) Unifies witness with each ww defined in 8.10.3.1 g, Free variables set: {}.
Succeeds’) unifying L with [f(_,b),|[f(a,_)].

m) If BT list unifies with Instances, then the goal setof (50" ((x=1, v=1) : (x=2, Y=2)).|).
succeeds$, Pree variables set: {}.

Succeeds, unifying S with [1,2].
n) Els¢ proceeds to step 8.10.3.1 d.

setof (X, Y™ ((X=1 ; ¥=1) ; (X=2, ¥Y=2))| S).
. Free variables set: {}.
setof (Tejnplate, Goal, Instances) is re-executable. Succeeds, unifying S with [_,1,2]
On backtrjcking, continue at 8.10.3.1 d.
setof (X, (Y " (X=1 ; Y=2) ; X=3), S).

Free variables set: {Y}.
Warning: the procedure (7)/2 is undefined.
Succeeds, unifying S with [3], and Y with _.
[Assuming there is no definition fpr the
setof (?tlrm, +callable_term, ?list) procedure (")/2, and that the value associated
with flag ‘unknown’ is ’‘warning’.]

8.10.3.2 [Template and modes

setof (X, (X=Y ; X=2Z ; Y=1), S).
Free variables set: {Y, Z}.
Succeeds, unifying S with [Y,Z] oy [Z,Y].

a) The iterated-goal term G of Goal is a variable On re-execution, succeeds, unifying s with [_],

and Y with 1.

8.10.3.3 Errors

— insfantiation_exrror.

setof (X, a(X, Y), L).

b) The iterated-goal term G of Goal is neither a Clauses of a/2:
variable| nor @ callable term a(l, £()).
— typeg-€rror (callable, G). a(2, £()).

Free variables set: {Y}.
. Succeeds, unifying L with [1, 2],
¢) 1Instances is neither a partial list nor a list and Y with £(_).

— type_error(list, Instances)

The following examples assume that member/2
is defined with the following clauses:
member (X, [X | _1).
member (X, [_ | L]) :-
member (X, L).

8.10.3.4 Examples

setof (X, (X=1; X=2), S).

Free variables set: {}. setof (X, member (X, [f(U,b),£f(V,c)]), L).
Succeeds, unifying S with [1,2]. Free variables set: {U, V}.
Implementation dependent.
setof (X, (X=1; X=2), X). Succeeds, unifying L with [£(U,b),f(V,c)] or
Free variables set: {}. with [f(V,c),f(U,b)].

Succeeds, unifying X with [1,2].
setof (X, member (X, [£(U,b),f(V,c)]),
setof (X, (X=2; X=1), S).

85

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

[f(a,c),f(a,b)]).
Free variables set: (U, V}.
Implementation dependent.
[If the previous example succeeds,
unifying L with [£(U,b),£f(V,c)],
then this example fails.
If the previous example succeeds,
unifying L with [f(V,c),£(U,b)],
then this example succeeds,
unifying U with a, and V with a).]

setof (X, member (X, [£(b,U),f(c,V)]),
[f(b,a),f(c,a)]).

(© ISO/IEC 1995

d(z2,2).
Free variables set: {Y}.
Succeeds,

unifying L with [1-(1,2,1),2-[2,1,2]1],

and Y with _.

8.11 Stream selection and control

These built-in predicates link an external source/sink with
a Prolog stream, its stream-term and stream alias. They

Free variables set: (U, V}.

Succeeds, urifying U with a, and V with a.

setof (X, membeq (X, [V,U,f(U),£(V)]), L).
Free variables set: (U, V}.

Succeeds, urjifying L with [U,V,£(U),£(V)] or

with (V,{,£(V),£(U)].

setof (X, membef (X, [V,U, f(U),£(V)]),
[a,b,f(a),£(b)]).
Free variables set: (U, V}.
Implementatjon dependent.

Succeeds, ulifying U with a, and V with b;

or, unifying U with b, and V with a.

setof (X, membef (X, [V,U,f(U),£(V)]),
[a,b,f(b)],£(a)]).
Free variables set: {U, V}.
Fails.

setof (X,

(exists (P, V) "member (X, [V,U, £(U),£(V)])),

[a,b,f(b],f(a)]).
Free variables set: (}.
Succeeds.

The following ¢xamples assume that b/2 is defined

with the following clauses:

b(1, 1).
b(1, 1).
b(1, 2).
b(2, 1).
b(2, 2).
b(2, 2).

setof (X, b(X, YY), L).
Free variables set: {Y¥3:

succeeds, upifying L-with [1, 2], and Y with 1.

On re-execufion, sueceeds,
unifying|L with 1, 2], and Y with 2.
[The order ¢f solitions is undefined]

enable—the—sourcelsink—to—be nppnpd and closed and its

properties found during execution.

NOTE — Some of these built-in predicates “may

cause a

Resource Error (7.12.2 h) because, for example, thg program

has opened too many streams, or a filé\or disk is f
of these built-in predicates may also\ cause a Sys

II. Some
em Error

(7.12.2 j) because the operating system is reporting af problem.

The precise reasons for such(eryors, the side effects
occurred, and the way théy can be circumvented are
in this part of ISO/IEE~I3211.

8.11.1 current input/1
8.11.1,4\ Description

claxrent._input (Stream) is true iff the str
stream identifies the current input stream (7.10,

hich have
undefined

Pam-term
D.4).

Procedurally, current_input(Stream) is exgcuted as

follows:

a) Unifies Stream with the stream-term of the current

input stream,

b) The goal succeeds.

8.11.1.2 Template and modes

current_input (?stream)

8.11.1.3 Errors

setof (X-Xs,Y serofty bt X~ o
Free variables set: {}.

Succeeds, unifying L with [1-[1,2],2-(1,2]1].

setof (X-Xs,setof (Y,b(X,Y),Xs),L).
Free variables set: {Y}.

Succeeds, unifying L with [1-([1,2],2-[1,2]],

and Y with _.

setof (X-Xs,bagof (Y,d(X,Y),Xs),L).
Clauses of d/3:
d(1,1).
d(1,2).
d(1,1).
d(2,2).
d(2,1).

86

a) Stream is neither a variable nor a stream

— domain_error (stream, Stream).

8.11.2 current_output/1

8.11.2.1 Description

current_output (Stream) is true iff the stream-term
Stream identifies the current output stream (7.10.2.4).

Procedurally, current_output (Stream) is executed as

follows:

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

(© ISO/IEC 1995

a) Unifies stream with the stream-term of the current
output stream,

b) The goal succeeds.

8.11.2.2 Template and modes

current_output (?stream)

ISO/IEC 13211-1 : 1995(E)

8.11.4.2 Template and modes

set_output (@stream_or_alias)

8.11.4.3 Errors

a) S.or.a is a variable
— instantiation_error.

8.11.2.3 Errors

a) Stre¢am is neither a variable nor a stream
— domafin_error (stream, Stream).

8.11.3 seflinput/1

8.11.3.1 IDescription

set_input|(S_or_a) Is true.

Procedurallly, set_input (S_or.a) is executed as follows:

a) Sets| the current input stream to be the stream
associated with stream-term or alias S_or_a,

b) The|goal succeeds.

8.11.3.2 Template and modes

set_input|(@stream_or_alias)

8.11.3.3 Krrors

a) S_oy.a is a variable
— instpntiation_error.

b) S.oy.a is neither a variable nor a stream-term or
alias
— domajin_error4str¥eam_or.alias, S.or.a).

¢) S_oy-a ig'not associated with an open stream
— exiskente_error (stream, S.or.a).

by—S-—er—a—is—neither—a—variable—nor—a—ptream-term or
alias
— domain_error (stream.or_alias, $-or._a).

¢) S.or_a is not associated with an opgn stream
— existence_error (stbheam, S_or._a).

d) s_or.a is an input Stream
— permission.ervor (output, stregm, S.or_a).

8.11.5 open/4, open/3
8.11.5.1 ~Description
Spen (Source_sink, Mode, Stream, Options) is true.

Procedurally, open(Source_sink, Mode, Stream,

Ooptions) is executed as follows:
a) Opens the source/sink Source_sink for input or
output as indicated by input/output modg Mode and the

list of stream-options Options (7.10.2.1]).

b) Instantiates Stream with the streamf{term which is
to be associated with this stream,

¢) The goal succeeds.

8.11.5.2 Template and modes

open (@source_sink, @io_mode, -stredgm,
@stream_options)

d) S_or.a is an output stream
— permission.error (input, stream, S.or._a).

8.11.4 set_output/1

8.11.4.1 Description

set_output (S_or_a) is true.

Procedurally, set_output (S_or_a) is executed as follows:

a) Sets the current output stream to be the stream
associated with stream-term or alias S_or.a,

L0 . 1 o T pu =
OpeITCsoUrce- SR, 1o MoGeT ST m)

8.11.5.3 Errors

a) Source_sink is a variable
— instantiation._error.

b) Mode is a variable
— instantiation_error.

c) Options is a partial list or a list with an element

E which is a variable
— instantiation.error.

87

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132

11-1 : 1995(E)

d) Mode is neither a variable nor an atom
— type_error (atom, Mode).

e) Options

is neither a partial list nor a list

— type_error(list, Options).

f) Stream is not a variable

— type._error (variable,

Stream).

g) Source_sink is neither a variable nor a source/sink

— domain_ej

h) Mode is 4n atom but not an input/output mode
— domain_efror (io_.mode, Mode).

i) An elemdnt E of the Options list is neither a

variable nor a

stream-option

— domain_efror (stream.option, E).

7)) The sourc
exist
— existenc

k) The sour

be opened

— permissi
Source._si

1) An eleme
A is already ¢

e/sink specified by Source_sink does not
e_error (source_sink, Source.sink).
e/sink specified by Source_sink cannot

bn_error (open, source._sink,

nk) .

it E of the Options list is alias(a) and
ssociated with an open stream

— permissijn_error (open, source._sink,
alias (A)
m) An elgment E of the oOption§), list is
reposition{true) and it is not po§sible to repo-
sition this str¢am
— permissilon_error (open, source_sink,
repositi¢n(true)).

NOTE — A pern]
means that Souy
be created, for ej
exist.
specification is va

ission error when'\Mode is write or append
ce_sink-ddes not specify a sink that can
fample, a ‘specified disk or directory does not

If Mode i#s read\then it is also possible that the file

lid’but‘the file does not exist.

© ISO/IEC 1995

open (' /user/dave/data’,
Succeeds.
[It opens the text file
for input, and unifies DD with a
stream-term for the stream.]

read, DD,

8.11.5.5 Bootstrapped built-in predicate

(n.

' /user/dave/data’

The built-in predicate open/3 provides similar functionality
to open/4 except that a goal open (Source_sink, Mode,

empty list of stream-options.

Stream) :-
Stream,

open (Source_sink, Mode,
open (Source_sink, Mode,

8.11.6 close/2, close/l

L.

source/sink Source_sink with an
TOT (SOUrCe.sink, m—mwm;ource_ 1 -

This built-in predicate cleses the stream associated with

stream-term or alias S©r>a if it is open.

The behaviour

of this built-in predieate may be modified by specifying a

list of close-options ¢7.10.2.12) in the Opti

8.11.6.1 Description
close{S.or._a, Options) is true.

Procedurally, close(S_or.a,
follows:

Options)

ons parameter.

is expcuted as

a) If there is a close-option force(true)|, ignores
any Resource Error condition (7.12.2 h) or System Error

condition (7.12.2 j) that may be satisfied, and

to 8.11.6.1 ¢,

proceeds

b) Any output which is currently bufferel by the

processor for the stream associated with
to that stream (7.10.2.10),

c) If the stream-term or alias S_or.a is thg
input stream or the standard output stream, ther

to 8.11.6.1 1,

d) If the stream associated with S_or_a 1
current input stream, then proceeds to 8.

S_orla is sent

standard
proceeds

5 not the
11.6.1 f,

8.11.5.4 Examples

open(’/user/roger/data’, read, D,

Succeeds.

[Tt opens the binary file

for input,

[type (binary)]) .

' /user/roger/data’
and unifies D with a

stream-term for the stream.]

open(’'/user/scowen’, write, D,

Succeeds.

[It opens the text file

[alias(editor)]) .

" /user/scowen’ for

output, unifies D with a stream-term for the

stream,

and associates the alias

‘editor’

with the stream.]

88

e) The current input stream becomes the standard input

stream user_input,

f) If the stream associated with S_or_a is not the
current output stream, then proceeds to 8.11.6.1 h,

g) The current output stream becomes the standard

output stream user_output,

h) Closes the stream associated with S_or_a and deletes

any alias associated with that stream,

1) The goal succeeds.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

(© ISO/IEC 1995

8.11.6.2 Template and modes

close(@stream.or_alias, @close_options)
close(@stream.or_alias)

8.11.6.3 Errors

a) S_or.a is a variable
— instantiation_error.

ISO/IEC 13211-1 : 1995(E)

8.11.7.2 Template and modes

flush_output (@stream_or_alias)
flush_output

8.11.7.3 Errors

a) S_or_a is a variable
— instantiation.error.

b) Options is a partial list or a list with an element
E which| is a variable
— insflantiation_error.

c) Optlions is neither a partial list nor a list
— typd.error(list, Options).

d) S_of.a is neither a variable nor a stream-term or
alias
— domdin_error (stream_or_alias, S_or._a).

e) An |element E of the Options list is neither a
variable|nor a close-option
— domdin_error (close_option, E).

f) S-oxy_a is not associated with an open stream
— exidtence_error (stream, S_or._a).

8.11.6.4 PBootstrapped built-in predicate

The builtfin predicate close/1 provides, similar func-
tionality t¢ close/2 except that a goalC¢lose(S_or.a)
closes, with an empty list of closeoptions, the stream
associated [with stream-term or alias S_or.a if it is open.

close(S_of_a) :-
close(p_or_a, []).

8.11.7 flysh_output/1, flush_output/0

NOTE — Hlushing’ an output stream is explained in 7.10.2.10.

b) S.or.a is neither a variable norva|stream-term or
alias
— domain.error (stream_or.alias, [S-or.a).

€) S-or_a is not associated 'with an oppn stream
— existence.erronistream, S_or_al).

d) S.or.a is an\input stream
— permissionverror (output, strepm, S.or._a).

8.11.7.4 ““Bootstrapped built-in predicatds

The)built-in predicate flush_output/0 provides similar
fanctionality to flush_output/1 except that a goal
flush_output flushes the current output gtream.

flush_output :-
current_output (S),
flush_output (S).

8.11.8 stream_property/2, at_end_of_stream/0,

at_end_of _stream/1
8.11.8.1 Description
stream_property (Stream, Property) |is true iff the
stream associated with the stream-term Strleam has stream

property (7.10.2.13) Property.

Procedurally, stream property (Stream,| Property) is
executed as follows:

8.11.7.1 Description
flush_output (S_or_a) is true.

Procedurally, flush_output (S_or_a) is executed as fol-
lows:

a) Any output which is currently buffered by the
processor for the stream associated with stream-term or

alias S_or.a is sent to that stream,

b) The goal succeeds.

a) Creates a set Setgp of all terms (S,P) such that
S is a currently open stream which has property P,

b) If Setsp is empty, the goal fails,

¢) Else, chooses a member (ss,pPpP) of Setsp and
removes it from the set,

d) Unifies ss with Stream, and PP with Property,
e) If the unification succeeds, the goal succeeds,

f) Else proceeds to 8.11.8.1 b.

89

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

stream_property (Stream, Property) is re-executable.
On backtracking, continue at 8.11.8.1 b.

The order in which properties are found by
stream_property/2 is implementation dependent.

8.11.8.2 Template and modes

stream_property (?stream, ?stream property)

at_end.of_stream

(© ISO/IEC 1995

at_end_of_stream :-
current_input (S),
stream_property (S, end_of_stream(E)),
]

(E = at ; E = past).

at_end_of_stream (S_or_a) :-
(atom(S_or_a) ->
stream_property (S, alias(S_or_a))
;S = S_or_a
)
stream_property (S, end_of_stream(E)),
|

'

at_end_of_strepm(@stream.or_alias)

8.11.8.3 Errors

a) S_or.a isla variable
— instantigdtion.error.

b) Stream i$ neither a variable nor a stream-term
— domain_error (stream, Stream).

c) Property is neither a variable nor a stream property
— domain_enror (stream_property, Property).

d) s_or.a is| neither a variable nor a stream-term or
alias
— domain_eyror (stream_or_alias, S_or.a).

e) S.or_a is|not associated with an open stream
— existence_error (stream, S_or.a).

8.11.8.4 Examples

stream_property (S, file_name(F)).

Succeeds, fnifying S with a stream=term
and F wlth the name of the filewto which
it is cénnected.

On re-execfition, succeeds in-turn with
each stfeam that is connected to a file.

stream_property (S, output)e
Succeeds, fnifying S{with a stream-term
which i open fOr)output.
On re-execfition ,succeeds in turn
with eath stream that is open for output.

(B = at ; E = past).

8.11.9 set_stream_position/2
8.11.9.1 Description
set_stream.position(S_ora; Position) is [true.

Procedurally, set_strea/position(S_or.a,
Position) is executed as follows:

a) Sets thelstream position of the stream dssociated
with stream-term or alias S_or_a to Positiorl,

b). “The goal Succeeds.

NOTE — Normally, Position will previously have been
téturned as a position/1 stream property of the stream.

8.11.9.2 Template and modes

set_stream_position(@stream_or_alias,
@stream_position)

8.11.9.3 Errors

a) S_or_a is a variable
— instantiation_error.

b) Position is a variable
— instantiation_error.

8.11.8.5 Bootstrapped built-in predicates

The built-in predicates at_end_of_stream/0 and
at_end_of_stream/1 examine the single stream-property
end of_stream/1.

A goal at_end of_stream is true iff the current input
stream has a stream position end-of-stream or past-end-of-
stream (7.10.2.9, 7.10.2.13).

A goal at_end_of_stream(S_or.a) is true iff the stream

associated with stream-term or alias S_or_a has a stream
position end-of-stream or past-end-of-stream.

90

¢) S_or_a Is neither a variable nor a Siream-term or
alias
— domain.error (stream_or_alias, S-or.a).

d) Pposition is neither a variable nor a stream position
— domain_error (stream_position, Position).

e) S.or.a is not associated with an open stream
— existence_error (stream, S_or.a).

f) S_or.a has stream property reposition(false)
— permission_error (reposition, stream,
S.or.a).

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

8.12 Character input/output

These built-in predicates enable a single character or
character code to be input from and output to a text
stream.

8.12.1 get_char/2, get_char/1, get_code/1, get_code/2

8.12.1.1 Description

ISO/IEC 13211-1 : 1995(E)

8.12.1.3 Errors

a) S.or_a is a variable
— instantiation_error.

b) cChar is neither a variable nor an in-character
— type.error (in_character, Char).

c) Code is neither a variable nor an integer
— type_error (integer, Code).

get_char (S_or_a, Char) is true iff Char unifies with
the next character to be input from the target stream
(7.10.2.5).

Procedurally, get_char(S.or.a, Char) is executed as
follows:

a) If the stream position of the target stream is
past-end{of-stream, then proceeds to 8.12.1.1 j,

b) Else|if the stream position of the target stream is
end-of-sfream, then proceeds to 8.12.1.1 g,

¢) Else|let ¢ be the next character to be input from
the target stream,

d) Changes the stream position of the target stream to
take accgunt of the character which has been input,

e) If char unifies with a one-char atom whose name
is C, the|goal succeeds,

f) Else[the goal fails.

g) Sets| the stream posifion so that it is past-end-of-
stream,

h) If the atom\end of.file unifies with Char, the
goal sucgeeds;

d) S_or._a is neither a variable naorya’ktream-term or
alias
— domain_error (stream_orpalias, $.or._a).

e) S-or.a is not associated with an opgn stream
— existence_error{stream, S_or_a].

f) S._or.a is an,Output stream
— permissiom.eérror (input, streanl, S_or_a).

g) The target stream is associated with @ binary stream
— , pérmission_error (input, bihary.stream,

TSY.

h) The target stream has stream properfies
end_of_stream(past) and eof_aqtion(error)

(7.10.2.9, 7.10.2.11, 7.10.2.13)

— permission_error (input,
past_end_of_stream, TS5).

i) The entity input from the stream is pot a character
(7.14.1)

— representation_error (charactef

j) Code is an integer but not an in-
(7.1.2.2)

— representation_error (in_charad

~

character code

ter_code).

8.12.1.4 Examples

get_char (Char) .
If the contents of current input

Siream are

1) Else the goal Tails.

j) Performs the action specified in subclause 7.10.2.11
appropriate to the value of A where the target stream
has stream property eof_action(A).

8.12.1.2 Template and modes

get_char(?in_character)

get_char (@stream_or_alias, ?in_character)
get_code (?in_character_code)

get_code (@stream.or_alias, ?in._character_code)

qwerty ...
Succeeds, unifying Char with ‘g’
the current input stream is left
werty ...

get_code (Code) .
If the contents of current input

qgqwerty ...
Succeeds, unifying Code with 0'g
the current input stream is left
werty ...

get_char(st_i, Char).

and
as

stream are

and
as

If the contents of the stream associated

with st_i are

gwerty ...
Succeeds, unifying Char with ‘g’

and

91

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

st_i is left as

© ISO/IEC 1995

Goals get_char (Char) unifies Char with a one-char atom

werty ... whose name is the character which has been input, and
get_code (st_i, Code). get_co§e(Code) and get_code(S_or.a, Code) unify
If the contents of the stream associated Code with the character code of the character which has
with st_1i are beeninpuL
qwerty ...
Succeeds, unifying Code with 0’'q and get_char (Char) :-
st_i is left as current_input (S), get_char(S, Char).
werty
get_code (Code) :-
get_char (st_i, Char). current_input (S),
If the contents of the stream associated get_char (S, Char),
with st_1 e (Char = end_of_file ->
‘gqwerty’ . Code = -1
Succeeds, ifying Char with ’’'’’ (the ; char_code(Char, Code)
atom contaijning just a single).
quote) and |st_i is left as
qwerty’ get_code (S, Code) :-
get_char (S, Char),
get_code(st_i,| Code) . (Char = end_of_file ->
If the contlents of the stream associated Code = -1
with st_i dre ; char_code(Char, Code)
‘gwerty’| ...).
Succeeds, yYnifying Code with 0’’’ and
st_i is leflt as NOTE — The builtdn‘\predicate char_code/2 is |defined in

qwerty’

get_char (st_i

p).

If the conflents of the stream associated

with st_1i 4

qwerty .

Fails. Thsg
with st_i]
werty

get_code(st_1i,
If the cont
with st_1i 4

gwerty .

Fails. Ths
with st_i i
werty

get_char(st_1i
If the strd
stream 4
Succeeds, \
and sets st
past-end-of

get_code (st_1i
If the strdg
stream 4
Succeeds, \

re

stream associated
s left as

0'p) .
ents of the stream associated
re

stream associated
s left as

Char) .
am position of the
ssociated with st_1'is end-of-stream
nifying Char with end_of_file,
ream positiomiof st_i to
-stream.

Code) ¢

am pesition of the

ssbciated with st_i is end-of-stream
nifying Code with -1,

8.16.6.

8.12.2 peek_char/2,
peek_code/2

peek_char/1,

8.12.2.1 Description

pe¢k_code/1,

peek_char (S_or.a, Char) is true iff Char unifies with
the next character to be input from the target stream

(7.10.2.5).

Procedurally, peek_char (S.or_a, Char) is eXecuted as

follows:

a) If the stream position of the target
past-end-of-stream, then proceeds to 8.12.2.1

b) Else if the stream position of the target
end-of-stream, then proceeds to 8.12.2.1 f,

c¢) Else let ¢ be the next character to be i
the target stream,

stream is
h’

stream 1is

nput from

d) If char unifies with a one-char atom whose name

and sets s

ream position or sSt_1 TO

past-end-of-stream.

get_char (usexr_output, X).
permission_error (input, stream, user_output).

get_code (user_output, X).
permission_error (input, stream, user_output).

8.12.1.5 Bootstrapped built-in predicates

The built-in

get_char/2.

92

predicates get_char/1,

get_code/1,
and get_code/2 all provide similar functionality to

s, the goalsucceeds;

e) Else the goal fails.

f) If the atom end.of_file unifies with Char, the

goal succeeds,

¢) Else the goal fails.

h) Performs the action specified in subclause 7.10.2.11
appropriate to the value of A where the target stream

has stream property eof_action(a).

NOTE — peek_char(S_or_a, Char)
stream position of the target stream.

leaves unaltered the

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

8.12.2.2 Template and modes

peek_char (?in_character)

peek_char (@stream.or_alias, ?in_character)
peek_code (?in_character_code)

peek_code (@stream_or_alias, ?in_character._code)

8.12.2.3 Errors

ISO/IEC 13211-1 : 1995(E)

Succeeds, unifying Code with 0’qg and
the current input stream is left as
qwerty

peek_char(st_i, Char).
If the contents of the stream associated
with st_i are
gwerty
Succeeds, unifying Char with ‘g’ and
st_i is left as
qwerty

peek—codelst—i Codel)
P — +St— =

. L
a) S_op—m Is @ variabte

— instantiation_error.

b) Char is neither a variable nor an in-character
— type¢-error (in_character, Char).

¢) Code is neither a variable nor an integer
— type¢_error (integer, Code).

d) s_dr.a is neither a variable nor a stream-term or
alias
— dom@in_error (stream_or_alias, S.or.a).

e) S-ofr-a is not associated with an open stream
— exig$tence_error (stream, S_or._a).

f) S_of-a is an output stream
— permfission_error (input, stream, S.or.a).

g) Thg target stream is associated with a binary stream
— pgrmission.error (input, binary.st¥eam,

TS).

h) Thq target stream has stream properties
end_pf_stream(past) and éof action(error)
(7.10.2.9, 7.10.2.11, 7.10.2.13)
— permhission.error (inpat)
pastl end_of_stream,1.9).

i) The| next entity{orbe input from the stream is not
a charadter (7.1.471)

— representation_error (character).

J) CodeNis”an integer but not an in-character code

If the contents of the stream ag§s¢gciated
with st_i are
qwerty
Succeeds, unifying Code with'0’g g4nd
st_i is left as

qwerty

peek_char (st_i, Char):
If the contents ofs the stream assdciated
with st_i are
‘gwerty’
Succeeds ,~unifying Char with ‘'’’’ |(the
atom containing just a single
quoteNand st_i is left as
‘quwerty’

peekicode(st_i, Code).
If the contents of the stream assqciated
with st_i are
‘gwerty’
Succeeds, unifying Code with 0’’’ |and
st_i is left as
‘qwerty’

peek_char(st_i, p).
If the contents of the stream assdciated
with st_i are

qgwerty
Fails. The stream associated
with st_1i is left as

qwerty

peek_code(st_i, 0'p).
If the contents of the stream assdciated
with st_1i are

qwerty
Fails. The stream associated
with st_i is left as

gwerty

peek_char(st_i, Char).
If the stream position of the strdam

(7.12.2

— representation_error (in_character._.code).

8.12.2.4 Examples

peek_char (Char) .
If the contents of current input stream are
qwerty
Succeeds, unifying Char with ‘g’ and
the current input stream is left as
qwerty

peek_code (Code) .
If the contents of current input stream are

qwerty

associated with st_i is end-of-stream
Succeeds, unifying Char with end_of_file, and
sets stream position of st_i to end-of-stream.

peek_code(st_1i, Code).
If the stream position of the
stream associated with st_i is end-of-stream
Succeeds, unifying Code with -1, and
sets stream position of st_i to end-of-stream.

peek_char (s, Char).

If the stream position of the stream
associated with s is past-end-of-stream,
and s has stream property eof_action(error)

permission_error (input, past_end_of_stream, s).

93

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

peek_char (user_output, X).

permission_error (input,

stream, user_output).

peek_code (user_output, X).

permission_error (input,

stream, user_output).

8.12.2.5 Bootstrapped built-in predicates

The built-in predicates

peek_char/1l, peek_code/l,

2

© ISO/IEC 1995

8.12.3.2 Template and modes

put_char (+character)
put_char (@stream.or_alias, +character)
put_code (+character_code)
put_code (@stream_or_alias,
nl

nl (@stream_or_alias)

+character_code)

81233 Errors

and peek_code
peek_char/2.

Goals peek_chd

11 b | 2 +] £ 4 1is +
Z— arr proviav— shimTar TUTIC oty — to

r (Char) unifies Char with a one-char

atom whose name is the next character to be input, and

peek_code (Codd
Code with the ¢

peek_char (Char
current_inp
peek_char (S

peek_code (Code
current_inp
peek_char (S
(Char = en
Code = -1
; char_code

) .

peek_code (S, C
peek_char (s

(Char = end
Code = -1

; char_code

).

NOTE — The by
8.16.6.

8.12.3 put_chaj
nl/0, nl/

8.12.3.1 Descri

) and peek_code (S_or_a, Code) unify
haracter code of the next character.

ht (S),
Char) .

bt (S),
Char),
i_of file ->

Char, Code)

de) :-
Char) ,
| of_file ->

Char, Code)

ilt-in predicate char_code/@2 {s defined in

/2, put_char/l;, put_code/l, put_code/2,
|

ption

a) S_or.a is a variable
— instantiation_error.

b) Char is a variable
— instantiation_error.

¢) Code is a variable
— instantiationsétror.

d) char is neither a variable nor a one-char |atom
— type_error(character, Char).

e) Cogdeis neither a variable nor an integer
— type_error (integer, Code).

f)” S_or_a is neither a variable nor a streanj-term or
alias

— domain_error (stream_or_alias, S.or_g).

g) S-or.a is not associated with an open strgam
— existence_error (stream, S_or_a).

h) S.or_a is an input stream
— permission_error (output, stream, Sjor.a).

1) The target stream is associated with a binafy stream
— permission_error (output, binary_ptream,
TS).

j) Char is neither a variable nor a character {(7.1.4.1)

— representation_error (character).

put_char (S_or_

Procedurally, put_char(S_.or.a,

follows:

8, Char) IS Uue.

Char) 1is executed as

a) Outputs the character ¢ which is the name of the

one-char atom

Char to the target stream (7.10.2.5).

b) Changes the stream position of the target stream to
take account of the character which has been output,

c¢) The goal succeeds.

94

KY codeisan anpgpr but not a character codel (7122)

— representation_error (character_code).

8.12.3.4 Examples

put_char (t) .
If the contents of current output stream are
... gwer
Succeeds, and the current output stream
is left as
. gwert

put_char(st_o, ‘A’).
If the contents of the stream associated
with st_o are

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

... gwer
Succeeds, and the stream associated with st_o
is left as

. gwerA

put_code(0’'t) .
If the contents of current output stream are
. gwer
Succeeds, and the current output stream
is left as
. gwert

put_code(st o, 0't) .

ISO/IEC 13211-1 : 1995(E)

put_char (Char) :-
current_output (S),
put_char (S, Char).

put_code (Code) :-
current_output(S),
char_code(Char, Code),
put_char (S, Char).

put_code (S, Code) :-
char_code (Char, Code),
put_char (s, Char).

If the fontents of the stream associated
with st| o are

... pwer

Succeedk, and the stream associated with st_o
is left] as

wert

nl, put_chbkr(a).
If the fontents of current output stream are
... pwer
Succeedls, and the current output stream
is left| as
qwer
a

nl(st_o), put_char(st_o, a).
If the kontents of the stream associated
with st] o are

... pwer

Succeedls, and the stream associated with st_o

is left]| as

qwer

a

put_char (my_file, C).
instantfiation_error.

put_char(sft_o, ‘ty’).
type_erfror (character, ty).

put_code (nfy_file, C).
instant]iation_error.

put_code(gt_o, ‘ty’').
type_erfror (integer, tw) .

nl (Str).
instantliation_erxor.

nl (user_input)/-
permisgiofiy &rror (output, stream, user_input).

nl :-
current_output (S),
put_char(s, '\n’).

nl(s) :-
put_char(s, ‘\n’).

NOTE — The built-in predi€ates n1/0 and n1/1 terminate the
current line or record. The built-in predicate clar_code/2 is
defined in 8.16.6.

8.13 Byte“input/output

Thesebuilt-in predicates enable a single byte to be input
from Jand output to a binary stream.

8.13.1 get_byte/2, get_byte/l
8.13.1.1 Description

get_byte(S_or_a, Byte) is true iff Bytg unifies with
the next byte to be input from the target str¢am (7.10.2.5).

Procedurally, get_byte(S.or.a, Byte) is executed as
follows:

a) If the stream position of the target stream is
past-end-of-stream, then proceeds to 8.13}1.1 k,

b) If the target stream has strgam property
eof.action(A) and its stream positiop is past-end-
of-stream, then performs the action appfopriate to the
value of A specified in subclause 7.10.2.11.

8.12.3.5 Bootstrapped built-in predicates

The built-in predicates put_char/1l, put_code/l,
put_code/2, nl/0, and nl/1 all provide similar func-
tionality to put_char/2.

A goal put_char (Char) outputs the character which is the
name of Char, put_code (Code) and put_code(S_or.a,
Code) output the character whose character code is
Code, and nl and nl(S_or_a) output the implementation
dependent new line character (6.5.4).

c) Else if the stream position of the target stream is
end-of-stream, then proceeds to 8.13.1.1 h,

d) Else let B be the next byte to be input from the
target stream,

e) Changes the stream position of the target stream to
take account of the byte which has been input,

f) If B unifies with Byte, the goal succeeds,

g) Else the goal fails.

95

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

h) Sets the stream position so that it is past-end-of-
stream,

i) If the integer value -1 unifies with Byte, the goal
succeeds,

j) Else the goal fails.

k) Performs the action specified in subclause 7.10.2.11
appropriate to the value of A where the target stream

© ISO/IEC 1995

Byte is unified with 113 and
st_1i is left as
[119,101,114, ...]

get_byte(st_1i, 114).
If the contents of the stream associated
with st_1i are
[113,119,101,114,116,121 ...]
Fails. The stream associated
with st_i is left as
[119,101,114,116,121 ...]

get bhyte(st i RByte)

has stream prpperty eof_action (A).

8.13.1.2 Tempjlate and modes

get_byte (?in_pyte)
get.byte(@stream_or_alias, ?in_byte)

8.13.1.3 Erroxs

a) S_or.a i a variable
— instantilation_error.

b) Byte is
— type_err

c) S.or.,ai
alias
-— domain_e

d) sS.or.a if
— existendg

e) S_or.a iS
— permissi

f) The targe

— permissi

g) The targg

end_of_st|

(7.10.2.9, 7.1

heither a variable nor an in-byte
br (in_byte, Byte).

neither a variable nor a stream-term or
Fror (stream_or_alias, S.or.a).

not associated with an open stream
e_error (stream, S_or.a).

an output stream
on_error (input, stream, S_or_a).

[stream is associated’with a text stream
on_error (inputy” text_stream, TS).

t stream (has. stream properties
ream (past) and eof_action(error)

D.21,)7.10.2.13)

— permissi

on-error (input,

Stream position of st_i is end-of-st¥edm.
Byte is unified with -1 and
stream position of st_i is past-endyof-stream.
get_byte(user_output, X).

permission_error (input, stream, user_oytput).

8.13.1.5 Bootstrapped built-in predicate

The built-in predicate’get _byte/1 provides sinpilar func-
tionality to get_byte)/2.

get_byte (Byt&) -
current_finput(S),
get_b%te (S, Byte).

8.13.2 peek_byte/2, peek_byte/1
8.13.2.1 Description

peek_byte(S_or_a, Byte) is true iff Byte unifies with
the next byte to be input from the target stream [7.10.2.5).

Procedurally, peek.byte(S_or.a, Byte) is ejfecuted as
follows:

a) If the stream position of the target fstream is
past-end-of-stream, then proceeds to 8.13.2.1 |,

b) Else if the stream position of the target|stream is
end-of-stream, then proceeds to 8.13.2.1 f,

c) Else let B be the next byte to be input| from the
target stream,

past_end_of_stream, TS).

8.13.1.4 Examples

get_byte (Byte) .

If the contents of the current input stream are
[113,119,101,114, ...]

Byte is unified with 113 and

the current input stream is left as
[119,101,114, ...}

get_byte(st_1i,

Byte) .

If the contents of the stream associated
with st_i are
[113,119,101,114, ...]

96

1 L bl WA | 1 1 |
u) I B UIICS WILT ByLe, HIC g0dE SULLTTUS,
e) Else the goal fails.

f) If the integer value -1 unifies with Byte, the goal
succeeds,

g) Else the goal fails.

h) Performs the action specified in subclause 7.10.2.11
appropriate to the value of A where the target stream
has stream property eof_action(a).

NOTE — peek.byte(S_or_a, Byte) leaves unaltered the
stream position of the target stream.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

8.13.2.2 Template and modes

peek_byte (?in_byte)
peek._byte(@stream_or_alias, ?in_byte)

8.13.2.3 Errors

a) S_or_a is a variable
— instantiation_error.

b) Byt

ISO/IEC 13211-1 : 1995(E)

8.13.2.5 Bootstrapped built-in predicate

The built-in predicate peek_byte/1 provides similar func-

tionality to peek-byte/2.

peek_byte (Byte) :-
current_input (S),
peek_byte (S, Byte).

8.13.3 put_byte/2, put_byte/l

e 1S nelther a variable nor an in-byte

— typelerror (in_byte, Byte).

c) S_ox_a is neither a variable nor a stream-term or

alias

— domalin_error (stream_or._alias,

S.or.a).

d) s_ox_a is not associated with an open stream

— exigtence_error (stream, S.or.a).
e) S_of.a is an output stream
— pernjission_error (input, stream, S.or.a).

f) The

— pern|

g) The
end_d
(7.10.2.9
— pern
past

8.13.24

peek_byte
If the
[11

Byte i
the cu
[11

peek_byte
If the
with s
[11

Byte 1
st_i i

target stream is associated with a text stream
ission_error (input, text_stream, TS5).

target stream has stream properties

f_stream(past) and eof_action(error)
, 7.10.2.11, 7.10.2.13)

ission_error (input,

end_of_stream, TS).

Kxamples

(Byte) .

contents of current input stream are
B,119,101,114, ...]

5 unified with 113 sand

Frent input stream ws left as

3,119,101,114, (. .41

(st_i, Byte)"

contentg~8f the stream associated
ki are

3,119+ 101,114, ...]

uhified with 113 and

8.13.3.1 Description
put_byte(S_or_a, Byte) is true.

Procedurally, put.byte(S_or.a, Byte)
follows:

is executed as

a) Outputs the.byte Byte to the target stfeam (7.10.2.5).

b) Changes the stream position of the farget stream to

take account of the byte which has been

¢Y The goal succeeds.

8.13.3.2 Template and modes

put_byte (+byte)
put_byte(@stream or_alias, +byte)

8.13.3.3 Errors

a) S_or_a is a variable
— instantiation_error.

b) Byte is a variable
instantiation_error.

¢) Byte is neither a variable nor a byt
type_error (byte, Byte).

output,

[

[11

peek_byte
If the
with s
[11
Fails.
with s
[11

peek_byte
Stream
Byte 1

stream position of st_i

peek_byte
permis

3]
s\left as
3,119,101, 114, ...]
(st_i, 114).
contents of the stream associated
t_i are
3,119,101,114, ...]
The stream associated
t_i is left as
3,119,101,114, ...]

(st_i, Byte).
position of st_i
s unified with -1

is end-of-stream.
and
is end-of-stream.

(user_output, X).

sion_error (input, stream, user_output).

d) S_or_a is neither a variable nor a
alias
— domain_error (stream_or_alias,

stream-term oOr

S_or.a).

e) S.or.a is not associated with an open stream

— existence_error(stream, S_or.a).
f) s_or.a is an input stream
— permission_error (output, stream, S.or.a).

g) The target stream is associated with a text stream
— permission_error (output, text_stream, TS).

97

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

8.13.3.4 Examples

put_byte(84) .
If the current output stream contains
{..., 113,119,101, 114]
Succeeds, and leaves that stream
[..., 113,119,101,114,116]

put_byte(st_o, 84).
If the stream associated with st_o contains
[..., 113,119,101,114]

Succeeds, and leaves that stream
[11" 110 101 114 1161

© ISO/IEC 1995

e) Else sets cnext to apply-mappingc(c,Convc)
(4.3) where Convc (3.46) is the character-conversion

mapping,

f) Appends C_next to C_Seq,

g) Attempts to parse C_Seq as a sequence of tokens
(6.4),

h) If c_seq is too short, then proceeds to 8.14.1.1 b,

put_byte (my_file, C).
instantiatiqn_error.

put_byte (user_dutput, ‘ty’).
type_error (Bhyte, ty).

8.13.3.5 Bootstirapped built-in predicate

The built-in predicate put_byte/1 provides similar func-
tionality to put_pyte/2.

put_byte (Byte) |: -
current_output (S),
put_byte (S, |Byte) .

8.14 Term input/output

These built-in predicates enable a Prolog term to be input
from or output t¢ a text stream. The syntax of such terms
can also be alter¢d by changing the operators, and making
some characters pquivalent to one another.

8.14.1 read_tenm/3, read_term/2, read/1,\read/2

8.14.1.1 Description

read_term(S_of.a, Term, Qpsions) is true iff Term
unifies with T, where T. iS/a-read-term which has been

Ootiocns) 1S
4

Procedurally, r

i) If cnext represents an end token ((6:4(8), then
proceeds to 8.14.1.1 k,

j) Else proceeds to 8.14.1.1 b,

k) Parses C_Seq as a read<term (6.4) T.,
1) If T unifies with‘Term, then instantiates the argu-
ments of the read=eptions (7.10.3) Options,| and the

goal succeeds,

m) Else the’ goal fails.

NOTES

' The two steps 8.14.1.1 d and 8.14.1.1 e ensure that whether
or not a character is quoted depends only on the chgracters of
the target stream. It is independent of the mapping (fonvc, or
the value associated with the flag char_conversion.

2 The number of characters which are input is undefjned when
an error occurs during read_term/3.

8.14.1.2 Template and modes

read_term(@stream_or_alias, ?term,
+read_options_list)

8.14.1.3 Errors

T

executed as follows:
a) Sets C_Seq to an empty sequence of characters,
b) Inputs a character ¢ from the target stream,

c) Changes the stream position of the target stream to
take account of the character which has been input,

d) If the value associated with the flag
char_conversion (7.11.2.1) is off, or C is a quoted
character (6.4.2.1), then sets C_next to C, and proceeds
to 8.14.1.1 f,

98

a) S_or.a is a variable
— instantiation_error.

b) oOptions is a partial list or a list with an element
E which is a variable
— instantiation_error.

¢) S.or.a is neither a variable nor a stream-term or
alias
— domain_error (stream_or_alias, S-or.a).

d) options is neither a partial list nor a list
— type_error (list, Options).

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

e) An element E of the Options list is neither a
variable nor a valid read-option read(4.1).
current input stream is

— domain._error (read_-option, E). 31, term2.

Fails.
f) S_or.a is not associated with an open stream The current input stream is left as
— existence_error(stream, S_or_a). term2
. read(T) .
g) S.or.a Is an output stream current input stream is
— permission_error (input, stream, S_or.a). foo 123. term2.

and foo is not a current prefix operator.
syntax_error (imp_dep_atom) where ’imp_dep_atom’
is an implementation dependent aton].

. Ly e g
h) The targetstreanrrsassocrated-wrthabrmary-stream

— peymission_error (input, binary._stream, The current input stream is left,’ay
TS). term2.
. . read(T) .
i) The farget stream has stream properties current input stream is
end_off_stream(past) and eof_action(error) 3.1
(7.10.2'9 7.10.2.11, 7.10.2.13) syntax_error (imp_dep_atom) where 'ilmp_dep_atom’
is an implementation“dependent ato

— permjssion_error (input, . . .
The current input stream is left wilth

past_pnd_of_stream, TS). position past‘ehd-of-stream.

j) The [read-term Term breaches an implementation
defined ljmit specified by Flag where Flag is the flag 8.14.1.5 Bootstrapped built-in predicates
(7.11) mgx_arity, max_integer, or min_integer

— reprpsentation-error(Flag). The~ built-in predicates read.term/2, [|read/l, and

. ¥ead/2 all provide similar functionality to [read_term/3.
k) One|or more characters were input, but they cannot

be parsed as a sequence of tokens

. Goals read_term(Term, Options), reafd(Term), and
— syntax_error (imp_dep-atom).

read(S_or_a, Term) all input characters pnd attempt to

hem term which unifies with Term.
1) The pequence of tokens cannot be parsed as a_term parse t asa un T

using thg current set of operator definitions

. Goals read(Term) and read(S_or_a, Terfn) input terms
— synthx_error (imp_dep-atom).

using an empty read-options list.

8.14.1.4 HKExamples A goal read term(Term, Options) ipstantiates the
arguments of the read-options Options.

read(T) .
currentl input stream is
terml. tejym2.

read_term(Term, Options) :-
current_input(S),

Succeeds, unifying T with terml. read_term(S, Term, Options).
The cujrent input_Stream is left as -
term2. .|]. read(Term) :-
current_input (S),
read(st_of termk)=) read_term(S, Term, (]).
If the|conterdts of the stream associated
with S‘_S are read(S, Term) :-
terml. termi—r Tead_term(s, Term, (17

Succeeds, and the stream associated with st_o
is left as
term2.
) 8.14.2 write_term/3, write_term/2, write/1,
read_term(st_o, T, [variables(VL), write/2, writeq/1, writeq/2, write_canonical/l,
variable_names (VN), singletons(VS)]). N .
If the contents of the stream associated write_canonical/2
with st_o are
foo(A+Roger, A+_). term2. ... 8.14.2.1 Description
Succeeds, unifying T with foo (X1+X2, X1+X3),
VL with [X1, X2, X3],
VN with [’A’ = X1, ‘Roger’ = X2], write_term(S_or.a, Term, Options) is true.
and VS with [’'Roger’ = X2].

The stream associated with st_o X . .
is left as Procedurally, write_term(S_or.a, Term, Options) 1is

term2. ... executed as follows:

99

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

a) Outputs Term to the target stream (7.10.2.5) in a
form which is defined by the write-options list (7.10.4,
7.1.4.2) options and rules for writing a term (7.10.5),

b) Changes the stream position of the target stream to
take account of the characters which have been output,

¢) The goal

8.14.2.2 Template-and-medes

write_term(@s
@write_opti

8.14.2.3 Error

a) S_or.a is
— instanti

b) Options
E which is a
— instanti

C) Options
— type.err

d) Ss_or.a i
alias
— domain.ej

e) An elem
variable nor 4
— domain.e

f) S.or.ais
— existenc

g) S-or.a iS
— permissi

succeeds.

© ISO/IEC 1995

Succeeds, outputting the characters
1<2
to the stream associated with S.

writeq(sS, ’1<2').
Succeeds, outputting the characters
r1<2’

to the stream associated with S.

writeg(’S$VAR’ (0)).

Succeeds, outputting the character
A

to _the current output stream.

tream_or_alias, @term,
bns_list)

T

a variable
htion_error.

is a partial list or a list with an element
variable

htion_error.

is neither a partial list nor a list
r(list, Options).

neither a variable nor a stream-term or
Fror (stream_or_alias, S.or.a).

bnt E of the Options list is néither a
valid write-option

Fror (write_option, E).

not associated with_anlopen stream

e_error (stream, \Slor._a).
an input stream
on_errortoutput, stream, S_or.a).

h) The targg

— permiss'i enserror (output,

t stréamn is associated with a binary stream
binary_stream,

write_term(S, ‘$VAR’ (1), [numbervars (false
Succeeds, outputting the characters
$VAR(1)
to the stream associated with's.

write_term(S, ‘$VAR’ (51), [numbervars(true)l).
Succeeds, outputting the, haracters
Z1
to the stream assofiated with S.

8.14.2.5 Bootstrapped built-in predicates

The built-ir) "predicates write_term/2, rite/1,
write/2xWriteq/1l, writeq/2, write._canohical/l,
and wfité_canonical/2 all provide similar furctionality

to write_term/3.

Tefrm) out-
a write-
ignore_ops (false),

Goals write(Term) and write(S_or.a,
put Term in a form which is defined by
options list [quoted(false),
numbervars (true) J.

Goals writeq(Term) and writeg(S_or.a, T¢rm) out-
put Term in a form which is defined by |a write-
options list [quoted(true), ignore_ops({false),
numbervars (true)].

Goals write_canonical (S_or.a, Term) and
write_canonical (Term) output Term in a foym which
is defined by a write-options list
ignore_ops (true), numbervars (false)].

[quoted(true),

write_term(Term, Options) :-
current_output(S),

TS).

8.14.2.4 Examples

write_term(S,

(1,2,31, [1).

Succeeds, outputting the characters

[1,2,3]

to the stream associated with S.

write_canonical([1,2,3]).
Succeeds, outputting the characters

(1, (2,.03, 10

1))

to the current output stream.

write_term(S,

100

"1<27, (1)

Write_term(s, Term, Options]).

write(Term) :-
current_output(S),
write_term(S, Term, [numbervars(true)l]).
write(S, Term) :-
write_term(S, Term, [numbervars(true)]).
writeqg(Term) :-
current_output(S),
write_term(S, Term,
[quoted(true), numbervars(true)]).

writeq(S, Term) :-
write_term(S, Term,
[quoted(true), numbervars(true)]).

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

write_canonical (T) :-
current_output (S),
write_term(S, Term,
[quoted(true), ignore_ops(true)]).

write_canonical (S, Term) :-

write_term(S, Term,
[quoted(true), ignore_ops(true)]).

8.143 op3

ISO/TEC 13211-1 : 1995(E)

NOTES

1 Operator notation is defined in 6.3.4. See also operator
directives (7.4.2.4).

2 A Priority of zero can be used to remove an operator
from the operator table.

3 It does not matter if the same atom appears more than once
in an Operator list; this is not an error and the duplicates
simply have no effect.

A goal op|(Priority, Op-specifier, Operator) en-
ables the pperator table (see 6.3.4.4 and table 7) to be
altered.

8.14.3.1 Description

op(Priorjty, Op._specifier, Operator) Iis true.

Procedurally, op (Priority, Op-specifier,
Operatpr) is executed as follows:

a) If Qperator is an atom, creates the set Ops
containifg just that one atom,

b) Elsq if operator is a list of atoms, creates thg, sét
Ops corfsisting of all the atoms in the list,

c) Chooses a member Op in the set Ops and removes
it from fthe set,

d) If dp is not currently antoperator with the same
operator]class (prefix, infix orpostfix) as Op_specifier,
then proceeds to 8.14.3.1(f,

e) Thel|operator property of op with the same class as
Op_spedifier_is-removed, so that Op is no longer an
operator| of that ‘class,

4 In general, operators can be removed{frpm the operator
table and their priority or specifier can be/changed. However,
it is an error to attempt to change the 2, ’ ¢perator from its
initial status, see 6.3.4.3.

8.14.3.2 Template and-rmodes

op (+integer, +gperator._specifier,
Qatom or_atomdist)

8.14.3.3 ~‘Errors

a)) Priority is a variable
— instantiation._error.

b) Op.specifier is a variable
— instantiation._error.

c) Operator is a partial list or a list With an element
E which is a variable
— instantiation_error.

d) Priority is neither a variable nor jan integer
— type_error (integer, Priority).

e) Op._specifier is neither a variable|nor an atom
— type_error (atom, Op-specifier)|

f) oOperator is neither a partial list npr a list nor an
atom
— type_error (list, Operator).

f) If priority=0, then proceeds to 8.14.3.1 h,

g) Op is made an operator with specifier Op_specifier
and priority Priority,

h) If Ops is non-empty, then proceeds to 8.14.3.1 c,
i) Else, the goal succeeds.

In the event of an error being detected in an Operator
list argument, it is undefined which, if any, of the atoms
in the list is made an operator.

g) An element E of the Operator list is neither a
variable nor an atom
— type-error (atom, E).

h) Priority is not between 0 and 1200 inclusive
— domain_error (operator_priority, Priority).

i) Op_specifier is not a valid operator specifier
— domain_error (operator_specifier,

Op.specifier).

j) Operator is ',
— permission_error (modify, operator, ’,’).

101

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E) © ISO/IEC 1995

k) An element of the Operator listis ', 2) whose specifier, Spec, unifies with

— permission_error (modify, operator, ’,’). Op_specifier, and

1) op.specifier is a specifier such that Operator 3) whose priority, P, unifies with Priority,

would have an invalid set of specifiers (see 6.3.4.3)

— permission_error (create, operator, b) If a non-empty set is found, then proceeds to
Operator). 8.14.4.1 d,

c) Else the goal fails.
8.14.34 Examples

N o L £ oy
T Cnooses—amemot—oTr—DCtop and—the gual succeeds.

op (30, xfy, ++)|.

Succeeds, making ++ a right associative e) If all the members of Setop haveObeen| chosen,
infix opdgrator with priority 30. then the gom fails
)
op(0, yfx, ++). .
Succeeds, mdking ++ no longer an f) Else chooses a member ofNJetp, which| has not
infix opdrator. already been chosen, and the)goal succeeds.

op (max, xfy, +4).

type_error (integer, max) . current_op (Priority, ©p_specifier, Operator) is

re-executable. On backtraeking, continue at 8.14.4.1 e.

op(-30, xfy, +4)

d i 1 1 , - . . .
omain_erroj (operator_priority, -30) The order in which-dperators are found by current_op/3

op (1201, xfy, 4+). is implementation dependent.

domain_erroy (operator_priority, 1201).

op (30, XFY, ++). NOTES

instantiatiqn_error.

1, “The definition above implies that if a progfam calls
turrent_op/3 and then modifies an operator |definition
by calling op/3, and then backtracks into thg call to

op (30, yfy, ++).
domain_erroyf (operator_specifier, yfy).

op (30, xfy, 0) current_op/3, then the changes are guaranteed nof to affect
type_error (list, 0). that current_op/3 goal. That is, current_op/3 Behaves as
if it were implemented as a dynamic procedure whope clauses
op (30, xfy, ++), op(40, xfx, ++). are retracted and asserted when op/3 is called.
Succeeds, mgking ++ a non-associative
infix opgrator with priority 40. 2 An operator O1d_op which has been removed By op (0,

Op_specifier, Old.op) is not otherwise found by

op (30, xfy, ++), op(50, yf, ++). current_op/3

permission_grror (create, operator), ++).
[There canngt be an infix and a
postfix ¢gperator with the)same name.]

8.14.4.2 Template and modes

8.14.4 current 0p/3 current_op (?integer, ?operator_specifiefr,

?atom)

8.14.4.1 Description

8.14.4.3 Errors
current_op (Priority, Op.specifier, Operator) is
true iff Operator is an operator with properties defined a) Priority is neither a variable nor an operator
by specifier Op_specifier and priority Priority. priority
— domain_error (operator_priority, Priority).
Procedurally, current_op(Priority, Op-specifier,

Operator) is executed as follows: b) Op.specifier is neither a variable nor an operator
specifier
a) Searches the current operator definitions and creates — domain_error (operator_specifier,
a set Setp, of all the triples (P, Spec, Op) such that Op_specifier).

there is an operator:
¢) Operator is neither a variable nor an atom

1) whose name, Op, unifies with Operator, — type-error (atom, Operator).

102

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

8.14.4.4 Examples

current_op (P, xfy, OP).

If the operator table has not been
altered, then

Succeeds, unifying P with 1100,
and OP with ';’.

On re-execution, succeeds unifying
P with 1050, and OP with "->’.

On re-execution, succeeds unifying
P with 1000, and OP with ’,’.

On re-execution, succeeds unifying
P with 200 and OP with *7¢

ISO/IEC 13211

8.14.5.3 Errors

a) In_char is a variable
— instantiation_error.

b) oOut_char is a variable
— instantiation_error.

¢) 1In.char is neither a variable nor a
(7.1.4.1)

-1 : 1995(E)

one-char atom

[The ofder of solutions is
implementation dependent.]

8.14.5 char_conversion/2

A goal chdr_conversion(In.char, Out_char) enables
Conve, the character-conversion mapping (3.46), to be
altered.

8.14.5.1 Description

char_conviersion (In_char, Out_char) is true.

Procedurallly, char_conversion (In_char, Out_char) is
executed ag follows:

a) Replaces Conuvc, the character-conversion
mapping| (3.46), with the conversion
update_inappingc(IC, OC, Convc) (4.3) where IC
is the claracter of the name of In_char, @nd OC is
the chargcter of the name of out_char,

b) The|goal succeeds.

NOTES
1 See alsq character-conyersion directives (7.4.2.5).

2 The ong-char atoms In_char and Out_char should be
quoted in drder (to yénsure that their characters have not been
converted by .accharacter-conversion directive when the Prolog
text is prepared—for—execution

— LeprleselltallOll €10l \(.,‘ucu_clk. Le

d) out_char is neither a variable¢ngr a|one-char atom

(7.1.4.1)

— representation_erroxr(echaracten

8.14.54 Examples

char_conversign¢&’, *,’)
Replaces Clonuc by

update_mappingc (&, ', *, Convg).
Succeeds.

charlconversion (‘’’, "\'")

Replaces Conve by update_mappingc
where ’ is a character in an extended
equivalent to the single quote.

Succeeds.

char_conversion(‘a’, a)

Replaces Conve by update_mappingc
where a is a character in an extended
equivalent to the small letter character a.

Succeeds.

After these three goals, when the value asso

char_conversion is on, all occurrences of

unquoted characters input by term input bu
are converted to ,, ', and a respectively.
the three characters asa are converted to

b
, ', Convc)
character set

a, a, Convc)
character set

tiated with flag
& ’, and a as
It-in predicates
For example,
the characters

a,a. However (1) the characters ‘aaa’ represent an atom

‘aaa’ because they are enclosed by the

single quotes,

and (2) the characters ’asa’ form an atom| ‘a,a’.

3 Convc affects only characters input by term input
(8.14). When it is necessary to convert characters in-
put by character input/output built-in predicates (8.12), it
will be necessary to program the conversion explicitly using
current_char_conversion/2 (8.14.6).

4 When In_char and Out_char are the same, the effect on
Convc is to remove any conversion of a character In_char.

8.14.5.2 Template and modes

char_conversion (+character, +character)

char_conversion('&’, '&')

Replaces Convc by update_mappingc (&, & Convc)
thus removing the conversion from & to ', .

Succeeds.

8.14.6 current_char_conversion/2
8.14.6.1 Description

current_char_conversion (In_char,

Out_char) is

true iff (1) apply_mappingc(IC, Convc) equals OC

103

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

where (a) Convc is the character-conversion mapping
(3.46), (b) IC is the character of the name of atom
In_char, and (c) OC is the character of the name of atom
Out_char, and (2) In_char is not equal to Out_char.

Procedurally, current_char_conversion(In_char,
out_char) is executed as follows:

a) Creates a set Setcony Of all the conversions (In —
out) in Conve such that:

© ISO/IEC 1995

8.14.6.2 Template and modes

current_char_conversion (?character,
?character)

8.14.6.3 Errors

a) In_char is neither a variable nor a one-char atom
— type_error (character, In_char).

1) IC is the character of the name of atom In,

2) In uniffes with In_char,

3) OC is fthe character of the name of atom Out,
4) out, upifies with out_char,

5) apply_inappingc(IC, Convc) equals OC, and
6) 1In doep not unify with out,

b) If a nonfempty set is found, then proceeds to
8.14.6.1 d,

c) Else the goal fails.
d) Chooses |a member of Setcon, Wwhich has not
already been ¢hosen, unifies In with In_char, and out

with out_chalr, and the goal succeeds.

e) If all the|members of Setc,n, have been chosen,
then the goal [fails,

f) Else procgeds to 8.14.6.1 d.

current_char_fonversion (Insthar, Out_char) is re-
executable. On packtracking{continue at 8.14.6.1 e.

The order in which(character-conversions are found by
current_char_fonGersion/2 is implementation depen-

b) out_char is neither a variable nor a one-¢har atom
— type_error (character, Out_char)\

8.14.6.4 Examples

Assume Conve is
update_mappingc(a, a,
update_mappingc(ay a,
identity_-mappings)):

current_char.-é¢onversion (C, a)
Succeeds, unifying C with a.
On re-efecution, succeeds, unifying C with a|
[Theserder of solutions is

implementation dependent.]

8.15 Logic and control

These built-in predicates are simply derived [from the
control constructs (7.8) and provide additional fagilities for
affecting the control flow during execution.

8.15.1 (\+)/1 - not provable

8.15.1.1 Description

"\\+' (Term) is true iff call (Term) is false.
Procedurally, '\\+’ (Term) is executed as follows:

a) Executes call (Term),

dent.

NOTES

1 The definition above implies that if a program calls
current_char_conversion/2 and then modifies Convc
by calling char_conversion/2, and then backtracks into the
call to current_char_conversion/2, then the changes are
guaranteed not to affect that current_char_conversion/2
goal.

2 A character-conversion which has been removed by
char_conversion(C, C) is not otherwise found by
current_char_conversion/2.

104

b) If 1t succeeds, the goal Tfails,

¢) Else if it fails, the goal succeeds.
NOTE — A built-in predicate with the same meaning as
(\+)/1 is implemented in many existing processors with a

name (not) /1. This name is misleading because the built-in
predicate gives negation by failure rather than true negation.

8.15.1.2 Template and modes

"\\+' (@Qcallable_term)

NOTE — \+ is a predefined infix operator (see 6.3.4.4).

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

8.15.1.3 Errors

a) Term is a variable
— instantiation_error.

b) Term is neither a variable nor a callable term
— type.error (callable, Term).

8.15.1.4 Examples

ISO/IEC 13211-1 : 1995(E)

8.15.2.4 Examples

once(!).
Succeeds (the same as true).

once(!), (X=1; X=2).
Succeeds, unifying X with 1.
On re-execution, succeeds unifying X with 2.

once (repeat) .
Succeeds (the same as true).

AN\ +' (trups once (fail)
Fails. Fails.

\+(!). once(X = £(X)).
Fails,| the cut has no effect. Undefined.

AN+ ((!,] fail)) .
Succeefls, the cut has no effect.

(X=1; X=2)p, \+((!, fail)).
Succeefls, unifying X with 1.
On re-pxecution, succeeds unifying X with 2.

"\N\+’ (4 =[5).
Succeefis.
\+(3).

type_efror (callable, 3).

AN+ (X))
instanfkiation_error.

\+(X = £(K)).
Undefiped.

8.15.2 once/l

8.15.2.1 Pescription

once (Terfn) is true iff call (Term)(is true.
Procedurally, once (Term) is executed as follows:

a) Exefutes call (Term).,

8.15.3 repeat/0
8.15.3.1 Description
repeat is true.
Procedurally;“repeat is executed as follows:
a).s The goal succeeds.

Yepeat is re-executable. On re-executi¢n, continue at
8.15.3.1 a above.

8.15.3.2 Template and modes

repeat

8.15.3.3 Errors

None.

8.15.3.4 Examples

b) If if succeeds, the goal succeeds, repeat, write('hello '), fail.
Outputs
¢) Elsq if it-fails, the goal fails. hello hello hello hello hello ...
indefinitely.
NOTE — ¢ncel{Term) behaves as call (Goal), but is not .
repeat., ! fail
Fails, equivalent to (!, fail).

re-executable.

8.15.2.2 Template and modes

once (+callable_term)

8.15.2.3 Errors

a) Term is a variable
— instantiation_error.

b) Term is neither a variable nor a callable term
— type_error (callable, Term).

8.16 Atomic term processing

These built-in predicates enable atomic terms to be
processed as a sequence of characters (7.1.4.1) and
character codes (7.1.2.2). Facilities exist to split and
join atoms, to convert a single character to and from the
corresponding character code, and to convert a number to
and from a list of characters.

NOTE — The characters of the name of an atom and their
numbering are defined in 6.1.2 b.

105

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

8.16.1 atom_ length/2
8.16.1.1 Description

atom.length (Atom, Length) is true iff integer Length
equals the number of characters of the name of the atom
Atom.

Procedurally, atom length(Atom, Length) is executed
as follows:

© ISO/IEC 1995

8.16.2 atom_concat/3
8.16.2.1 Description
atom_concat (Atom.1, Atom.2, Atom_12) is true iff
characters of the name of the atom Atom_12 are the result

of concatenating the characters of the name of the atom
Atom_2 to the characters of the name of the atom Atom 1.

Procedurallv_atom concat (Atom 1 Atom 2 Atom_12)

a) If Length| is a variable, then instantiates Length
with an integer| equal to the number of characters of the
name of the atbm Atom, and the goal succeeds,

b) Else if Lehgth is an integer, and Length unifies
with the numbgr of characters of the name of the atom
Atom, then the] goal succeeds,

¢) Else the gpal fails.

8.16.1.2 Template and modes

atom_length(+dtom, ?integer)

8.16.1.3 Errors|

a) Atom is a|variable
— instantigtion_error.

b) Atom is n¢ither a variable nor an atom
— type_errof (atom, Atom).

¢) Length is|neither a variable nor an integer
— type.errof (integer, Length).

d) Length if an integer that is less‘than zero
— domain_erfor (not.less_than’zero, Length).
8.16.1.4 Examples

atom_length (’erfjchanted\evening’, N).
Succeeds, urifyifig\N with 17.

atom_length (’erjchanted\

is executed as follows:

a) Creates the sorted list List,. containing as glements
all the terms ac (a1, A2, A3) such.that

1) Al is an atom which Unifies with Atom]1, and
2) A2 is an atom 4vhich unifies with Atom]2, and
3) a3 is an‘atom which unifies with Atom]12, and

4) théscharacters of the name of a3 are the result
of €ontatenating the characters of the name jof A2 to
the\characters of the name of a1,

b) If a non-empty list is found, then profeeds to
8.16.2.1 d,

c) Else the goal fails.

d) Chooses the first element, ac (AA1l, AA2, RA3), of
List,e.,

e) The goal succeeds, unifying Atom 1 wjth AAI,
unifying Atom 2 with Aa2, and unifying Atom{ 12 with
AA3.

f) If all the elements of List,. have been chopen, then
the goal fails,

evening’, N).
Succeeds, unifying N with 17.

atom_length(’’, N).
Succeeds, unifying N with 0.

atom_length(’scarlet’, 5).
Fails.

atom_length (Atom, 4).
instantiation_error.

atom_length(1.23, 4).
type_error (atom, 1.23).

atom_length(atom, ‘4').
type_error (integer, ‘4°).

106

) Flsechooses—thefirstclementof—Ftstz5—ac (AAL,
AA2, aA3), which has not already been chosen, and
proceeds to step 8.16.2.1 e.

atom_concat (Atom.1l, Atom.2, Atom.12) is re-
executable. On re-execution, continue at 8.16.2.1 f

above.

8.16.2.2 Template and modes

atom_concat (?atom, ?atom, +atom)
atom_concat (+atom, +atom, -atom)

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

8.16.2.3 Errors

a) Atom.1 and Atom_12 are variables
— instantiation_error.

b) Atom.2 and Atom 12 are variables
— instantiation_error.

¢) Atom_1 is neither a variable nor an atom
— type_error (atom, Atom.1l).

ISO/IEC 13211-1 : 1995(E)

3) there is an atom A3 whose name has L3 characters,
and

4) sub.atom unifies with A2, and
5) Before unifies with L1, and
6) Length unifies with L2, and

7) After unifies with L3, and

d) Atom2 is neither a variable nor an atom
— typelerror (atom, Atom.2).

e) Aton_12 is neither a variable nor an atom
— typelerror (atom, Atom_12).

8.16.24 Hxamples

atom_concgt (‘hello’, ' world’, S3).
Succeeds, unifying S3 with "hello world’.

atom_concdt (T, ’ world’, ‘small world’).
Succeeds, unifying T with ’‘small’.

atom_concdt (‘hello’, ' world’, ‘small world’).

Fails.

atom_concdt (T1, T2, ‘hello’).
Succeeds, unifying T1 with *’,
and |T2 with 'hello’.
On re-gxecution, succeeds,
unijfying T1 with ‘h’, and T2 with ‘ellgs .
[...]

atom_concdt (small, V2, V4).
instanfjiation_error.

8.16.3 sub_atom/5
8.16.3.1 DDescription

sub_atom(Atom, Befsré, Length, After, Sub.atom)
is true iff [atom Atom can be broken into three pieces,
AtomL, Sup.atiom“and AtomR such that Before is the
number of|chdracters of the name of AtomL, Length is

8) Atom is the atom whose namé/j$ the result of
concatenating the characters of théynanje of A3 to the
characters of the name of the-atom Al2, where Al2
is the atom whose name ,results from| concatenating
the characters of the name of A2 to thg characters of
the name of the atom-aZ1,

b) If a non-empty list is found, thep proceeds to
8.16.3.1 d,

¢) Elsesthe' goal fails.

d){Chooses the first element, sa(LLl} LL2, LL3,
AA2), of Listy,,

e) The goal succeeds, unifying Befofe with LLI,
unifying Length with LL2, unifying Affer with LL3,
and unifying Sub_atom with AA2.

f) If all the elements of Lists, have begn chosen, then
the goal fails,

g) Else chooses the first element of Lipts,, sa(LL1,
LL2, LL3, AA2), which has not already been chosen,
and proceeds to step 8.16.3.1 e.

sub_atom(Atom, Before, Length, Aftefr, Sub_atom)

is re-executable. On re-execution, continup at 8.16.3.1 f
above.

8.16.3.2 Template and modes

the numbel—of TATaCters—of —theTrane —of —Sub-atom amd
After is the number of characters of the name of Atomgr.

Procedurally, sub_atom(Atom, Before, Length,
After, Sub_atom) is executed as follows:

a) Creates the sorted list List,, containing as elements
all the terms sa (L1, L2, L3, A2) such that

1) there is an atom A1 whose name has L1 characters,
and

2) there is an atom A2 whose name has L2 characters,
and

SUb_ATOM{Fatom, —Timteger, —2irrteger, ?integer,
?atom)

8.16.3.3 Errors

a) Atom is a variable
— instantiation_error.

b) Atom is neither a variable nor an atom
— type_error (atom, Atom).

¢) Sub.atom is neither a variable nor an atom
— type.error (atom, Sub_atom).

107

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132

d) Before i

11-1: 1995(E)

s neither a variable nor an integer

— type_error (integer, Before).

e) Length i

s neither a variable nor an integer

— type_error (integer, Length).

f) After is

neither a variable nor an integer

— type_error (integer, Length).

g) Before i
— domain._e

h) Length i

— domain_enror (not_less_than_zero, Length).

i) After is

s an integer that is less than zero

roxr(not legsgs than zera BRefore)

© ISO/IEC 1995

8.16.4 atom_chars/2
8.16.4.1 Description
atom_chars (Atom, List) is true iff List is a list whose
elements are the one-char atoms whose names are the

successive characters of the name of atom Atom.

Procedurally, atom chars(Atom, List) is executed as
follows:

an integer that is less than zero

hn integer that is less than zero

— domain_efror (not_less_than.zero, After).

8.16.3.4 Examples

sub_atom(abrac
Succeeds, u

sub_atom(abrac
Succeeds, u

sub_atom(abrac|
Succeeds, U
and S2 to

sub_atom(abrad|
Succeeds, U
On re-execy
unifying B

sub_atom ('’ Bang
Succeeds,

sub_atom(’char
Succeeds, U

On re-execy
unifying

On re-execy
unifying

On re-execy
unifyind

On re-execy
unifying

sub_atom(‘ab’,

hdabra, 0, 5, _, S2).
hifying S2 to ’abrac’.

hdabra, _, 5, 0, S2).
hifying S2 to ‘dabra’.

bdabra, 3, L, 3, S2).
hifying L to 5
hcada’ .

hdabra, B, 2, A, ab).
nifying B to 0 and A to 9.
tion, succeeds,

to 7 and A to 2.

ha’, 3, 2, _, S2).
mifying S2 with ’'an’.

ity’, _, 3, _, S2).
nifying S2 with ‘cha’.
tion, succeeds,

S2 with 'har’.

tion, succeeds,

S2 with rarig.

tion, succeeds,

S2 with Tt .

tion, succeeds,

s2 with "ity’.

S¥art, Length, _, Sub_atom).

Succeeds,

R '
IIITYy g otarc wWrICIr U,

a) If Atom is a variable, then instantiates At/oip with the
atom whose name (see 6.1.2 b) has the'same [sequence
of characters as the elements of List; and|the goal
succeeds,

b) Else if List is a variable; then instantigtes List
with a list of one-char atoms*identical to the sefjuence of
characters of the name, 'of/ Atom, and the goal [succeeds,

c) Else if List\is/a list of one-char atoms, and Atom
is the atom Whose name has the same sedquence of

characters, then the goal succeeds,

d) Else the goal fails.

8.16.4.2 Template and modes

atom_chars (+atom, ?character_list)
atom_chars (-atom, +character_list)

8.16.4.3 Errors

a) Atom is a variable and List is a partial list or a
list with an element which is a variable
— instantiation_error.

b) Atom is neither a variable nor an atom
— type_error (atom, Atom).

c) Atom is a variable and List is neither aflist nor a
partial list

and Leng
On re-execu
unifying

th with 0, and Sub_atom with ’’.
tion, succeeds,
Start with 0, and Length with 1,

and Sub_atom with ‘a’.

On re-execu
unifying

tion, succeeds,
Start with 0, and Length with 2,

and Sub_atom with ‘ab’.

On re-execu
unifying

tion, succeeds,
Start with 1, and Length with 0,

and Sub_atom with ’’.

On re-execu
unifying

tion, succeeds,
Start with 1, and Length with 1,

and Sub_atom with ‘b’.

On re-execu
unifying

tion, succeeds,
Start with 2, and Length with 0,

and Sub_atom with ‘’.

108

e .
— LYypPEeE_EeITor T11lst, L1IotT.

d) Atom is a variable and an element E of the list
List is neither a variable nor a one-char atom
— type_error (character, E).

8.16.4.4 Examples

atom_chars(’’, L).
Succeeds, unifying L with [].

atom_chars([], L).
Succeeds, unifying L with [‘[’, "]’].

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

(© ISO/IEC 1995

atom_chars(’’'’, L).
Succeeds, unifying L with [""""].

atom_chars(‘ant’, L).
Succeeds, unifying L with

["a’, 'n’,

atom_chars(Str, ['s’, ‘o',

‘'],

‘p'1).

Succeeds, unifying Str with ‘sop’.

ISO/IEC 13211-1 : 1995(E)

8.16.5.3 Errors

a) Atom is a variable and List is a partial list or a
list with an element which is a variable
— instantiation_error.

b) Atom is neither a variable nor an atom
— type_error (atom, Atom).

atom_chars (‘North’, ['N’ | X]).
Succeeds, unifying X with
[P0/, 'r', 't 'h']. ¢) Atom is a variable and List is neither a list nor a
partial list
atom_?har (*soap’, ['s’, ‘o', 'P']). — type_error(list, List).
Fails.

atom_char$ (X, Y).
instanfiation_error.

8.16.5 atpm_codes/2

8.16.5.1

Description

atom_codds (Atom, List) is true iff List is a list whose
elements dorrespond to the successive characters of the
name of dtom Atom, and the value of each element is
the characfer code for the corresponding character of the

name.

Procedural]y, atom_codes (Atom,

follows:

List) is executed as

a) If Atom is a variable, then instantiates’ Atom with
the atorh whose name (see 6.1.2 b):is’a sequence of
charactefs such that the character code (7.1.2.2) of the
Nth character is the Nth element of List, and the goal

succeed

b) Els

3

if List is.@a-wvariable, then instantiates List

with a ljst of character codes such that the Nth element
of Lisy is the character code of the Nth character of
the name of(atom, and the goal succeeds,

8.16.5.4 Examples$

atom_codes{(.*, L).

atom_codes ([], L).

atom_codes(’’’', L).

atom_codes(’'ant’, L).

atom_codes (Str, [0's, 0’o, 0'pl).

atom_codes ('North’, [0'N | X]).

atom_codes (‘soap’, [0’'s, 0’0, 0'pl).

atom_codes (X, Y).

8.16.6

d) atom is a variable and an elemenf E of the list
List is neither a variable nor a charactgr code
— representation_efror (charactef_code).

Succeeds, unifying L with [].

Sueceeds, unifying L with [0'[, O']1].

Succeeds, unifying L with [0’’’'].

Succeeds, unifying L with
[0a, O0'n, O°t].

Succeeds, unifying Str with ’‘sop’.

Succeeds, unifying X with
[0’o, O’'r, O't, 0'h].

Fails.

instantiation_error.

char_code/2

c) Else if List is a list of character codes, and Atom
is an atom whose name is a sequence of characters such

that the character code of the Nth character is the Nth

element of List, then the goal succeeds,

d) Else the goal fails.

8.16.5.2 Template and modes

8.16.6.1 Description

char_code (Char, Code) 1is true iff the

character code

(7.1.2.2) for the one-char atom Char is Code.

Procedurally, char_code(Char, Code)

follows:

is executed as

atom_cod

es (+atom, ?character_code_list)

atom_codes (-atom, +character_code_list)

a) If char is a variable, then instantiates Char with
the atom whose name (see 6.1.2 b) is a character
corresponding to the character code (7.1.2.2) Code and
the goal succeeds,

109

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/TEC 13211-1 : 1995(E)

b) Else if char is a one-char atom whose name has a

character code
succeeds,

which unifies with Code, then the goal

¢) Else the goal fails.

8.16.6.2 Template and modes

© ISO/IEC 1995

8.16.7 number_chars/2

8.16.7.1 Description

number._chars (Number, List) is true iff List is a list
whose elements are the one-char atoms corresponding to
a character sequence of Number which could be output

(7.10.5 b, 7.10.5 ¢).

Procedurally, number_chars (Number, List) is executed

char_code (+chd
char_code (-chs

8.16.6.3 Errors

a) Char and
— instantidg

b) Char is n
— type_erro

C) Code isn
— type_erro

d) code is
(7.1.2.2)

— represent

racter, ?character_code)

racter, +character_code)

Code are variables
tion_error.

bither a variable nor a one-char atom

- (character, Char).

pither a variable nor an integer

- (integer, Code).

heither a variable nor a character code

ation_error (character_code).

8.16.6.4 Examples

char_code(’'a’,
Succeeds, ur
characten

char_code(Str,
Succeeds, ur
whose chdg

char_code(Str,
Succeeds, uj

Code) .
ifying Code with thé
code for the character ’'a’.

99) .
ifying Str with the character
racter cofle~is 99.

0’'c).
ifying Str with the character ‘c’.

char_code (Str,

163)

[N} fU};UWD.
a) If nist is not a list of one-chapyatoms, then
proceeds to 8.16.7.1 e,

b) Else parses the list of the bharacters of the name
of the one-char atoms according’to the syntax [rules for
numbers and negative numbers (6.3.1.1, 6.3.1.2) to give
a value N,

¢) If Number urifies with N, then the goal spcceeds,
d) Else the-goal fails.
e) L&t Lc be a list of one-char atoms whoge names

correspond to the sequence of characters which pould be

Qufput by write_canonical (Number) (see [.10.5 b,

7.10.5 ¢, 8.14.2),
f) If LC unifies with List, then the goal sucfeeds,

g) Else the goal fails.

NOTES
1 The sequence of one-char atoms ensures that, [for every
number X, the following goal is true:

number_chars (X,C), number_chars(Y,C) ,|X == Y.

2 This definition ensures that the following goal is frue:
C:[IOII I.I, Ill],

number_chars (X, C), number_chars (X,d

If there is

an extended character whose

character code is 163 then

Succeeds,

unifying Str with that

extended character,

else

representation_error (character_code) .

char_code(’'b’,

84) .

Succeeds iff the character ‘b’ has the
character code 84.

char_code(’ab’,

Int).

type_error (character, ab).

char_code(C, I)

instantiation_error.

110

?character_list)
+character_list)

number_chars (+number,
number_chars (-number,

8.16.7.3 Errors

a) Number is a variable and List is a partial list or
a list with an element which is a variable
— instantiation_error.

b) Number is neither a variable nor a number
— type_error (number, Number).

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

c) Number is a variable and List is neither a list nor

a partial
— type

d) An element E of the list List is not a one-char

atom

list
_error (list, List).

— type_error (character, E).

e) List is a list of one-char atoms but is not parsable

as a number

— synt

yw error (imp dep atom)

ISO/IEC 13211-1 : 1995(E)

whose elements are the character codes corresponding to

a character sequence of Number which ¢
(7.10.5 b, 7.10.5 ¢).

ould be output

Procedurally, number_codes (Number, List) is executed

as follows:

a) If List is not a list of character codes,

proceeds to 8.16.8.1 e,

then

b) Else parses the list of characters corresponding to

8.16.7.4 Hxamples

number_chgrs (33,
Succeeds,

number_chgrs (33,

L).

unifying L with ['3", "3'].

(r3, '3'Nn.

Succeeds .

number_chgrs (33.0, L).

Succeeds,

e.g. [|37, .,

number_chdrs (X,

unifying L with an
implemgntation dependent list of characters,
30, R, 4+, '0', ‘1'].
f 3, CEY, 4, '071).

["37.

Succeeds, unifying X with a value
approximately equal to 3.3.

number_chgrs (3.3,

(371,

rLr, '3, 'E’, +,

'0']).

Implemdntation dependent: may succeed or fail:

number_chdrs (A,
Succeeds,

number_chd
[The ndg
not
Succeed

number_chdg
syntax|

is an J

number_chd

[-, 2", '5']).
unifying A with -25.

rs(a, ['\n’, * ', '3"']1).

w line and space character§ jare
significant.]

s, unifying A with 3.

rs(A, ['3', ' '"1)=

error (imp_dep_atom) where ’‘imp_dep_atom’
mplementation dependent atom.

£1)

rs(A, [0 ~x,

those character codes according to thes

numbers and negative numbers (6.3-1-D,
a value N,

¢) If Number unifies with ‘N, then the
d) Else the goal fails.

e) Let Lc be & list of character codes

ntax rules for
6.3.1.2) to give

boal succeeds,

corresponding

to the sequence ‘of characters which would be output by

(see 7.10.

write_canonical (Number)

8.14.2),

$ b, 7105 ¢,

) <{df LC unifies with List, then the gojl succeeds,

g) Else the goal fails.

NOTE — The sequence of character codes

representing the

characters of a number shall be such that for| every value X,

the following goal is true:

number_codes (X, C), number_codes (|Y,

8.16.8.2 Template and modes

number_codes (+number,
number_codes (-number,

8.16.8.3 Errors

a) Number is a variable and List is 3

C), X==Y.

?character_cgde_list)
+character_cgde_list)

partial list or

Succeeds, unifying A with 15. a list with an element which is a variable
number_chdrs (£, 16707, '’ 7, al) — instantiation_error.

Succeeds i/inifying A with the

collating:sequence integer for the b) Number is neither a variable nor a jumber

character ‘a’. — type_error (number, Number).
number_chars(a, (4, '.", '2']).

Succeeds,

unifying A with 4.2.

number_chars (3,

(4",

20, L, 0,

Succeeds, unifying A with 4.2.

8.16.8 nu

mber_codes/2

8.16.8.1 Description

number_codes (Number, List) is true iff List is a list

¢) Number is a variable and List is neither a list nor

a partial list
— type_error (list, List).

d) An element E of the list List is not a character

code (7.1.2.2)

— representation_error (character_code).

e) List is a list of character codes but
as a number
— syntax.error (imp_dep-atom).

is not parsable

111

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

8.16.8.4 Examples

number_codes (3
Succeeds, u

number_codes (3
Succeeds.

number_codes (3

3, L).

nifying L with [0’3, 0'3].

3, [073, 0"3]).

3.0, L).

Succeeds, unifying L with an

implementation dependent list of character codes,

e.g. [0'3,
number_codes (3
[0"3, O’
Implementat

number_codes (A

0'., 0’3, 0'E, 0'+, 0’0, 0'1].

© ISO/IEC 1995

8.17.1.2 Template and modes

set_prolog_-flag(+flag, @nonvar)

8.17.1.3 Errors

a) Flag is a variable
— instantiation_error.

b) Vvalue is a variable

.0,
, 0’3, 0'E, 0'+, 0’0, 0'1]).

fon dependent: may succeed or fail.
02,

(0r-, 0'5]).

Succeeds, uhifying A with -25.

number_codes (3} [0' ,

[The space

0'3]).
tharacter is not significant.]

Succeeds, uhifying A with 3.

number_codes (A

[070, 0'x,

0'£1)

Succeeds, uhifying A with 15.

number_codes (3|

{00, 0°7*, 0’al)

Succeeds, uhifying A with the
collatinpg sequence integer for the
charactef 'a’.

number_codes (3|,

(0’4, 0., 0'2]).

Succeeds, uhifying A with 4.2.

number_codes (3|,

(074, 0O’

p, 0., 0’0, 0'e, 0’-, 0'1]).

Succeeds, uhifying A with 4.2.

8.17 Implem

kentation defined hooks

These built-in predicates enable a program’ to find the

current value of
value of some f]

8.17.1 set_prol

A goal set_py
value associated

any flag (7.11), and to'change the current
ags.

og_flag/2

olog=flag(Flag, Value) enables the
with-a Prolog flag to be altered.

— instantiation_error.

¢) Flag is neither a variable nor an atom
— type_error (atom, Flag).

d) Flag is an atom but an invalid flag for the jprocessor
— domain_error (prolog_flag, Flag).

e) Value is inapprapriate for Flag
— domain_error<flag_value, Flag + Value).

f) vValue ig appropriate for Flag but flag Fllag is not
modifiable

— permission_error (modify, flag, Flap).

8.17.1.4 Examples

Set_prolog_flag(unknown, fail).
Succeeds, associating the value fail
with flag unknown.

set_prolog_flag(X, off).
instantiation_error.

set_prolog_flag(5, decimals).
type_error (atom, 5).

set_prolog_flag(date,
domain_error (flag,

*July 1988').
date) .

set_prolog_flag(debug, trace).
domain_error (flag_value, debug+trace).

8.17.2 current_prolog_flag/2

81721 Deseription

8.17.1.1 Description

set_prolog_flag(Flag, Value) is true.

Procedurally, set prolog_flag(Flag, Value) Is exe-
cuted as follows:

a) Associate
value is a
defined range

b) The goal

112

s Value with the flag Flag (7.11), where
value that is within the implementation
of values for Flag,

succeeds.

T

current_prolog_flag(Flag, Value) is true iff Flag
is a flag supported by the processor, and Value is the
value currently associated with it.
Procedurally, current_prolog-flag(Flag, Value) is
executed as follows:

a) Searches the current flags supported by the processor
and creates a set Set.ps of all the terms flag(F, V)
such that (1) there is a flag ¥ which unifies with Flag,
and (2) the value v currently associated with F unifies
with value,

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

(© ISO/IEC 1995

b) If a non-empty set is found, then proceeds to
8.17.2.1 d,

c) Else the goal fails.
d) Chooses a member of Set.,s and the goal succeeds.

e) If all the members of Set.,; have been chosen,
then the goal fails,

ISO/MIEC 13211-1 : 1995(E)

a) Exits from the processor,
b) Returns to whatever system invoked Prolog.

Any other effect of halt/0 is implementation defined.

NOTE — This built-in predicate neither succeeds nor fails.

8.17.3.2 Template and modes

El 1 1o £ Ot Laal L 4
S CITOUSTS —a HICHTOCT —UT 0T lep 7 WL HdS— ot

already peen chosen, and the goal succeeds.

current_prolog_flag(Flag, Value) is re-executable.
On re-exeqution, continue at 8.17.2.1 e above.

The order in which flags are found by
current_prolog._flag(Flag, Value) is implementa-
tion depenflent.

NOTE — All flags are found, whether defined by this part of
ISO/IEC 13211 or implementation specific.

8.17.2.2 [femplate and modes

current_prolog._flag(?flag, ?term)

8.17.2.3 Errors

a) Flalg is neither a variable nor an atom
— typ¢_error (atom, Flag).

b) Fldg is an atom but an invalid flaglfor the processor
— domgin_error (prolog-flag,(Filag).

8.17.24 [Examples

current_prolog_flag(debug, off).
Succedds iff thé Aalue currently associated
with the flag ('debug’ is ‘off’.

current_grolog flag(F, V).

Succeddsy mnifying ‘F’ with one of the
flags lsupported by the processox, and V!

halt

8.17.3.3 Errors

None.

8.17.3.4 Examples

halt.
Implemeritation defined.

8.174 halt/1

8.17.4.1 Description

Procedurally, halt (x) is executed as follpws:
a) Exits from the processor,

b) Returns to whatever system invoked| Prolog passing
the value of X as a message.

Any other effect of halt/1 is implementdtion defined.

NOTE — This built-in predicate neither succegds nor fails.

8.174.2 Template and modes

halt (+integer)

8.17.4.3 Errors

with the value currently associated with

the flag 'F’.

On re-execution, successively unifies 'F’
and 'V’ with each other flag supported by
the processor and its associated value.

current_prolog_flag(5, _).
type_error (atom, 5).

8.17.3 halt/0
8.17.3.1 Description

Procedurally, halt is executed as follows:

a) X is a variable
— instantiation_error.

b) X is neither a variable nor an integer
— type.error (integer, X).
8.17.4.4 Examples

halt(1l).
Implementation defined.

halt(a) .
type_error(integer, a).

113

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

9 Evaluable functors

This subclause defines the evaluable functors which shall be
implemented by a standard-conforming Prolog processor.

9.1 The simple arithmetic functors

The basic arithmetic functions are defined mathematically

in the style of ISOAEC10967-1 — Language Independent— negy - I — I {int averflow}

Arithmetic (LIA).
requirements.

They conform to a subset of its

9.1.1 Evaluablg functors and operations

Each evaluable |functor corresponds to one or more
operations according to the types of the values which are
obtained by evalyating the argument(s) of the functor.

The following table identifies the integer or floating point
operations corresponding to each functor:

Evaluable funcfor Operation

(+)/2 addy, addp, addpy, addrp
(-)/2 suby, subp, subpy, subrp
(*)/2 muly, mulp, mulpy, mulrp
(//7)/2 intdivy

(/)72 divp, divyy, divpr, divip
(rem) /2 remy

(mod) /2 mody

(-)/1 negr, negr

abs/1 absy, absp

sign/1 signy, stgnp

float_integdr_part/1

© ISO/IEC 1995

9.1.3 Integer operations and axioms
The following operations are specified:

addy : I x I — I'U {int_overflow}
suby : I x I — I U {int_overflow}
muly : I x I — IU{int.overflow}
intdivy : I x I — I U {int_overflow, zero_divisor}
remy : I x [— IU{zero_divisor}
mody : I x I — IU {zero_divisor}

absy : I — I U {int_overflow}

signy : I —1

The behaviour of the integer operations are dgfined in
terms of a rounding function rpd}(z) (see 9.1.3.]).

For all z, y € I, the following axioms shall apply:
addr(z,y) =z+Y ifze+y¢l
=int_overflow ifze+y¢l
subr(z,y) O=c—y ife—ygl
= int_overflow ifze—y¢l

muli(z,y) =2x*y ifrxxydlI
= int_overflow ifexydlI

intdivi(z,y) = rndr(z/y)
ify#0A radr(x/y) €1
= int_overflow
ify#0 A rndr(z/y) ¢ 1

= zero_divisor

if y=0

remr(z,y) =z — (rndi(z/y)*y)if y#0

intpart = zero_divisor ify=0
float_fractilonal_part/1]
fraetpart mody(z,y) ==z~ ([:L/yJ * y) ¥f y#0
float/1 Float; ., floatp_p = zero.divisor ify=0
floor/1 floorp_ 1) i
truncate/1 truncatep_. g negr(z) =" ?f RS
round/1 roundp_ = int_overflow if —z¢f
ceiling/1 cetlingrp—T -
absy(z) = |z| if |z| el
NOTE — '+, '=', **x¢r v//r '/’ ‘rem’, 'mod’ are = int_overflow if |I|¢I
infix predefined operators (see 6.3.4.4).
signy(z) = 1 ifz>0
=-1 if e <0

9.1.2 Exceptional values

An exceptional value is float_overflow, int_overflow,
underflow, zero_divisor, or undefined.

NOTE — It is an evaluation_error (E) if the value of an
expression is an exceptional value (see 7.9.2).

114

9.1.3.1 Integer division rounding function

An integer division rounding function shall be implemen-
tation defined:

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

(© ISO/IEC 1995

rndy - R — Z

For £ € R, the following axiom shall apply, either
rndr(z) = |z]

or
rndf(z) = tr(z)

NOTE — The notations |z| and tr(z) are defined in 4.1.3.3 and

ISO/IEC 13211-1 : 1995(E)

9.1.4.1 Floating point rounding function

A floating point rounding function shall be implementation
defined:

rndp : R — F*
For all z € R, ¢ € Z, the following axiom shall apply:

rndp(—z) = —rndp(z)

4.13.4. The-flag integer rounding function (711 14)
makes the implementation defined choice of rounding function
accessible to] a goal.

9.1.4 Flodting point operations and axioms
The follow{ng operations are specified:

addp : ¥ x F — F U {float_overflow, underflow}
subp 1 F x F — F U {float_overflow, underflow}
mulp : ' x F — F U {float_overflow, underflow}
divp : F x F

— F | {float_overflow, underflow, zero_divisor}
negp : ¥ — F
absp : F — F
signp : |FF — F
intpartp| : F — F
fractparly : FF — F

The behavipur of the floating point operations are defined
in terms of a rounding function rndp(z) (see 9.1:4.1),
a floating |point result function resultp(z,round) (see
9.1.4.2), and an approximate-addition function@dd}(z, y)
(see 9.1.4.3).

For all z, 4 € F, n € I the following\axioms shall apply:

For all @ € R, i € 2, such thaty)Jz| P fminy and
|z * r*| > fminy, the following axiom shall apply:
rndp(z *) = rndp(z) w°

NOTE — This rule means,_that the rounding fynction does not
depend on the exponent part of the floating pofnt value except
when denormalization,becurs.

9.14.2 Floating point result function

A floating point result function shall be implementation
defined:

resultp : R x (R — F*)
— F U {float_overflow, underflow

For all z € R and any rounding function nound € (R —
F™*), the following axioms shall apply:

resultp(z, round)
= round(z)
ifr=0V fminy < |z| < fmaz

addr(z,ly = resultp(addi(e, y), rndp = round(z)
(=) (addi9)) if |z| > fmaz A |round(z)| = fmaz
subp(z,y = addp(@, >y
=) () = float_overflow
mulp(zly) = resultp(z+y, rndp) if [z| > fmaz A |round(z)| # fmaz
divp(z,§) » \Z resultp(z/y, rndr) ify#0 = found(z) or un(.ierﬂow]
— gzero_divisor if y=0 if 0 < |z| < fminy A |round(z)|[< fminy
negr(x) - =z It shall be implementation defined whether a processor
chooses round(z) or underflow when 0 < |z| < fminy.
absp(z) = |z|
. 9.1.4.3 Floating point approximate-addition function
signp(z) = 1 ifx>0
=0 ife=0 A floating point approximate-addition function shall be
- f 0 g P pp
= itz < implementation defined:
intpartp(z) = signp(z) * [|zl] addy : FxF =R

fractpartp(z) = & — intpartp(z)

For all u, v, z, y € F, ¢ € Z, the following axioms shall
apply:

115

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

addy(u,v) = addp(v, u)

addp(—u, —v) = —add}p(u,v)

< (u+v) <y = z<(addp(u,v)) <y
u<v = addi(u,z) < addp(v,)

If u, v, uxr’, and v * r* are all in Fy,
addp(u*r',v*r') = addp(u,v) * r'

© ISO/IEC 1995

addpj(:c,n)
= addp(z, float;_ p(n))
if float;_p(n) € F
= float_overflow
if floati—p(n) € F

addrr(n,z)
= addp(float;_,p(n),z)
if float;_p(n) € F
= float_overflow

The approximatg-addition function should satisfy
addp(z,y) =[r+y

which trivially datisfies the above axioms.

NOTE — The five axioms for the approximate-addition ensure:
a) addy is cpmmutative,
b) add} is s|gn symmetric,

¢) add¥(u,v) is in the same “basic interval” as u + v, and
is exact if u { v is exactly representable (a “basic interval”
is the range bgtween two adjacent values of F'),

d) add} is mhonotonic,
e) add} doeqd not depend on the exponents of its arguments,

only their diffgrences.

9.1.5 Mixed mode operations and axioms

These operations convert the integer operand or operands
(3.121) to floafing point and thenuse the appropriate
floating point operation.

The following dperations are, specified:
addpy : F x|I —, F:&{float_overflow, underflow}

addrp : I x|F /&F U {float_overflow, underflow}
subpr @ F x|I"Y F U {float_overflow, underflow}

it flooti=r ()¢

subpr(z,n)
= subp(z, float;— p(n))
if float;_p(n) € F
= float_overflow
if float;_p(n) ¢ F

subrp(n,)
= subp(float p ("), z)
if float;=p(n) € F
= float_overflow
if floaty—p(n) € F

muIFI(z,n)
=mulp(z, float;_.rp(n))
if floatjp(n) € F
= float_overflow
if float;_p(n) ¢ F

mul;p(n,rﬁ)
= mulp(float;r(n),x)
if float;_p(n) € F
= float_overflow
if float;—p(n) ¢ F

divpj(x,n)
= divp(z, float;— p(n))
if float;_p(n) € F
= float_overflow
if float;_p(n) ¢ F

divjp(n, ;l?)
= divp(float;_.p(n),)

subrp : I x F — F U {float_overflow, underflow}
mulpy © F x [— F U {float_overflow, underflow}
mulrp : I x F — F U {float_overflow, underflow}
diUFI s FxlI

— F U {float_overflow, underflow, zero_divisor}
divIF cIx F

— F U {float_overflow, underflow, zero_divisor}
diviy : I x 1T

— F U {float_overflow, underflow, zero_divisor}

For all z, y € F, m, n € I, the following axioms shall
apply:

116

if float1.+p(n) e F
= float_overflow

if float;.p(n) ¢ F

divrr(n, m)
= divp(float;_p(n), float;_,p(m))
if float;p(n) € F A floatip(m) € F
= float_overflow
if float;_p(n) ¢ F V floati_p(m) ¢ F

NOTE — A floating point value is never implicitly converted
to an integer. The programmer must state which conversion is

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

to be applied, see 9.1.6.1.

9.1.6 Type conversion operations

The following functions are specified to convert a value
from integer type I to floating point type F', and vice versa.
The behaviour of the type conversion operations are defined
in terms of a rounding function rndp(z) (see 9.1.4.1),
a floating point result function resultp(xz,round) (see

ISO/TEC 13211-1 : 1995(E)

truncater—z(z) = |z| ifz>0
=]z ifz<0

Il

roundr . z () = |z +1/2]

~[-2]

cetlingr— z(z)

9.1.7 Examples

9.1.4.2), apdftoatmg point to Tmeger Tourdimg furnctions

9.1.6.1.

float;_Jr : I — F U {float_overflow}
floatpdp : F — F

floorplr : F — IU {int_overflow}
truncatpp_.1 : F — IU {int_overflow}
roundrl.; : F — I U {int_overflow}
ceilingg—y : F — I'U {int_overflow}

For all z ¢ F, n € I, the following axioms shall apply:

float;_|r(n)
= requltp(n, rndp)

floatpFp(z)
=z

floorpdr(z)

= flCOT'R_,z(x) if flOOT"R_.z(.’L') el

= inf overflow if floorr_z(x) &1
truncatpp— ()

= tryncater_ z(z) if truncateprz(z) € 1

= in{_overflow if trundater—z(z) ¢ I
roundpl,(z)

= rogndr_ z () if-roundr_z(z) € I

= inf_overflow if roundr_z(z) ¢ 1

ceilingg_.1(z)
= ceiffingrSz(z) if ceilingr_z(z) € 1
= in{_overflow if ceilingr_z(z) ¢ I

‘+(7, 35).
Evaluates to the value 42.

'+ (0, 3+11).
Evaluates to the value 14"

'+ (0, 3.2+11).
Evaluates to a value
approximately egqual to 14.2000.

'+ (77, N).
instantidtipn_error.

'+’ (foo T7) .
type_error (number, foo).

(Y.
Evaluates to the value -7.

-1 (3-11) .
Evaluates to the value 8.

r=-'(3.2-11).
Evaluates to a value
approximately equal to 7.8000.

fo ().
instantiation_error.

‘-’ (foo).
type_error (number, foo).

='(7, 35).
Evaluates to the value -28.

-1 (20, 3+11).
Evaluates to the value 6.

r-' (0, 3.2+11).
Evaluates to a value
approximately equal to -14.2000.

9.1.6.1 Floating point to integer rounding functions
The following rounding functions are specified:
floorrz : R — 2
truncater_z : R — 2
roundr_z : R — 2
cetlingrz : R — 2

For all z € R, n € Z, the following axioms shall apply:

floorgr_ z(z) = |z]

‘=" (77, N).
instantiation_error.

-/ (foo, 77).
type_error (number, foo).

rxr (7, 35).
Evaluates to the value 245.

rk (0, 3+11).
Evaluates to the value 0.

'*r (1.5, 3.2+11).

Evaluates to a value
approximately equal to 21.3000.

117

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/MIEC 13211-1 : 1995(E) © ISO/IEC 1995

r*xr (77, N). round(N) .
instantiation_error. instantiation_error.

'*x' (foo, 77). ceiling(-0.5).
type_error (number, foo). Evaluates to the value 0.

/' (7, 35). truncate(-0.5).

Evaluates to the value O. Evaluates to the value 0.

/" (7.0, 35). truncate(foo) .

Evaluates to a value type_error (number, foo).
approximately equal to 0.2000.
float (7)

/ (140, 3+11). Evaluates to the value 7.0.

Evaluates td the value 10.
float(7.3).

/' (20.164, 3.2+11). Evaluates to a value
Evaluates td a value approximately equal to 7.3.
approximatelly equal to 14.2000.

float(5 /7 3).

(7, =3). Evaluates to the value 100!

Evaluates td an implementation defined value.
float (N) .

r/r(=7, 3). instantiation_errox/

Evaluates td an implementation defined value.
float (foo).

/' (17, N). type_error (numiber, foo).

instantiatiqn_error.
abs (7).

/" (foo, 77). Evaluatés to the value 7.

type_error (rjumber, foo).
abs (3-%1).
/' (3, 0). Evaluates to the value 8.

evaluation_drror (zero_divisor).
aps(3.2-11.0).

mod (7, 3). Evaluates to a value
Evaluates td the value 1. approximately equal to 7.8000.
mod (0, 3+11). abs (N) .
Evaluates td the value 0. instantiation_error.
mod (7, -2). abs (foo) .
Evaluates td the value -1. type_error (number, foo).
mod (77, N). current_prolog_flag(max_integer, MI),
instantiatidqn_error. X is '+'(MI, 1).

evaluation_error (int_overflow) .
mod(foo, 77).

type_error (fjumber, foo), current_prolog_flag(max_integer, MI),
X is =’ ('+’(MI, 1), 1).
mod (7.5, 2). evaluation_error (int_overflow) .

type_error (integexr \N775) .
current_prolog_flag(max_integer, MI),

mod (7, O0). X is '-'(-1, MI).

evaluation_drrof (zero_divisor) . evaluation_error (int_overflow) .
floor(7.4). current_prolog_flag(max_integer, MI),

Evaluates to the value 7. X is "*’(MI, 2).

evaluation_error (int_overflow) .

floor(-0.4).

Evaluates to the value -1. current_prolog_flag(max_integer, MI),

R is float (MI) * 2,

round(7.5) . X is floor(R).

Evaluates to the value 8. evaluation_error (int_overflow).

round(7.6) .
Evaluates to the value 8.

round(-0.6) .
Evaluates to the value -1.

118

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

(© ISO/IEC 1995

9.2 The format of other evaluable functor defini-
tions

These subclauses define the format of the definitions of
other evaluable functors.

9.2.1 Description

ISO/IEC 13211-1 : 1995(E)

9.24 Examples

An example is normally a term with that evaluable functor
as principal functor, e.g.

functor (Argument, argument)
and its value or the error term that will occur.

Sometimes, an example will be a goal. In this case
the format is the same as that for examples of built-in
predicates (8 14)

The descrifftion assumes that no error condition is satisfied,
and is a mathematical description of the value of evaluating
as an exprgssion a term with that evaluable functor.

9.2.2 Template and modes

A specification for the type of the values when the
arguments |of the evaluable functor are evaluated as an
expression,| and the type of its value. The cases form a
mutually exclusive set. i

Notation fqr the structure and type of the arguments and
value:

a) int-gxp — integer expression,

b) integer — integer value,

¢) floattexp — floating point expression,
d) floaj — floating point value

When appfopriate, a “Template* and modes” subclause
includes a [note that the evaluable functor is a predefined
operator (spe 6.3.4.4, table 7).

9.2.2.1 Examples

9.3 Other arithmetic functors
9.3.1 (**)/2 — power
9.3.1.1 Description

rx% (¥, Y) evaluates the expressions X andl Y with values
vx and vy.4dnd has the value of VX raised fo the power of
vy. If v¥kand vy are both zero, the value |s 1.0.

93.1.2 Template and modes

r*%/ (int-exp, int-exp) = float
r*xx1 (float-exp, int-exp) = float
r**/ (int-exp, float-exp) = float
r**x/ (float-exp, float-exp) = float

NOTE — ' **’ is an infix predefined operatof (see 6.3.4.4).

9.3.1.3 Errors

a) X is a variable
— instantiation_error.

b) Y is a variable
— instantiation_error.

sin(float-exp) = float
‘<<’ (int-exp, int-exp) = integer
9.2.3 Errors

A list of the error conditions and associated error term
when a term with that evaluable functor is evaluated as an
expression.

NOTE — The effect of an error condition being satisfied is
defined in clause 7.12.

C) VX Is negafive and Y 1s not an integer
— evaluation_error (undefined).

d) VX is zero and VY is negative
— evaluation_error (undefined).

e) The magnitude of the vX raised to the power of vy
is too large
— evaluation_error (float_overflow).

f) The magnitude of the VX raised to the power of vy
is too small and not zero
— evaluation_error (underflow).

119

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

9.3.14 Examples

,**’(51 3).
Evaluates t
approximate

rxx/(-5.0, 3).
Evaluates t
approximate

rHkk (5 21,

o a value
ly equal to 125.0000.

o a value
ly equal to -125.0000.

Evaluates to a value

approximate

,**’(771 N).
instantiati

rxxr (foo, 2).
type_error (

,**,(51 3.0).
Evaluates t
approximate

'*x (0.0, 0).
Evaluates t
approximate

9.3.2 sin/l1

© ISO/IEC 1995

sin(foo).
type_error (number, foo).
PI is atan(l1.0) * 4,
X is sin(PI / 2.0).
Succeeds, unifying X and PI with values
approximately equal to 1.0000 and 3.14159.

9.3.3 cos/l

[V equal to U.Z000.
bri_error.
foo) .

humber,

b a value
ly equal to 125.0000.

b a value
ly equal to 1.0.

9.3.2.1 Description

sin(X) evaluat
the value of the

s the expression X with value vx and has
sine of VX (measured in radians).

9.3.2.2 Template and modes

sin(float-exy
sin(int-exp)

9.3.2.3 Errors

a) X is a val
— instanti

b) X is not

) = float
= float

1able
Ation_error.

h vafiable and vX is not a number

PETTRY

9.3.3.1 Description

cos (X) evaluates the expression x with value vk and has
the value of the cosine of vx (measuréd in radigns).

9.3.3.2 Template and modes

cos (float-exp) = float
cos (int-exp) = float

9.3.3.3 Errors

a) x{i9 a variable
— Instantiation_error.

b) X is not a variable and VX is not a numbgr
— type_error (number, VX).

NOTE — The value of cos (X) has little or no significance if
VX has a large magnitude.

9.3.3.4 Examples

cos(0.0).
Evaluates to the value 1.0.

cos (N) .
instantiation_error.

cos(0) .
Evaluates to the value 1.0.

cos (foo) .

type_error (number, foo).

— type-err

NOTE — The va

/ 1
T (IIOnoer ; VAT .

lue of sin(X) has little or no significance if

VX has a large magnitude.

9.3.2.4 Examples

sin(0.0) .
Evaluates t

sin(N) .

o the value 0.0.

instantiation_error.

sin(0) .

Evaluates to the wvalue 0.0.

120

PI is atan(1.0) * 4,
X is cos(PI / 2.0).
Succeeds, unifying X and PI with values
approximately equal to 0.0000 and 3.14159.

9.3.4 atan/l
9.3.4.1 Description

atan(X) evaluates the expression X with value vx and
has the value of the principal value of the arc tangent of
VX, that is, the value R satisfies

—7/2 < R<7/2

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

9.34.2 Template and modes

atan(float-exp) = float
atan(int-exp) = float

9.3.4.3 Errors

a) X is a variable
— instantiation_error.

ISO/IEC 13211-1 : 1995(E)

9.3.54 Examples

exp(0.0).
Evaluates to the value 1.0.

exp(1.0).
Evaluates to a value
approximately equal to 2.7818.

exp (N) .
instantiation_error.

L0
P

b) x if not a variable and vX is not a number
— typd-error (number, VX).

9.3.44 Examples

atan(0.0)}|
Evaluakes to the value 0.0.

PI is ataph(1.0) * 4.
Succeefls, unifying PI with a value

approxfimately eqgqual to 3.14159.

atan(N) .
instanfiation_error.

atan(0) .
Evaluafes to the value 0.0.

atan(foo)l.
type_efror (number, foo).

9.3.5 exp/l
9.3.5.1 Description

exp (X) evaluates the expression x withiwvalue vx and has
the value ¢f the exponential function“ef vx.

9.3.5.2 Template and modes

exp (floafk-exp) = £float
exp (int-pxp) =_float

9.3.5.3 Hrrors

Evaluates to the value 1.0.

exp (foo) .
type_error (number, foo).

9.3.6 log/l
9.3.6.1 Description

log (X) evaluates the expression X with v3
the value @f-the natural logarithm of vX.

9.3:6.2 Template and modes

log(float-exp) = float
log(int-exp) = float

9.3.6.3 Errors

a) X is a variable
— instantiation_error.

b) X is not a variable and VX is not a
— type-error (number, VX).

c) VX is zero or negative
— evaluation_error (undefined).

9.3.64 Examples

log(l1.0).

number

a) X is a variable
— instantiation_error.

b) X is not a variable and VX is not a number
— type_error (number, VX).

c) The magnitude of the exponential function of VX is
too large
— evaluation_error (float_overflow).

d) The magnitude of the exponential function of VX is
too small and not zero
— evaluation_error (underflow).

LVaTaaces Co CIIE Ttoe— 00—

log(2.7818).
Evaluates to a value
approximately equal to 1.0000.

log(N) .
instantiation_error.

log(0).
evaluation_error (undefined) .

log(foo) .
type_error (number, foo).

log(0.0).
evaluation_error (undefined) .

lue vX and has

123

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/MTEC 13211-1 : 1995(E)

9.3.7 sqrt/1
9.3.7.1 Description

sqrt (x) evaluates the expression x with value vx and
has the value \/(VX).

9.3.7.2 Template and modes

sqrt (float-exp) = float

© ISO/IEC 1995

The value shall be implementation defined depending on
whether the shift is logical (fill with zeros) or arithmetic
(fill with a copy of the sign bit).

The value shall be implementation defined if VS is negative,
or Vs is larger than the bit size of an integer.

9.4.1.2 Template and modes

sqgrt (int-exp) § float

9.3.7.3 Errors

a) X is a variable
— instantiafion_error.

b) X is not a Yariable and vX is not a number
— type_error|(number, VX).

c) VX is negatjve
— evaluation_error (undefined).

9.3.7.4 Examplds

sgrt (0.0) .
Evaluates to|the value 0.0.

sqgrt (1) .
Evaluates to|the value 1.0.

sgrt(1.21).
Evaluates to|a value
approximately equal to 1.1000.

sqgrt (N) .
instantiatiop_error.

sqrt{-1.0) .
evaluation_efror (undefined) ,

sqgrt (foo) .
type_error (npmber, fool .

9.4 Bitwise fupctors

">>"{1nt-exp, 1nt-exp) = 1nteger

NOTE — ’>>' is an infix predefined operator (see’ 6.3.4.4).

9.4.1.3 Errors

a) N is a variable
— instantiation._eptor.

b) S is a variable
— instantiation_error.

¢) N is-ndt a variable and VN is not an integel
— typeverror (integer, VN).

&)~ s is not a variable and VS is not an intege
L type_error (integer, VS).

9.4.1.4 Examples

'>>' (16, 2).
Evaluates to the value 4.

r>>0 (19, 2).
Evaluates to the value 4.

'>>' (=16, 2).
Evaluates to an implementation defined vglue.

'>>' (77, N).
instantiation_error.

'>>' (foo, 2).
type_error (integer, foo).

The operands (3.12T) and value of These evatmabtefumctors
are integers which are treated as a binary sequences of bits.
The value is implementation defined when an operand or
value is negative because the representation of a negative
integer is implementation defined.

9.4.1 (>>)/2 — bitwise right shift
9.4.1.1 Description
'>>7 (N, S) evaluates the expressions N and s with values

vN and vS and has the value of VN right-shifted vs bit
positions.

122

9.4.2 (<<)/2 - bitwise left shift
9.4.2.1 Description

<<’ (N, S) evaluates the expressions N and s with values
vN and vs and has the value of vN left-shifted vs bit
positions, where the Vs least significant bit positions of
the result are zero.

The value shall be implementation defined if VS is negative,
or vs is larger than the bit size of an integer.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

94.2.2 Template and modes

'<<' (int-exp,

int-exp) = integer

NOTE — ‘<< is an infix predefined operator (see 6.3.4.4).

94.2.3 Errors

a) N is a variable

ISO/IEC 13211-1 : 1995(E)

9.4.3.3 Errors

a) B1 is a variable
— instantiation_error

b) B2 is a variable
— instantiation_error

¢) Bl is not a variable and VB1 is not an integer
— type_error(integer, VB1).

— instantiation_error.

b) sis

. variable

— instantiation_error

¢) N is fot a variable and VN is not an integer

— type.

d) sis
— type.

94.24 Ex

<<’ (16, 2
Evaluat

<<’ (19, 2
Evaluat

<<’ (-16,
Evaluat

brror (integer, VN).

not a variable and VS is not an integer
brror (integer, VS).

amples

bs to the value 64.

bs to the value 76.

) .

bs to an implementation defined value.

<<’ (77, N).

instant

'<<' (foo,
type_er

9.4.3 (/\)

Llation_error.

P) .

For (integer, foo).

2 — bitwise and

9.4.3.1 Description

"/\\' (B1,

B2y evaluates the expressions B1 and B2 with

d) B2 is not a variable and VB2 is.hot"dn integer
— type_error (integer, VB2).

9.4.34 Examples

“/\\' (10, 12).
Evaluates to thewwalue 8.

/\ (10, 12).
Evaluate§&~t0 the value 8.

SN\ (17256 + 125, 255).
Evaluates to the value 125.

/AA-10, 12).
Evaluates to an implementation defiped value.

“/\\" (77, N).
instantiation_error.

"/\\" (foo, 2).

type_error (integer, foo).

9.4.4 (\/)/2 — bitwise or
9.4.4.1 Description

“\\/’ (B1, B2) evaluates the expressions Bl and B2 with
values vB1 and VB2 and has the value such that each bit
is set iff at least one of the corresponding bjts in VB1 and
VB2 is set.

The value shall be implementation defined |f VB1 or vB2

is negative.

values VB1

and vB2 and has the value such that each bit

is set iff each of the corresponding bits in VBl and VB2

is set.

The value shall be implementation defined if VB1 or VB2

is negative.

9.4.3.2 Template and modes

"/\\' (int

-exp, int-exp) = integer

NOTE — ' /\\" is an infix predefined operator (scc 6.3.4.4).

9.4.4.2 Template and modes

"\\/' (int-exp, int-exp) = integer

NOTE — ’\\/’ is an infix predefined operator (see 6.3.4.4).

9.4.4.3 Errors

a) Bl is a variable
- instantiation_error.

123

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

b) B2 is a variable
— instantiation_error.

c) Bl is not a variable and VBl is not an integer
— type_error (integer, VB1).

d) B2 is not a variable and VB2 is not an integer
— type_error (integer, VB2).

9.4.5.4 Examples

AN
Evaluates to

N (N (10)).
Evaluates to

\(10) .
Evaluates to

A\ (N) .

AN (10)) .

the value 10.

the value 10.

© ISO/IEC 1995

an implementation defined value.

94.4.4 Examples

‘\\/’ (10, 12).
Evaluates tp

\/(10, 12).
Evaluates tl

the value 14.

the value 14.

“\\/’ (125, 259)) .

Evaluates tfo

\/(-10, 12).
Evaluates tlo

‘\N\/ (77, N).

the value 255.

an implementation defined value.

instantiatijon_error.

“\\/"' (foo, 2).

type_error (integer,

foo) .

9.4.5 (\)/1 — hitwise complement

9.4.5.1 Description

"\\" (B1) evallates the expression B1 with-value vB1 and
has the value such that each bit is set_iff.the corresponding

bit in VB1 is ngt

set.

The value shall|be implementation defined.

9.4.5.2 Template’and modes

1nstaltlaltloll_error.

"N\ (2.5).

type_error (integer, 2.5).

"\’ (int-exp)

NOTE — "\\’ is

9.4.5.3 Errors

= integer

a prefix predefined operator (see 6.3.4.4).

a) Bl is a variable
— instantiation_error

b) B1 is not a variable and VB1 is not an integer
— type.error (integer, VB1).

124

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

ISO/IEC 13211-1 : 1995(E)

Annex A
(informative)
Formal semantics

A.1 Introduction

This formal specification provides a clear unambiguous
description of the meaning of the control constructs and
most of the built-in predicates defined in this part of

presentation (A.2) and then to start reading a built-in
predicate defined in clause A.5, following the references
to find the meaning of the predicates used in its definition.

ISO/IEC 1B211. Many features immplicit in the clauses
defining the informal semantics (7.7), control constructs
(7.8), and |built-in predicates (8) are explicitly described
here.

NOTES

1 The follpwing built-in predicates are not specified formally
(aspects of fhe system environment have not been formalized) :

close/2,
current_op/3,

char_convlersion/2,
current_dhar_conversion/2,
flush_output/1,

op/3, opeh/4, read_term/3, set_stream position/2,
stream_prloperty/2, write_term/3.

2 This formal specification does not provide description of the
character sefs and syntax of Prolog texts.

3 Unless ¢xplicitly stated, there is no semantics for undefined
or implementation defined or dependent features.

The formal semantics is presented in fourkSteps which
should be fead in the order:

A.2 — | An informal introduction te’ the main features
of the flormal specification. This"is also an informal
introducfion to standard Pfolpg and the semantics of
control [constructs and sorhe built-in predicates (like
assert, rdtract). It describes the main general properties of
the formfal specificdtion which are needed to understand
1t.

A.3 — | Adescription of the data structures used in the

A1 1 fal e -
A-1+—Specificationr tanguage—syntax—

The formal specification is writteh)yin p specification
language which is a first order logical larjguage. It is a
subset of most known dialects,~in particujar of standard
Prolog (but, in order to avoid circular definition, with a
proper syntax).

This language uses hormal clauses (i.e. implications with
possibly negative ‘hypotheses). They are lggical formulae
written with:

— three logical connectors: “<” (implication, which

candbe read as : - of standard Prolog), “,I (conjunction),
“not” (negation).

— a finite set of semantical predicdtes which are
themselves defined by normal clauses in ¢lause A.4 (e.g.
semantics, buildforest, etc.).

— a finite set of data structure predicates which are
defined in clause A.3 and whose names pre prefixed by
L- or by D-.

— a finite set of special predicates,| arguments of
special-pred (A.3.1).

— the arguments of the predications of the specification
are either a variable, written using the syntax:

variable =
capital letter char, { alpha nuperic char}

| —

formal textamd—tiecomments—of the—ctauseA4—Some
structures are assumed to be defined by other means for
example, arithmetic.

A.4 — The kernel of the specification and utilities
written with clauses and local comments. One short
comment is associated with each packet of clauses.

A.5 — The specification of the control constructs and
built-in predicates.

The rest of this clause may be skipped, if familiar with
logic programming. The other clauses need not be read
sequentially. A better approach is to read the informal

or some term built with all the function symbols used
in the formal specification and representing databases,
goals, search-trees, and other objects. Every value and
constant of standard Prolog is denoted in the formal
specification as specified in the abstract syntax in clause
A3l

NOTE — No confusion arises between symbols denoting a
variable of a standard program and a variable of the specification
language. In a standard program as in any feature related to
the description of its behaviour (terms, database, streams,
all the objects are represented by ground terms. So they have
a different syntax. However as variables and constants do not
receive formally described treatment, no representation for these
objects is provided in the formal specification.

125

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/TEC 13211-1 : 1995(E)

A.1.2 Specification language: semantics

At first glance it may come as a surprise to give the
semantics of standard Prolog using a strict subset of itself.
There is no paradox: (1) Prolog programs and the formal
specification have a different syntax, and (2) the semantics
of the specification language is purely declarative whereas
the semantics of standard Prolog can only be described
operationally. The formal specification is a pure logical
description of some meta-interpreter of standard Prolog

(© ISO/IEC 1995

6 The semantics of the specification language fits with most of
the known semantics for normal databases in logic programming,
in particular it corresponds to the unique stable model or one of
the minimal term models of the completion, or the (two valued)
well-founded model.

Observe that only ground proof-trees are considered, but
that other proof-trees can be constructed from the clauses
of the formal specification. Only the subset of the ground
proof-trees whose root is the predication semantics with
arguments _which _are well-formed abstract objects (i.e.

programs.

The formal specification is axiomatic. It contains uni-
versally quantified first order logic axioms only. It can
either be read logifally (without specific knowledge of any
existing Prolog diglect), or procedurally. But the semantics
does not depends |on any particular execution model, and
the order of clausps and the predications in the bodies of
clauses are irreleyant. Nevertheless they are given in an
order which will|aid readers to understand them. This
axiomatic specifichtion may be used to perform proofs of
particular properties of the language. It may also be used
to derive prototypes.

The semantics of [clauses without negation is well-known.
This is an advanthge of this specification language; how-
ever, without negation, its expressiveness is insufficient.
With negation the specification language becomes ex-
tremely powerful.

Even if the fornpal specification can be considered -ds
purely logical, its semantics is denoted by a specific miodel
defined as the set| of the proof-tree roots. The pioef-trees
are obtained by pabting together ground instanees of normal
clauses such that jrgument of a negative predieation is not
itself a proof-tree[root.

Such a condition fis not paradoxicdl_because of the notion

of stratification. |Negation is_stratified, i.e. a predicate is
never defined recfirsively in-tefms of its negation.

NOTES

abstract database, goal and environment) are eopnsidered.
This is a sufficient condition to guaranteethat™all such
proof-trees are ground and with well-forméd argurpents in
the formal specification. In some caseS\an extersion of
the syntax will be allowed, such that clauses may have
variables as predication. In that ©asc it will be 4ssumed
that these variables are instaritiated by goals only. The
formal specification is writfen in such a way that proof
trees which use such .flduses can be built with such
instances only.

The D- predicafes are mostly simple relations, buf neces-
sary to make precise definitions.

The L-predicates are not defined in the formal semantics:
they <ate an interface between the formal semanfics and
other specifications provided elsewhere in the standgrd. The
semantics of L- predicates is defined by means of [relative
denotation. This means that their semantics is itpplicitly
given by a possibly infinite set of ground predicatjons. So
the semantics of the whole formal specification i the set
of the ground proof-tree roots (where the argumpnts are
well-formed data structures) extended with the possibly
infinite set of facts corresponding to the L- predidates.

A.1.3 Comments in the formal specification

There is no formal specification without commgnts ex-
pressed in the natural language. This specification [respects
this rule. However a strong discipline has been|used in
order to limit the need of long comprehensive coments.

1 The stratification of negation is introduced to avoid a
Russell-like paradox.

2 The specification uses five levels of stratification.

3 The use of negation by the specification fits with the usual
notion of negation by failure, and thus simplifies the production
of a consistent runnable specification from the formal one.

4 In the specification, a negated predication will never contain
unbound variables. However the formal specification is not an

“allowed” program.

5 The notion of stratification does not influence the logical
reading of the axioms.

126

+ 7S TS Ry I cmacificoats F 1 3
CommentswHnttReTofar-spectieaton—are of-two kinds:

general comments and specific comments.

General comments are all grouped in the clause A2
(Informal description). They describe general properties
of the specification which are difficult to deduce just by
reading the axioms of the formal specification. They
do not answer all possible questions about the behaviour
of a standard database and a goal, but do assist its
understanding.

Elsewhere only specific comments are given. Exactly one
comment is associated with each data structure predicate
or semantical predicate. The comments have the form:

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

pred(X, Y) — if P(X) then O(X, ¥)
or

pred(X, Y) — iff O(X, Y)

where X, Y denote a partition of the arguments of pred
and P and Q are assertions.

Such a comment is an informal description of the meaning
of pred. also corresponds 10 a partial COITcCIness
assertion: (his means that all the predications in the
semantics of| the formal specification satisfy this assertion.
If the comment contains iff, the assertion is also a
completenesp condition, i.e. the comment defines exactly
all the predications in the semantics of this predicate.
When there|is a negative predication (e.g. not Q(X, Y))
in the body| of a clause of the formal specification the
comment required to understand it is usually the negation
of the formyila Q(X, Y) in the comment of the predicate
of the predigation.

In the formdl specification every axiom is accompanied by
cross referefices to the definitions of the predications in
its body.

A.1.4 Abopt the style of the Formal Specification

The style of| the formal specification may be surprising at
first glance.| Here are some observations which may“help
to understand it.

Terms of| the form f(t1,...,{p) Care denoted
func(f,ty..]..t,.nil) in the formal specification. This
is necessary| to keep the specification first order. It helps
also to understand what is the-Jesult of the unification
performed on such terms (as defined in clause 7.3) which
works the sjime way on abstract terms.

In the body of a clause a negated predication of the
form

—

not pred(- -

ISO/IEC 13211-1 : 1995(E)

to avoid clashes of names with user-defined predicates.
In fact “bootstrapping” consists of adding to the initial
complete database new predicate definitions. In the case
of bootstrapped control construct or built-in predicates this
is not needed because they cannot be redefined by the
user.

A.1.5 References

. thod may be
found in the following documents:

P. Deransart, G. Ferrand: An Operational Forfnal Definition

of Prolog: a Specification Methed and it
New Generation Computing_ 110, (1992) 121-

A. Ed-Dbali, P. Deransart Software Formal
by Logic Programming:) The example of Stq
LNAI 636, SpringerWerlag, LPSS’92, Septe]

Application.
71.

Specifications
ndard Prolog.
mber 1992.

P. Deransarty -J. Maluszynski: A Grammafical View of
Logic Programming, The MIT Press, 1993. (NSTO
propetties).

S.“Renault, P. Deransart: Design of Formal [Specifications
by Logic Normal Programs: Merging Forfnal Text and
Good Comments. Int. Journal of Softwarq Engeneering
and Knowledge Engineering, V4, 3 (1994) 369-390.

Information about a runnable specification| (intended to
be compatible with most existing Prolog processors) is
available on request by E-Mail to:

AbdelAli.Ed-Dbali @lifo.univ-orleans.fr.

Some PhD theses have been devoted tp aspects of
standard Prolog, e.g. by Gilles Richard, Spphie Renault
(validation), AbdelAli Ed-Dbali (runnable |specification),
Jean-Louis Bouquard, Bruno Dumant, Michel Téguia
(NSTO properties).

A.2 An informal description

does not contain any anonymous variable in its arguments.
This is because such variable is usually intended to be
existentially quantified inside the negation (it is implicitly
universally quantified outside of the clause, hence inside
of the negation). As a result if such quantification is
required an intermediate predicate must be introduced.
See for example the predicates error A.4.1.14 and in-
error A.4.1.15. Furthermore this facilitate production of
executable specification using the standard negation.

The systematic use of “special predicates” where boot-
strapped or auxiliary definitions are given is necessary

The semantics of a standard-conforming Prolog database
is defined by the relation between the database, a goal,
an environment and the corresponding search-tree which
represents all the possible attempts to satisfy the goal (see
A2.7).

This kind of semantics takes into account non-determinism,
i.e. the multiple (perhaps infinite number of) solutions, the
unsuccessful attempts to resolve a query, and the control
aspects as well. The representation of all the computations
is usually defined by the so-called “search-tree” (also
called SLD-tree in the case of “pure” Horn clause style).
This notion is introduced in the next clause (A.2.1).

127

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

NOTE — The semantics can be viewed as being essentially
declarative. The main difference with denotational semantics
comes from the semantic domains (i.e. search-trees). An
advantage of this approach is the relative familiarity of search-
trees to Prolog programmers. It can also be considered as
operational since the associated search-tree cannot be defined
without simulating the execution of the database P for the goal
G.

The process of the comstruction of a branch of the
search-tree for a database and a goal (and an environment)

© ISO/IEC 1995

A.27 — The semantics of a program conforming to
this part of ISO/IEC 13211.

A.2.8 — Getting acquainted: general approach of the
formal specification.

A.2.9 — Built-in predicates.

A2.10 — Relationships with the informal semantics
7.7.

corresponds to |an attempt to satisfy a goal. The
purpose of the fprmal specification is to describe all the
possible attempt$ to satisfy a goal for a given standard
Prolog database.| It describes the execution of a goal.
Any action performed before starting the execution is
implementation glefined or implementation dependent. It
will be assumed that databases, goals and environments are
already prepared|for execution (in particular the database
contains the clapises of the database to be executed and
if a variable ocfurs as predication it has been included
as argument of §i call predication). The body of a fact
contains only th¢ predication true.

It is not required that the semantics of a standard
conforming proc¢ssor should be a complete implementation
of this search-trde. It should respect the following points:

a) the contrgl flow: the order in which the nodes
of the search{tree containing an executed user-defined
procedure or built-in predicate are visited.

b) failures, guccesses and/or successive instantiations
of a goal in the same order.

c) effects of|the built-in predicates.

The formal semjntics is explained by)progressively intro-
ducing the consfructs and built-ini predicates.

A2.1 (“pure”|Prolog) = The databases use only user-
defined proceflures and-conjunction. “true” and “fail”
are introduced.

Any concept which is not defined in thiS)|informal
description refers to concepts defined in the body document.

A.2.1 Search-tree for “pure” Prolog

Assume first that databaseshand goals use usgr-defined
procedures and conjunctidn ((,)/2) only, and tha{ a predi-
cation in the body ofsa{clause cannot be a vatiable. A
goal or the body of(a*clause is a possibly empty [sequence
of predications, denpted by the conjunction.

NOTE — This is’“‘pure” Prolog. The notion of a seardh-tree was
introduced~{6r “pure” Prolog in the history of logic prqgramming
in order)fo/explain the resolution and the backtracking as they
are fixed in Standard Prolog, and it will serve as h basis to
define' and understand the semantics of further constrjcts.

Let us recall the notion of search-tree for purg Prolog,
and thus the semantics of pure Prolog in the formal
specification (because pure Prolog is a proper pubset of
standard Prolog). We will describe here what fis known
in the literature as the “standard” operational semantics of
definite programs, or definite program with the left-to-right
computation rule.

The clauses are ordered (by the sequential order|in which
they are written) and grouped into packets of clauses
defining one procedure. The clauses have a| head (a
non-variable term) and a body consisting of ap ordered
conjunction of predications. If the body is empty it is
denoted by true.

A database can be viewed a set of packets in| which a

A.2.2 (“pure” -Protogwittrcuty— Databases withrcut:
A.2.3 (kernel Prolog) — All control constructs except
“catch” and “throw” are considered. The notions of
“well-formed” and “transformed goal”, and of “scope
of cut” are introduced.

A.2.4 — Structure of the database and “assert” and
“retract” built-in predicates. The database update view
is defined.

A.2.5 — Exception handling (“catch” and “throw”).

A.2.6 — Environments.

128

procedure is defined only ONce by a single packet.

NOTE — In the formal specification all the clauses defining a
predicate are grouped in a single packet. The way they are
grouped is implementation defined according to the directive
discontiguous/1 7.4.2.

The semantics of standard Prolog is based on the general
resolution of a goal.

A.2.1.1 The General Resolution Algorithm

The general resolution of a goal G of a database P is
defined by the following non-deterministic algorithm:

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

a) Start with the initial goal G which is an ordered
conjunction of predications.

b) If G is the singleton true then stop (success).
¢) Choose a predication A in G (predication-choice)
d) If A is true, delete it, and proceed to step (b).

e) If no renamed clause in P has a head which unifies

ISO/IEC 13211-1 : 1995(E)

A.2.1.3 The search-tree

The different computations defined by this algorithm will
be represented by a (search-)tree in which a node is
labelled by the current goal and has as many children
as there as unifiable heads with the chosen predication in
the current goal. The children have the same order as the
clauses in the database.

NOTE — The search-tree is a suitable tool at the right level of
abstraction. It is a well-known notion in _the logic programming

with A themrstop faitare):

f) Chopse a freshly renamed clause in P whose head H
unifies W}ith A (clause-choice) where 0 = MGU(H, A)
and B i§ the body of the clause,

g) Replace in G the predication A by the body B,
flatten ahd apply the substitution o.

h) Progeed to step (b).

NOTES
1 The steps (c), (f), and (g) are called resolution step.

2 The M{ZU (most general unifier) of two terms is defined
in clause 73.

3 A “freshly renamed clause” means a clause in which “the
variables arf different from all the variables in all the prévious
resolution sfeps.

4 In standard Prolog, there is no flattening of<geals. If not
identical to|true, a goal can always be viewed\as a conjunction
of (sub) gopls.

A.2.1.2 The Prolog resolutiontalgorithm
In standard Prolog this algorithm is deterministic:

a) The| predication*choice function chooses the first
predicatfon ip-the sequence G (step (c)).

b) The elause-choice function chooses the unifiable

community.

The notion of search-tree permits to represent
tations as a unique object. It formalizes thg
which is implicitly present in the total order o
visit order).

We give now a morehprecise definition.
labelled by two elements:

— Either anen-empty goal, different frq
true and~a distinguished predicatiof
predication), or the predication true 4§
a Jeaf-called success node.

—~ a substitution.

The label of the root is the goal to be rd
empty substitution.

Each node has as many children as thg
whose head (with a suitable renaming) ig
the chosen predication.
the node is a leaf called failure node.

to a failed branch. A success node cd
success branch. To every success branch|

dynamic compu-
idea of “time”
If its nodes (total

Each node is

m the singleton
» (the chosen
nd the node is

solved and the

re are clauses
unifiable with

So if there is po such clause

It corresponds
rresponds to a
it corresponds

an answer substitution obtained by the composition of all

the substitutions of the nodes along the bj
to the variables of the goal of the root.

There are three kinds of branches: success,
If there is no infinite branch in a search-ty

search-tree.

The order of the children corresponds t

anch, restricted

failure, infinite.
ee, it is a finite

b the order of

clauses according to their sequential order in the packet

(step ().

It is important to observe that the algorithm works also if
the clauses of the program have variables as predication
in their body, if each variable is instantiated by a goal
before it is selected.

This observation will be used to define some “bootstrapped”
built-in predicates, where a variable may occur in the place
of a predication (see for example the definition of the
disjunction in the clause A.2.3.4). However this is not
permitted in standard Prolog.

the clauses used to build them in the

database. If

By, - -, B, is the goal associated with a node, B; being
the chosen predication, and A :- Cy,...,Cp, is a freshly
renamed clause with A and B; unifiable, then with the
corresponding child the associated substitution is a MGU
(most general unifier) ¢ of B; and A, and the associated
sequence of predications is

o((Cy,...,Cm), Ba, .., Bn)

or equivalently, if flattened:
O’(C] y o

vCm, Ba,...,By)

129

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

In the General Resolution Algorithm (A.2.1.1) the search-
tree is defined by the predication-choice function (also
called computation rule) which determines the chosen
predication for each node. The predication-choice function
could select any predication in a goal and not just the
first one. The Prolog search-tree is defined by the
predication-choice function which always chooses the first

predication.

NOTE — All se

arch-trees (i.e. corresponding to different

computation rules) are equivalent in the sense that given the

database and the
same success nodg
a renaming of the|
semantics when by

A.2.14 The vis

Given a predicd
the computations
depth-first left-to|
defines the outpy
visit order of th|
the execution lo
branch.

To sum up, the
formalized by thg
visited search-tr]
visit order. The §
two components:
tree) and the visi

A.2.1.5 A seard

Consider the foll

© ISO/IEC 1995

4(X), r(X,Y)
{X= {X|=b) {X=c} (X=d}
r(a,Y) r(b,Y) r(c, success

poal, all the different search-trees have the
s with the same answer substitutions up to
variables. But they correspond to different
ilt-in predicates are considered.

ited search-tree

tion-choice function, i.e. a search-tree,
of a database and goal are defined by
tright visit of the search-tree. This wvisit
t order of the answer substitutions as the
e success leaves. It also explains why
bps when the traversal visits an infinite

semantics of a database and a goal is
search-tree with its visit order. We call
pe (VST) a search-tree provided with a
emantics of standard Prolog is defined by
the predication-choice function (search¢
¢ order (of this search-tree).

h-tree example

bwing database and the.goal p (X, Y)

{Y=bl {Y=cl}

success success
Figure A.1 — A searchstree example

>

current node N hanging riodes

Figure A.2 — A visited search-tree

p(X, Y) - a(X)], r(X, Y).

p(X, Y) :- s(X)|.

g(a) :- true.

do i e A2.1.6 Building the visited search-tree

b, bl) :- t . . .

i;c c1; . ti:: The semantics of a database P and a goal (] is thus
represented by a partially visited search-tree whose root is

s(d) :- true.

Figure A.1 show

s the search-tree with the chosen predi-

cation underlined, upper case letters denote variables and
lower case constants.

The standard visit gives the following answer substitutions,

in this order:

X

1l
o
"

1l

bl

X=c¢c, Y =cl

X =d

130

labelled by the goal G. Successive transformations modify
the initial partially visited search-tree during the resolution.

When a node N is first visited it is immediately expanded
with all its children. The representation of the search-tree
respects the order of visits; the non-visited brothers of an
already visited node are all “on the right” of this node.
These nodes are called “hanging nodes” (see figure A.2).
In a partially visited search-tree all the hanging nodes are
“on the slice” and represent the next possible developments
of the search-tree. The clause-choice function selects the
next node to be visited, following the visit order.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/EC 1995

call exit
Chosen
predication
- [S—
fail redo

Figure A.3 — Byrd’s trace model

Observe now that there is no way to visit the search-

ISO/IEC 13211-1 : 1995(E)

C(lll l A, G T fazl

tree beyond| the first (1.e. left-most) infinite branch with
the standardl visit order. This is why in the formal
specification} the semantics is represented by all the finite
partial search-trees which are partially visited up to some
current nodg.

If the search-tree is finite (no infinite branch), then the
semantics cpntains a greatest tree which corresponds to
the completg visited search-tree (up to the root).

If the search-tree is infinite the semantics consists of all
the partially| visited search-trees containing all the visited
nodes from|the root up to some node of the first infinite
branch.

A.2.1.7 Semantics terminology

Let us now
7.7. Given

is labelled b

A is the ch
A correspo

ntroduce some vocabulary as defined in clause
h branch of a search-tree whose current node*'N
y a goal G (called the current goal) such that
sen predication in G, the activatiom period of
ids to the construction of the ssub-search-tree

issued fronm] N. Of course, the activation-period has no
end if this $ub-search-tree has an infinité branch.

If a node hgs more than one child\it is non-deterministic.
Such a nodd for which A is ré-exe€cutable is called a choice
point. If a pode has only one child after its first visit it is
a determinfstic node. {A~node is said completely visited
after all it§ branchés Jhave been completely developed.
New visits fo a choice point correspond to backtracking.

Figure A4 == Byrd’s model: a search-free point of
view

By analogy with Byrd’s model the visits [of a node N
will be denoted by “call” for the first qnd “fail” for
the last one of the same node. They corrgspond to the
call of a predication and the end of all the attempts to
resolve it. The “fail” mark must be distijguished from
the failure nodes introduced previously. [In fact many
branches issued from the node N may be failed. The other
attempts to re-execute it correspond to “red¢” for obvious
reasons (try a new clause at some ancestof choice point
and continue the resolution). “exit” corregponds to one
successful attempt to resolve the chosen preglication of the
node N.

NOTE — In this part of ISO/IEC 13211 “a pfedication fails”
means failure if there is no way to satisfy [it, or just last
visit if after different attempts to re-execute it (after exhaustive
backtracking).

A.2.1.8 An analogy with Byrd’s box model

Comparing this semantics with Byrd’s trace model helps
show how nodes are visited.

Byrd’s box (figure A.3) represents what happens during
the activation of a predication, i.e. between its choice at
the current node (“call”) and the last visit to this node
(“redo fail”). The different visits correspond to different
choices of clauses leading to success branches.

Figure A.4 shows the elements of Byrd’s box from the
search-tree point of view.

A.2.2 Search tree for “pure” Prolog with cut

“Pure” Prolog is now extended by allowing the constant
predication cut (!/0) in the body of the clauses.

From the logical point of view this cut has no effect
(it is always true), but from the point of view of the
computations (the search-tree) it has a drastic effect: a
cut deletes some search-tree branches in order to force
a predication to execute quickly without visiting all its
children.

131

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 132

11-1 : 1995(E)

© ISO/IEC 1995

p(X,Y) must be well-formed. So a variable cannot occur in the
position of a predication (it must be embedded in a call
like call(X) in this case), and a predication must be a
callable term (i.e. neither a variable, nor a number).
q(X), !, 1(X,Y) y
—_ By definition well-formed clause, body of clause, or
goal must respect the following abstract syntax (formally
defined in A.3.1):
|
o r(aﬂﬁ() clause = predication :- body
Body =
| '/' ,(: body :’: body :):
r(a,\{) | “i* (" body ',’ body ')’
."" . o>t (' bod: l,'bd ry s
Figure A.5 — A| search-tree example showing the effect l pr; dic; i Oi Y ody ')
of cut
predication = pred "(" list of terms ")"
where pred is not in {',, ';’, '-3'} and

A.2.2.1 A searfh-tree example with cut

If the first claus¢ of the database (A.2.1.5) is replaced by

p(X, Y):- 4(X), !, x(X, Y).
p(X, Y) - a(X], ', r(X, Y).
p(X, Y) :- s(X].
qg(a) :- true.
qg(b) :- true.

g(c) :- true.
r(b, bl) :- trte.
r(c, cl) :- trype.
s(d) :- true.

Figure A.5 shows that the search-tree corresponding to the

goal p(X, Y) h

NOTE — Cuts
branches. This

is one failed branch only.

sometimes increase the tnumber of success
may be understood by\the use of the cut

to specify negatipn by failure (see~the’ bootstrapped (\+)/2

definition). The ¢
number of succes

The effect of t
nodes: all the

mposition of two negations may increase the
es.

pe “cut’\is’ thus to erase some hanging
nanging *nodes between the current node

and the parent nodelof the goal in which it first appeared.

predication is not a number.

If a clause or a goal-is\well-formed, a transformgtion may
be performed as follows.

An (abstract) Clause term of the form ’:-’(H,G)|is trans-
formed intocthe term ’:-’(H,trans_goal(G)) where trans_goal
defines the’ transformation of a goal as follows.

An (abstract) goal term is transformed in a gew goal
whose behaviour is equivalent, according to this part of
ISO/IEC 13211, to the same goal in which eachl variable
“X” occurring in the position of a predication fccording
to the abstract syntax above is replaced by “call{X)”.

NOTE — This specification is weaker than what i specified
in the term to body conversions 7.6.3: it suggests [that some
transformations may be implementation dependent . However as
the effect must be equivalent to the given minimal trangformation,
only this minimal transformation is considered in the formal
specification (see D-term-to-body A.3.1) as in 7.6.3.

A.2.3.2 An operational view of the conjunctipn (’,’)/2

The conjunction may be viewed now as a control{construct
combining goals. The semantics of this constfuction is
defined by the mechanism of the search-tree cofstruction
follows:

and visit Tt may be_also informallyv described a

A.2.3 Search-tree for kernel Prolog

In kernel Prolog only the control constructs (true/0, fail/0,

10,)2, ()2

, call/l, (->)/2, “if-then-else”/3) and the

user-defined procedures are authorized.

A.2.3.1 Syntax:

well-formed clause, body and goal,

and transformation

In kernel Prolog (as in this part of ISO/IEC 13211) a
clause in the database, a goal, or the body of a clause,

132

if Gy and G, are two goals then (G, G2) is equivalent to
execute (G and execute (G, in sequence each time G is
satisfied.

The conjunction satisfies also the following obvious prop-
erties:

(goal, true) = (true, goal) = goal and
((gh,gb),9B) = (9h, (g, gl3)) = (ghi,gl2,903)

NOTE — These properties hold not only for kernel Prolog but
also in standard Prolog.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

A.23.3 true and fail

The meaning of true and fail is now clear. If the
chosen predication is true, then it will be removed and
the resolution continues with the following predications of
the current goal. If there are no more predications, the
branch is a success branch, and resolution continues from
the closest choice point not yet completely visited.

fail can be viewed as a constant predicate with no
definition t t f reh

ISO/IEC 13211-1 : 1995(E)

In the formal semantic the scope of a cut is represented
by flagging cut (! (flag)) where the flag denotes the
parent node of the node in which the instance of the
clause in which the cut occurs has been used. When a
cut flagged by N is chosen all the ancestor choice points
until N (inclusive) are made deterministic.

NOTE — Due to the well-formedness of goals, there is no way
to execute in this formal specification an unflagged cut. Hence
if a cut occurs inside the arguments of some disjunction, the
arguments of the bootstrapped definition contain this already

and resolutjions continues from the closest choice point not
yet compldtely visited.

is the control construct of two goals G| and
(Gy1; G2) whose meaning is equivalent to:

disjunctio

ipal functor of G is not (->)/2 then execute
p G each time G| is satisfied, and execute GG
when G fails if this alternative has not been cut by the
execution ¢f Gj.

The disjunftion corresponds to a non-deterministic choice-
point. The simplest semantics for the disjunction is
given by tfhe two pseudo-clauses (“pseudo” because the
disjunctior| is a control construct and is not authorized, ds
functor of |Ja clause head, and a variable is not allowed as
a predicatipn in this part of ISO/IEC 13211):

';'(Gl, GR) :- Gl.
‘7' (Gl, GR) :- G2.

if the pringipal functor of Gy is not =>) /2.

A.2.3.5 (ut in kernel Prolog’and its scope

A cut may|occur any where, embedded inside conjunctions,
disjunction}s or if-then) constructs according to the abstract
syntax above. Then'the (static) scope of the cut is defined
by the visiple’cheice points which will be cut when it will
be chosen isible choice points are the
head of the clause and the disjunctions associated with the
control construct (;)/2 in which the cut is embedded. There
are also “non visible” choice points which are introduced
by the development of subgoals which have been chosen
before the cut (but after the head). Hence the scope
of cut in a clause corresponds to all the predications or
disjunctions which are on its left in the body of the clause
together with all its embedding disjunctions and the head
of the clause.

However there is one exception to this rule if the cut is
inside the control part of a the if-then construct (see
A23.7).

fragged—Tur.

A23.6 Call

call is a control construct which permits the use of a
variable as a predication‘and’ limits the scdpe of cut.

Its syntax is call(Term) where Term must be a term.
When call is exeeiited its argument must bg a well-formed
body (see is-an-extended-body A.3.1), the| scope of a cut
in this goahis limited to this goal. It is|sometime said
that call’is not transparent or opaque to clut, otherwise it
would’ be transparent and its scope woulfl extend to all
predications to its left in the body of the clause and its
parent.

Then the argument is transformed accorfing to clause
A.23.1 and executed, after local cuts of the goal, in the
position of a predication according to thq syntax above,
have been flagged.

Notice finally that this part of ISO/IEC 13211 does not
define how the computations continue dfter a success
branch has been obtained, i.e. how the visit of the search-
tree is continued, nor how the answer spbstitutions are
displayed.

A2.3.7 If-then

The conditional construct ‘' ->’ (Cond, Then) is defined
out of the context of a disjunction (i.e| not the first

if cond succeeds then cuts the choice points issued from
cond only and executes Then. Cond is opaque to cut.

if cond fails then fails.
It can be defined by the following pseudo-clause:
'->’(Cond, Then) :- Cond,!,Then.

'->'(Cond, Then) not being the first argument of &
predication (;) /2.

133

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

A.2.3.8 If-then-else

The conditional construct “if-then-else” is denoted by a
syntactical combination of if-then and the disjunction as
follows:

(Cond -> Then); Else

It is defined as follows:

if cond succeedsthen—cuts the cholce pr\;nte issued from

© ISO/IEC 1995

cond only and efecutes Then ignoring Else.

If cond fails thep executes Else.

It could be defingd by the following pseudo-clause:

((Cond -> [Then); Else) :-
(call(dond), !, Then) ;Else.

A.2.4 Databasq and database update view

In this part of ISO/IEC 13211 the relationships between
clauses (issued fiiom Prolog terms in a Prolog text) stored
in the database apd a term defining a clause is defined by
means of “convefsion” (7.6). Its purpose is to define also
what is a “well{formed goal”. In this formal definition
an abstract syntak is assumed and given for the database,
clauses and termps, which in particular defines what is a
“well-formed gogl”. This Abstract database contains the
user-defined procpdures only, but in contains implicitly-alt
the control constfucts and built-in predicates.

It is also assumjed that the database contains” at least
three informations for every user-defined, precedure: the

predicate indicat
static and the p
Each clause can

I, an indication whethér. it is dynamic or
icket of clauses (D-is-a-database A.3.1.
be viewed as ah_abstract term (D-is-a-

term A.3.1) with principal functer :-/2. Moreover it is
assumed that a predicate is.defined only once.

NOTE — A preficate~ is. thus uniquely determined by its
predicate indicator] i.€.,its’ name and arity.

—/ \&/
Figure A.6 — Standard database update-yiew

Notice that if all clauses of a predi¢ate have been [removed
retract/1 just fails and all informations about this predicate
remain, except that the packet™of clauses is empfy. Only
abolish/1 leaves the databas¢ as this predicate hpd never
existed.

To understand thé\semantics of these built-in predicates in
standard Prologyit is useful to understand the pr¢blem of
the databasesupdate view. As the search-tree is copstructed
the database may be modified. Add to each [node an
additional label corresponding to the current databjase used
toibuild the children of this node. Assume firs{ that all
the clauses are used to build these children. Edch child
(say 1,2,...,n) is now labelled by a new database (say
NewP;, NewP,, ..., NewP,). This situation is|depicted
in Figure A.6 (the ¢;’s correspond to the clausep chosen
to build the child).

If there is no modification of the database all thq Newl;
and P are the same and all the children ar¢ visited
and expanded. Now consider a child ¢ differgnt from
the first (¢ > 1) and assume that the clause to [which it
corresponds has been removed during the constructions of
an older brother (i.e. NewP; does not contain [anymore
the clause ¢;). Is it normal to choose and to try tp resolve
it or not? Assume now that the youngest child n has
been reached and resolved, and the current datapase, say
NewP corresponding to the “fail” visit of n, con{ains new
clauses appended to the corresponding packet in P. Should

The semantics described so far assumes that the database
remains unchanged during the the execution of a goal.
Standard Prolog contains five built-in predicates which
may modify the database: asserta/I, assertz/1, retract/1,
abolish/1, or explore it: clause/2. Intuitively asserta/l
adds a clause at the beginning of a packet, assertz/1
does the same at the end, retract/l1 removes the first
clause which unifies with the argument and abolish/1
which removes completely a procedure. — retract/1 is
resatisfiable and removes clauses in the packet. Notice
that an asserted clause must be well-formed and that
retract (predication) seeks for clauses of the form
predication :- true.

134

these new clauses be considered to create dynamically
new children or not? Notice that such situation happens
with assertz/1 only. With asserta/1 no new child will
be created (although subsequent uses will consider the
modified database).

The database update view depends on the way the previous
questions are answered. The standard adopts the following
view: the retracted clauses are selected but not the
appended ones. It is called the logical view.

NOTE — In the formal specification the logical view is taken
into account as follows: the packet associated to a node

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

corresponds to the clauses available to build new children. It is
fixed by the first visit.

Although the logical view has been adopted, some pro-
grammers are used to the so-called immediate view. There
is a “minimal” way of thinking about the views, that is
to say to update the database in a such manner which
does not depend on the view (it is of course undecidable
whether a given database satisfies the requirements of
some view, hence in particular of the logical one). Here

ISO/IEC 13211-1 : 1995(E)

An error is raised by a predication throw(Ball), this
predication succeeds if a freshly renamed copy of its
argument Ball can be unified with the catcher of some
calling ancestor catch/3 (else a system error is raised). If
some ancestor catch is thus selected all the hanging nodes
of its sub-search-tree are removed and its second child is
developed, hence the goal (Recovergoal, Cont) is now
resolved.

NOTE — In the formal specification the second node is not
immediately constructed. It is by throw.

are some [yosstblerutes:
a) Using asserta/l is always free of danger.

b) Nevgr use retract/1 or assertz/1 on a predicate which
is active| except to retract already used clauses.

These resfrictions fit with a prudent use of database
updates. However note that, even without “call”, these
apparently [simple rules remain undecidable.

NOTE — I: A.2.2 where “pure” Prolog is described there is
no data base updates and the database is invariant. In standard
Prolog it i not the case. Thus a different database may be
stored at eqch node of the search-tree. In the formal semantics
only one ddtabase is stored at a node (instead of one “before”
and one “after”): it is the database resulting from the complete
developmen} of the sub search-tree issued from that node; it
may be diffprent from the database associated to this node when
it is the cufrent node.

A.2.5 Exeption handling

An exceptijon may be raised during the resolution of a goal
G by the gystem or by the user (with(the control construct
throw/1) apd captured anywhere by’ some ancestor control
construct [catch/3 if the resolution of this goal G is
performed|in the context of ‘this built-in predicate. The
mechanisn} of the exception”handling can be informally
described ps follows.

The builtyin predieate catch/3 has three arguments: a
goal to bg excouted (say Goal), a catcher which is term
(say catcher) and another goal to be executed in case

The role of the special predicate indetivate/1 defined in
the formal specification only is to\avoid |the capture of
an error by the catcher of a calling catch fhen this error
occurs during the resolution,of\the contingations. In fact,
an error may be trapped By different catchiers in different
embedded catches, andnan’ error in the comtinuation must
be trapped by ancestor, catches only. For this purpose the
set of the active catchers is stored at the cyrrent node (i.e.
catchers which™must be tried if some errof is raised) and
the effect ofiinactivate whose argument is the node N is to
remove this*node from this set. Hence supsequent errors
raised by’the developments of Cont are n¢ longer caught
by the catcher of node N.

Notice also that there are two kinds or exdeptions:

a) EBExplicit ones specified by the programmer by
throw/1, and

b) Implicit ones raised by control constfucts or built-in
predicate errors. This case is exactly af though a user
error is raised by calling throw (Error_lerm, impl_def).

If the user for any reason omits to specify] an appropriate
catcher, the result is a system error (see 7.8.10.3b).
However in the formal specification there|is a catcher at
the root (see A.4.1.1 and A.4.1.43) in order to propagate
eventual error to previous steps of execution (errors
occurring during the execution of findall/3| for example).

Finally observe that the exception handlifg introduces a
new kind of failed branch. In the leaf|of such failed
branch the chosen predication may be fa throw or a

an error occurs during the resolution of Goal trapped
by this predication (say Recovergoal). Its semantics
is the following: assume that catch (Goal, Catcher,
Recovergoal) is chosen at node N. Unless some syntactic
error on the form of this predication arises, it succeeds
and two children are created labelled by the two goals:
(Goal, inactivate(...), Cont) and (Recovergoal,
cont), where Ccont is the continuation defined by the
goal of the node N (the goal at node N has the form
(catch (...),Cont)). Note that N is non-deterministic.
However if no error occurs the second child will never be
visited and the node N will be considered as deterministic
by clause-choice).

built-in predicate in error or a special predicate called
system_error_action. In the case of halt as for some
other special predicates as well new leaves can be added
to the search-tree which do not correspond either to any
success or failure branch. The possible development of
such branch is implementation defined or implementation
dependent.

A.2.6 Environments

In this part of ISO/IEC 13211 it is required that an
environment is defined at least by the values of the flags

135

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

L,

NER TARE | |

L
Head Pointer position

Figure A.7 — L, — L,: Difference list of characters

© ISO/IEC 1995

NOTES

1 It is important to observe that the semantics is not unique:
there may be many search-trees for the same database, goal
and environment, even if they are finite, each denoting a
standard conforming semantics. This is due to undefined or
implementation dependent or implementation defined features.

For example exceptions occurring during the computation
of different subexpressions may lead, in an implementation
dependent but also programmed manner, to completely different
executions. Other cases are illustrated by the term-ordering

and the standarcll input and output text streams. The
environment may be updated at each step of execution
which affects flags or streams.

In this formal g$pecification the current environment is
attached to the| current node. An environment is a
quintuple which gontains the current list of flags, the input
and output streams and two lists of currently opened input
and output text [streams respectively. It is denoted eny(
PE IE OFE IFL,|OFL) (D-is-an-environment A.3.7).

From the formal [point of view a stream is considered as a
sequence of charjcters which ends with an “eof” character.
A stream is repr¢sented by a name and a difference list of
characters. This| representation permits the manipulation
of both the head and the current character of the stream
(see D-is-a-stream A.3.7).

To denote a strgam, we use stream(N, LI - L2), where
N is the abstract name of the stream (not represented.\in
the formal specification) and LI - L2 is a differen€e list
of characters. 1.1 represents the whole contents. of the
stream and L2 represents the characters afterithe pointer
(including the pointed first character). Thus an empty
stream is denoted nil — nil and pointston the “eof”. A
stream L — L, being a non empty" list of characters
points on the firpt character. A stream L — n:l points on
the end of file (the current character is “eof”. A stream
A.L — L points pn the second~and L — A.n:l on the last.
Initially a non empty stréam pointing on its first element
A will be denot¢d AL~ A.L.

(A.4.1.41) which is implementation dependent in the cpmparison
of variables, or renaming.

2 The semantics specifies all the partially ‘visited sgarch-trees
up to some current node. This is needed,to take intp account
infinite computations.

To illustrate the semantics we, give a short exanjple with
a simplified notation (the (Cuzrent goals and envifonments

are not depicted).

Consider the database:

p(a) :- txuel
p(b) :- _trge.
goal ¢ p(X), !.

and the goal: goal.

Its semantics contains all the partially visited search-
trees depicted in Figure A.8 (— denotes the| node N
to be executed and « the last completely visifed node)
representing the evolution of the search-tree.

NOTE — In A.4 the relation semantics(P, G, E, F) defines
the execution of true & catch(G, X, system.errpr_action))
instead of G. The catch serves to take into account|untrapped
errors during execution. The conjunction of true and catch
serves in the description of halt which creates a nep child to
the root. Such behaviour is indeed implementation dg¢fined .

A.2.8 Getting acquainted with the formal spetification

The general structure of the formal specification|can now
be—described— The details are of course defingd in the

A.2.7 The semantics of a standard program

The semantics is defined by a relation with four arguments,
called semantics (A.4.1.1) whose arguments are: a database
(the initial database), a goal, an environment and a forest.
The forest corresponds to the partially visited search-tree
up to the current node, usually denoted by N in the
formal specification. If for a given database P, goal G
and environment E there is a finite search-tree, then in
the semantics of this relation there is a proof-tree such
that the fourth argument of the root represents this finite
complete search-tree. The search-tree is represented by a
data structure called “forest” (see A.3.3).

136

formal text (A.3, A.4).

The key predicate of the relation semantics is a predicate
buildforest (A.4.1.3). It is non-deterministic in order
to include in the semantics all the finite approximations
of the (eventually infinite partial) visited search-tree.
Each approximation includes the nodes of the previous
approximation but some elements on the slice may have
their labels altered by performing the transformations called
“expansion”.

The predicate buildforest simulates the search-tree walk
construction. It uses the predicate clause-choice (A.4.1.4)

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

(© ISO/IEC 1995

Fig

ISO/IEC 13211-1 : 1995(E)

which, in standard Prolog, selects the
completely visited node other than a catc

next not yet
h following the

standard visit order or the root if there is no eligible node.

NOTE — A catch node is not completely visited because its

alternative is chosen only after an error or th
the development of its first branch.

row occurring in

The predicate treatment (A.4.1.13) analyses the current

goal (the goal labelling the current node)

and expands it

according to the selected predication in the current goal.

— goal

goal

=

goal

=

p(X]), !(1), true p(X), !(1), true
— (1), true (1), true
goal goal =~
X), I(1), true p(X),(I(1), true
I(1), true “I(1), true
true true

hre. A.8 — Partially visited search-tree

Notice that the current node “before” on, l‘ter” treatment

is the same, but the search-tree may-have

been expanded

“after”. Hence in proof-trees rootéd by treatment(FI, N,
F2) N is a hanging node of KY on the slice, but N may

have children in F2.

The different clauses Of treatment tog

ether with the

clauses of treathip“deal with success, byilt-in predicate
not in error, error’ case, special predicate and failure.
All possible-‘cases (depending of the kjnd of built-in
predicates ‘called “substitution- or boot-bif”) are covered,
ensuring the completeness of the formal definition for all

welléformed programs and goals built w

th user-defined

predicates, control constructs and built-in predicates.

The addition of a new node is made by ex

and(A.4.1.18)

in which buildchild (A.4.1.25) constructs a new node

following the logical database update vie
makes the search-tree expansion by a
child. As soon as a search-tree issued

is completely built and visited, the nodg

and addchild
ing this new
rm a node N
N is marked

completely visited and cannot be chosen any more for new
visits (this happens when all the choices gre cut inside a

sub search-tree for example).

NOTES

1 The children nodes of a node » are n
s(zero).n,

2 The hanging nodes (i.e. all the children o

hmbered zero.n,

a current node)

are not explicitly built. Only the next child rjot yet visited of

the current node is.

3 The packet associated to a node corresponds in fact to the

remaining children to be built. If it is nsl thus
can be built.

Some resatisfiable built-in predicates
ements of a packet always have the abstr

clause.

A.2.9 Built-in predicates

like
atom_concat/3 use different kind of packets.

no more children

bagof/3 or
However el-
act syntax of a

Most built-in predicates are defined by a search-tree
transformation using the predicate treat-bip. One or more

137

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

clauses for treat-bip (A.4.1.32) are given in the clause for
that predicate, together with clauses for in-error (A.4.1.15)
to show error cases. Only positive and error cases are
specified. Other cases correspond to failure.

Some built-in predicates do not modify the search-tree
other than by generating a new node in case of success
and a (local) answer substitution. These predicates, called
substbip (A.3.8), are described by the relation execute-
bip (A.4.1.37) which defines this substitution. Clauses for

© ISO/IEC 1995

(from the top to the bottom) corresponds to the order in
which the predications (called activators) are chosen. All
its elements are called decorated subgoal. A decorated
subgoal has a pointer (called cutpointer) which points to
the equivalent choice point of the search-tree. The current
state of the resolution stack corresponds to the current
node in the formal semantics.

In short the model of the informal semantics reflects
a possible implementation of the search-tree visits for

execute-bip are tius given in e clause for thar predicare.

Other built-in predicates are boot-strapped. Formally these
predicates are defined by a piece of a Prolog database as
an argument to [D-packet (A.3.8). However a database
given using the |abstract syntax is less clear than using
the concrete synfax, and also we have not chosen how to
represent integer$, variables, etc. Therefore the packet is
given implicitly yising the concrete syntax of Prolog.

For example @> fis defined by:
Xe@>Y :-Y|@< X.

This implies that the specification contains a clause
like:

D-packet(_, funcf@>, _._nil),
func(:-, func(e>, Varl.Var2.nil).
func(e<, Var2{Varl.nil).nil)) <=
L-var(Varl),
L-var(Var2),
not D-equal(Varl, Var2).

Boot-strapping {s normally used if the boot-strapped
definition is simpjler and more understandable_than a direct
definition using freat-bip.

Each built-in predicate definition €ontains a formal defini-
tion or a boot-stfapped one in.a\concrete syntax form and
the clauses of inf-error defifing the error cases.

A.2.10 Relatiopships”with the informal semantics of
7.7 and L8

Kernel rroiog .

A.3 Data structures
This clause introduces the L- and) D- predicates.
The following data structufes are considered:
— A.J3.1 abstradt database and term (abstract| syntax)
— A.3.2 predicate indicator
— (A33 forest: structure and updates
“~ A.3.4 abstract list, atom, character and lists
— A.3.5 substitution and unification
— A.3.6 arithmetic
— A.3.7 difference lists and environments

— A.3.8 built-in predicates, packets and spe¢ial pred-
icates

— A.3.9 input and output

A.3.1 Abstract databases and terms

The formal specification uses the search-tree model. In this
model all the computations are denoted by one (possibly
infinite) object. The informal semantics is based on a
stack. It describes the execution of “kernel Prolog”(A.2.3)
only. Each computation is described separately.

With this restriction in mind, there is a one-one cor-
respondence between the nodes of the search-tree along
a path and the elements of the stack (execution states).
A goal associated to a node is coded in the informal
semantics as a stack whose top element corresponds to the
chosen predication. The order of the elements in the stack

138

In clause 6, the abstract syntax of terms, goals and clauses
is represented by terms of the form f(t;,...,tn). These
terms are denoted func(f,t;.....t,.nil) in the formal
specification. tj.....t,.nel is called an arg-list. A constant
¢ has the form func(c,nil). In the same clause 6, a
Prolog text is denoted by an arg-list whose elements are
terms (clauses).

The abstract syntax presented here in a clausal form defines
the objects called in the formal specification: term, clause,
predication (or activator), database and goal as they are
ready for execution. Other objects: lists and environment
are defined in the corresponding subclause.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

NOTES

1 A clause in the body is defined as a term whose principal
functor is (:-)/2 or a predication (if it is a fact). In the
formal specification it is considered that in a database, prepared
for execution, all the facts have also the form of a rule whose
body is true.

2 A predication cannot be a variable. In a database prepared for
execution all the predications reduced to a variable X occurring
in a Prolog text must have been converted to call(X) which
is a term.

ISO/MTEC 13211-1 : 1995(E)

D-is-a-body(func(' , ', G1.G2.nil)) <
D-is-a-body(G1),
D-is-a-body(G2).

D-is-a-body(func(’ ; ', G1.G2.nil)) <=
D-is-a-body(G1),
D-is-a-body(G2).

D-is-a-body(func(’' ->', G1.G2.nil)) <
D-is-a-body(G1),

3 It is asshmed that a procedure is defined only once in the
abstract datgbase.

D-is-a-database(DB) — iff DB is the abstract repre-
sentation| of a concrete database

D-is-a-database(nil).

D-is-a-database(P.DB) <
D-is-g-pred-definition(P),
D-is-4-database(DB).

D-is-a-pfed-definition(P) — iff P is a definition of a
user-predicate.

D-is-a-pred-definition(def(PI, SD, P)) <
D-is-g-predicate-indicator(P]),
D-is-4-static-dynamic-mark(SD),
D-is-4-packet-of-clauses(P).

NOTE —} References: D-is-a-predicate-indicator A\3.2.

D-is-a-ppacket-of-clauses(P) — iff P ‘is- the abstract
represenfation of a sequence of clauses prepared for
executiof.

D-is-a-placket-of-clauses(nil).

D-is-a-placket-of-clauses(C.P) <
D-is-a-clause(C);
D-is-a-packet-of-clauses(P).

D-is a.hnrly‘/(:'))

D-is-a-body(B) <
D-is-a-predication(B).

D-is-a-predication(func(N, A)) <
L-atom(N),
not D-equal(N, ',),
not D-équal(N, ;')
not D-equal(N, '->"),
D-is‘an-arglist(A).

NOTE — D-is-a-clause (D-is-a-body) definel what is a well-
formed term clause (term goal), or convertiple in the sense
of 7.6.

The syntax of a clause is now extended |as follows:

D-is-an-extended-clause(C) — iff C' is a clause ex-
tended by other data structures.

D-is-an-extended-clause(func(: -, H.B.nijl)) <
D-is-a-predication(H),
D-is-an-extended-body(B).

Duis-an-ext - — is 3 body extended

D-is-a-clause(func(: -, H.B.nil)) <=
D-is-a-head(H),
D-is-a-body(B).

D-is-a-head(H) <
D-is-a-predication(H).

by other data structures.

D-is-an-extended-body(func(’ , ', G1.G2.nil)) <
D-is-an-extended-body(G!),
D-is-an-extended-body(G2).

D-is-an-extended-body(func(’ ; ', G1.G2.nil)) <
D-is-an-extended-body(G1),
D-is-an-extended-body(G2).

D-is-an-extended-body(func(' ->', G1.G2.nil)) <=

D-is-a-term(G1),
D-is-an-extended-body(G2).

139

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

D-is-an-extended-body(B) <
D-is-an-extended-predication(B).

D-is-an-extended-body(G) —

extended by other data structures.

D-is-an-extended-predication(G) <

D-is-a-preIwﬁmq G-
D-is-an-extengled-predication(G) <

D-is-a-specjal-pred(G).

iff G is a predication

© ISO/IEC 1995

— special-pred(undefined-action, nil),

special-pred(forward-error, nil),

special-pred(halt-system-action, nil),

special-pred(halt-system-action, _nil),

special-pred(inactivate, _nil),
special-pred(value, __nil),
special-pred(compare, _nil),

special-pred(simple-comparison, _nil),
special-pred(operation-value, __nil) and
special-pred(sorted, __nil) are allowed as predications.

D-is-an-extenfled-predication(func(!, Lnil)) <
D-is-a-dewgy-number(/).

D-is-an-extenfled-predication(X) <

L-var(X).

D-is-a-specialtpred(special-pred(inactivate, I.nil)) <=
D-is-a-dewgy-number(/).

D-is-a-special-pred(special-pred(undefined-action,

E.nil)).

D-is-a-special-pred(special-pred(forward-error, E.nil)).

D-is-a-speciall-pred(special-pred(halt-system-action,

nil)).

D-is-a-special-pred(special-pred(halt-system-action,

Lnil)) <

D-is-an-infeger(/).

D-is-a-special-pred(special-pred(value, _._.nil)).

D-is-a-specia

D-is-a-specia
_nil)).

D-is-a-specia

__.nil)).

-pred(special-pred(compare, _nil)).

|-pred(special-pred(simple-comparison,

-pred(special-pred(operation-value,

D-is-an-arglist(L) —
D-is-an-arglist(nil).
D-is-an-arglist(X.L) <=

D-is-a-term(X),
D-is-an-arglist([):

D-is-a-term(X) <
L-var(X).

D-is-a-term(X) <
D-is-a-number(X).

D-is-a-term(func(N, L)) <

L-atom(N),
D-is-an-arglist(L).

D-is-a-number(N) —

D-is-a-number(X) <
D-is-an-integer(X).

D-is-a-number(X) <

iff N is a number.

iff L is an arg-list of tems.

D-is-a-special-pred(special-pred(sorted, _._nil)).

NOTE — This additional abstract syntax defines the notion
oals. The formal specification uses flagged
cuts and special predicates (in order to avoid clashes with
user defined procedures) as predications.
predicate semantics the comments will refer to the extended

of extended g

well-formed database.

This abstract syntax takes into account these new predicates:

— func(!, D.nil) where D is a dewey number, is allowed
as a predication. This is to allow each cut to be flagged.

140

Except for the

D-is-a-float(X).

D-is-an-integer(func(N, nil)) <
L-integer(N).
D-is-a-float(R) — iff R is a real.

D-is-a-float(func(N, nil)) <
L-float(N).

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

D-is-a-constant(X) <
L-atom(X).

D-is-a-constant(X) <
L-integer(X).

D-is-a-constant(X) <
L-float(X).

ISO/IEC 13211-1 : 1995(E)

D-is-a-goal(G) <
D-is-a-body(G).

D-is-a-conjunction(G) — if G is a goal then G is a
conjunction of goals.

D-is-a-conjunction(func(’ , ', _._nil)).

D-is-a-sfatic-dynamic-mark(SD) — iff SD is a
static/dymamic mark (static procedures are private or
public (}.5.3)).

D-is-a-static-dynamic-mark(static(private)).
D-is-a-static-dynamic-mark(static(public)).
D-is-a-static-dynamic-mark(’dynamic’).

D-is-a-callable-term(7) — iff T is a callable term as
it is deflned in 3.24.

D-is-a-callable-term(7) <
not I}-is-a-number(7),
not U-var(T).

L-var(X) — iff X denotes a concrete, yariable, i.e. an
element|of V defined in clause 6.1.2.

L-witndss(L, G, V) — iff L is an abstract list of terms
and G [is a goal and V ,ajterm which contains all
the varipbles (each one occufs exactly once) in G not
occurring in L.

L-atom{X) — _iff)X denotes a concrete atom (identi-
fier), i.g an elément of A defined in clause 6.1.2 b.

L-integer(X] — iff X denotes a concrete integer, i.e.

D-is-a-dewey-number(D) — iff D i$-aldewey number.

D-is-a-dewey-number(nil).

D-is-a-dewey-number(X.L) ¥
D-is-a-natural(X),

D-is-a-dewey-number(L).

D-is-a-list-of-dewey-number(L) — iff |L is an abstract
list of dewey\humbers.

D-is-atlist-of-dewey-number(nil).

D-is-a-list-of-dewey-number(X.L) <
D-is-a-dewey-number(X),
D-is-a-list-of-dewey-number(L).

D-is-a-natural(N) — iff N is a natura] number.

D-is-a-natural(zero).

D-is-a-natural(s(X)) <
D-is-a-natural(X).

L-is-a-character-code(/) — iff I is qn integer such
that there exists a character C whose| character_code
7.1.2.2 value is 1.

L-is-an-in-character-code(/) — iff I i an integer such
that there exists a character C whose| character_code
7.1.2.2 value is I or I is the integer -1

D-is-a-byte(C) — iff C is an integer |between 0 and
255 as defined in 7.1.2.1.

an element of I defined in clause 6.1.2 c.

L-float(X) — iff X denotes a concrete floating point
number, i.e. an element of R defined in clause 6.1.2 d.

L-syntax-error-in-code-list(List) — iff List is a list
of codes but not parsable as a number.

L-syntax-error-in-char-list(List) — iff List is a list
of characters but not parsable as a number.

D-is-a-goal(G) — iff G is the abstract representation
of a goal.

D-is-a-byte(func(N, nil)) <
L-integer(N),
L-integer-less(-1, N),
L-integer-less(N, 256).

D-is-an-in-byte(C) — iff C is an integer between -1
and 255.

D-is-an-in-byte(B) <=
D-is-a-byte(B).

D-is-an-in-byte(func(-1, nil)).

141

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

D-is-a-neg-integer(/) —

ger.

iff X is a negative inte-

D-is-a-neg-integer(func(N, nil)) <=
L-integer-less(N, 0).

NOTE — References: L-integer-less A.3.6

D-is-a-non-ne;
ger.

D-is-a-non-ne;

g-int(l) — iff I is a positive inte-

© ISO/IEC 1995

D-term-to-predication(func(F, A), func(E A)) <
not D-equal(F, ', "),
not D-equal(E ' ; '),
not D-equal(F, '->").

D-term-to-predication(V, func(call, Vnil)) <
L-var(V).

b-INt(X) <

D-is-an-inté¢ger(X),
not D-is-a-peg-integer(X).

D-equal(X, Y)

— iff X and Y are any identical terms

built any symbol used in this formal specification.

D-equal(X, X)

D-term-to-cla

hse(T, C) — if T is a term correspond-

ing to a well formed clause then if its principal functor
is (:-)/2, ten C is the corresponding transformed
clause according to A.2.3.1 (also 7.6), clse C is the

clause whose

D-term-to-cla
=
D-term-to-
D-term-to-

D-term-to-cla
D-name(A,
D-arity(A,

head is T' and body func(true, nil).

hse(func(: -, H.B.nil), func(: -, H1.Bl.nil))

bredication(H, HI),
body(B, BI).

nse(A, C) <
Name),
Arity),

not D-equal(Name/Arity, :-)/2),

D-fact-to-cl

D-term-to-bodly(7, B) —

to a well forn
according to
then T is the

ause(A, C).

if T is a term corresponding
ed body then C is the\transformed body
A.2.3.1 (also 7.6)'and if B is a body

position of a

corresponding, téem. (Variables v in the
redication aréitransformed into call(V))

D-fact-to-clause(B, C) — if B lis”a term then if its
principal functor is not (:-)¢#g,“then C is the clause
with head B and body fune(true, nil), else C is
identical to B.

D-fact-to-clause(funs(: -, H.B.nil), func(:-, H|B.nil)).

D-fact-to-cldusé(B, func(:-, B.func(true, nil)lnil)) <
D-name(B, Name),
D-arity(B, Arity),
ret D-equal(Name/Arity, :-)/2).

D-clause-to-pred-indicator(Cl, PI) — if (|l is a
clause then PI is the indicator of the head of Cl.

D-clause-to-pred-indicator(func(:-, H._nil),| func(/,
AtArnil)) <
D-name(H, At),

D-arity(H, Ar).

D-term-to-bofly(func(*, G1.G2.nil), func(',’,
G3.G4.nil)) < D-name(B, K) — if B is a term then K is tle functor
D-term-to-pody(G1, G3), name of B.
D-term-to-body(G2,G#/-
D-name(func(K,), func(K, nil)).
D-term-to-body(func(’ ; ', G1.G2.nil), Sfunce('; ',
G3.G4.nil)) <=
D-term-to-body(GI, G3),
D-term-to-body(G2, G4).
D-term-to-body(func(’ ->, G1.G2.nil), func(->, ?f'a:;:); ifr’nA])B— if B is a term then A is the arity
G4.G5.nil)) < ’

D-term-to-body(G1, G4),
D-term-to-body(G2, G5).

D-term-to-body(7, B) <
D-term-to-predication(7, B).

142

D-arity(func(K, L), func(A, nil)) <
D-length-list(L, A).

NOTE — References: D-length-list A.3.4

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

A.3.2 Predicate indicator

D-is-a-predicate-indicator(PI) — iff Pl is a com-
pletely instantiated predicate indicator.

D-is-a-predicate-indicator(func(/, At.Arnil)) <
D-is-an-atom(A?),
D-is-an-integer(Ar).

NOTE — References: D-is-an-atom A.3.4, D-is-an-integer
A3.1

ISO/IEC 13211-1 : 1995(E)

i)

A/\ N

ANVANTAN

D-is-a-pfred-indicator-pattern(Pl) — iff PI is a com-
pound t¢rm whose functor name is ‘/’, and arity 2,
and its xrst arguments may be instantiated by an atom
and the pecond by an integer.

L-varn(At),

D-is-a-p:[ed-indicator—pattem(func(/, At.Arnil)) <
(
L-van(Ar).

D-is-a-pfred-indicator-pattern(func(/, At.Arnil)) <=
L-va{(At),
D-is-gn-integer(Ar).
D-is-a-}:r'ed-indicator—pattem(func(/, At.Arnil)) <
L-van(Ar),
D-is-agn-atom(Az).

D-is-a-pired-indicator-pattern(func(/, At.Arnil)) <
D-isqn-atom(At),
D-is-an-integer(Ar).

NOTE —} References: L-var A.3.1, D-is-an-integer A.3.1,
D-is-an-qtom A.3.4

D-is-a-bip-indicator(BI) — iff BI is the indicator of
a built-ip predicate.

D-is-a-lfp-indicator((fune(/, At.Arnil)) <
D-is-a-bip(B),

D-name(B, At),

D-arity(B/Ar).

NOTE = i : -is-a-bip A3 8 D-pame AJ3.1

Figure A.9 — The non-empty foresty_flor(N, F, F3)

— P is a well-formed extended databasg (called simply

database);

— @ is a list jof clauses available for the current

computation and denotes the potential chpices:

clauses to be.used to build new children,

i. e. the

— FEkishan environment representing cyrrent flags and
all, available streams for the current computation;

— S is a substitution (the local substitution used to

obtain this node);

— L is a list of nodes (dewey numbgrs) containing
the active ancestor nodes at this step of|resolution (i.e.
the catch goals which could be chos¢n if throw is
called). The nodes are ordered in thi$ list from the

youngest to the oldest ancestor.

— M is a marker which indicates |f the node is
completely treated or not (i.e. if the pub-search tree
has been completely developed), and is gither partial or

complete.

The partially visited search tree is represented by a forest.

A forest is either:

— vid : the empty forest; or

D-arity A.3.1

— for(N, Fl, F2) :

a non-empty forest, where N is a

A.3.3 Forest

A node of

the search tree is represented as nd(l, G, P, Q,

E, S, L, M) where:

— I is a node.

If the node is the root of the

labelled node, and FI and F2 are forests. A forest term
denotes a sequence of n + 1 trees if F'2 has n trees as
depicted in Figure A.9.

search-tree, I = nil, otherwise the node is the Nth child
of another node identified by J, and I = N . J;

— G is an extended goal;

A.3.3.1 Forest structure

D-is-a-forest(F) — iff F' is a forest.

143

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

D-is-a-forest(vid).

D-is-a-forest(for(N, F1, F2)) <
D-is-a-label-node(N),
D-is-a-forest(F 1),
D-is-a-forest(F2).

D-is-a-label-node(nd(l, G, P. Q, E, S, L, M)) <
D-is-a-dewey-number(/),
D-is-a-body(G),

© ISO/IEC 1995

D-addroot(E N, F1) — if F is a forest, and N a
label node then F'1 is F' with a new root labelled by
N at the right-most position.

D-addroot(vid, N, for(N, vid, vid)).

D-addroot(for(M, Fl, F2), N, for(M, Fl, F3)) <=
D-addroot(F2, N, F3).

A.3.3.3 Children

D-is-a-datapase(P,
D-is-a-pacKet-of-clauses(Q),
D-is-an-enyironment(E),
D-is-a-substitution(S$),
D-is-a-list-¢f-dewey-number(L),
D-is-a-visittmark(M).

NOTE — Refdrences: D-is-a-dewey-number A.3.1, D-is-a-
body A.3.1, Ddis-a-database A.3.1, D-is-a-packet-of-clauses
A.3.1, D-is-an-¢nvironment A.3.7, D-is-a-substitution A.3.5,
D-is-a-list-of-dgwey-number A.3.1,

D-is-a-visit-myark(complete).

D-is-a-visit-mlark(partial).

A.3.3.2 Root panipulation

D-root(EN) - if F' is a forest then N is one of the
roots of F'.

D-root(for(Nl, FI, F2), N)<
D-equal(N{,nd(N, _ . . 5 5)

D-root(for(N,|F1, F2), M) <«
D-root(F2,|M).

NOTE — References: D-equal A(3.{

D-lastroot(Fly) — if Flis*a forest then N is the last
(right-most) rpot of K|

D-lastroot(for(N1; F1, vid), N) <
D-equal(NLud(N,—,))

D-child(N, E M) — if F is a forest them & and N
are nodes of F and M is one of the children[of N.

D-child(N, for(Nl, F1, F2), M) <
D-equal(NI1,nd(N, ., ., 5 £, 5 2),
D-root(FI, M).

D-child(N, for(Nl, Fls F2), M) <
D-child(N, F1,-M).

D-child(N, for(N1, Fi, F2), M) <
D-child(N) F2, M).

NOTE -~ References: D-equal A.3.1, D-root A.33.2

D:has-a-child(N, F) — if F is a forest and N is a
node then N is a node of F' and N has a chjld in F'.

D-has-a-child(N, F) <
D-child(N, E).

D-number-of-child(N, E J) — if F' is a fgrest then
N is a node of F' and N has J children.

D-number-of-child(N, for(N1, Fi, F2), J) <=
D-equal(NIl,nd(N, , 5 - - 5 - -)),
D-number-of-root(F/, J).

D-number-of-child(M, for(N, Fi, F2), J) <
D-number-of-child(M, FI, J).

D-number-of-child(M, for(N, Fi, F2), J) <
D-number-of-child(M, F2, J).

D-lastroot(for(N, F1, F2), M) <
D-lastroot(F2, M).

NOTE — References: D-equal A.3.1

D-number-of-root(FJ) — if F' is a forest then F' has
J roots.

D-number-of-root(vid, zero).
D-number-of-root(for(N, Fl, F2), s(J)) <
D-number-of-root(F2, J).

144

NOTE — References: D-equal A.3.1, D-number-of-root
A332

D-lastchild(N, E M) — if F' is a forest then M and
N are nodes of F' and M is the last (right-most) child
of N.

D-lastchild(N, for(NI, FI, F2), M) <
D-equal(N/,nd(N, ., . - - - 5 -))
D-lastroot(FI, M).

D-lastchild(N, for(N1, FI, F2), M) <
D-lastchild(N, FI, M).

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

D-lastchild(N, for(N1, FI, F2), M) <
D-lastchild(N, F2, M).

NOTE — References: D-equal A.3.1, D-lastroot A.3.3.2
D-parent-or-root(M, F P) — if F' is a forest then M
and P are nodes of F' and if M is the root of F' then

P is the root of F, else, P is the parent of M.

D-parent-or-root(M, F M) <«

ISO/IEC 13211-1 : 1995(E)

D-environment of node N in F is £ —

if V is a

node of the forest F them FE is the environment

in the corresponding label node in F'.

D-substitution of node N in F is S —

if N is a node

of the forest F' them S is the substitution in the

corresponding label node in F'.

D-active catchers of node N in F is L

— if Nisa

node of the forest F' then L is the active catcher list in

D-roqt(F M-
D-parengt-or-root(M, F P) <

not Dfroot(F, M),

D-parent(M, E P).

NOTE — References: D-lastroot A.3.3.2

D-parent(M, F, P) — if F is a forest then M and P
are nodes of F' and P is the parent of M.
D-parent(M, F P) <

D-child(P. F M).

NOTE — References: D-lastroot A.3.3.2

A.3.34 Sglector predicates

D-label pf node N in F is Nl — if N is a node\ of
the foredqt F' then NI is the node label of N.

D-label pf node N in for(Nl, Fi, F2) is Nl-<=
D-equal(NIl, nd(N, _, _, _ 5 5 5 I)

D-label of node N in for(Ml, El; F2) is NI <
D-label of node N in FLis:NL

D-label pf node N in for(Ml, FI, F2) is NI <
D-label of node ¥ in F2 is NI

D-goal ¢f nodeN in F is G — if N is a node of the
forest F| then-(is the goal in the corresponding label
node in £

tha caorra
tHe—COFFe -

D-visit mark of node N in F is M)y~
of the forest F' then M is visit mark in th
label node in F'.

if N is a node
b corresponding

D-root-database-and-env(F, P, E) — if F' is a non-
empty forest then Plis-the current database, and E the

current environmentjat the first root of ¥.

D-root-database-and-env(for(N, _, _), P,
D-equal(N, nd(, . P L E . , .))

NOTE.2- References: D-equal A.3.1

Ai3.3.5 Field node updates

D- NI is N2 where database is P —
label and P a database then N1 is the s
except that its database field is P.

D- NI is N2 where database is P <

o

E) <

f N2 is a node
hme node label

D-equal(N2, nd(N, G, _, Q, E, S, L, 1)),

D-equal(NI, nd(N, G, P, Q, E, S, L,
and analogous:

D- NI is N2 where choices are C —
label then N1 is the same node label
choice field is C.

D- NI is N2 where environment is £ |

V1))

if V2 is a node
except that its

if N2 is a

node label then N1 is the same node ldbel except that

its environment field is E.

D-goal of node N in F is G <«
D-label of node N in F is nd(N, G, _, , 5 5 -)

and analogous:

D-database of node N in F is P — if N is a node of
the forest F' then P is the database in the corresponding
label node in F.

D-choice of node N in Fis Q — if N is a node of
the forest F' then @ is the choice in the corresponding
label node in F'.

D- NI is N2 where substitution is S —

if N2 is a

node label then N1 is the same node label except that

its substitution field is S.

D- NI is N2 where active catchers are

L— if N2

is a node label then N1 is the same node label

except that its active catcher field is L.

D- NI is N2 where visit mark is M —

if N2 is a

node label and M is a visit mark then N1 is the same
node label except that its visit mark field is M.

NOTE — References: D-equal A.3.1

145

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

A.3.3.6 Label of node updates

D-modify-database(F1, Newpg, F2) — if F'1is a for-
est and Newpg the new database then F2 is identical
to F'1 except that in all nodes on the right most branch
of F'1, the old database is replaced by Newpg.

© ISO/IEC 1995

D-create-child(FI, NlI, N2, F2) — if N!1 is a node
label of the forest F'1 and NI2 a new node label
corresponding to a new youngest child of N{1 then F2
is F'1 in which NI2 is the new youngest child of NII.

D-create-child(for(Nl, FI, F2), NI, NI, for(Nl, F3,

D-modify-database(vid, _, vid).

D-modify-database(for(N, F1, vid), Newpg, for(NI, F2,

F2))<
D-addroot(FI, NiI, F3).

D-create-child(for(NI, FI, F2), Nli, NI2, for(Nl, F3,

vid)) <« F2p ="
D- NI is N |where database is Newpg, D-create-child(F/, NI, NI2, F3).

D-modify-dptabase(FI, Newpg, F2).

D-modify-dat4

base(for(N, F1, F2), Newpg, for(N, FI,

F3)) <

not D-equal(F2, vid),

D-modify-database(F2, Newpg, F3).
NOTE — Refer¢nces: D- _is _ where database is _ A.3.3.4,
D-equal A.3.1

D-modify-environment(FI, Newenv, F2) —

a forest and N
F'1 where, in 3
the old envirof

if F1 is
ewenv the new environment then F2 is
11 nodes on the right most branch of F'1,
ment is replaced by Newenv.

D-modify-environment(vid, _, vid).

D-modify-environment(for(N, F1, vid), Neweny, for(NI,

F2, vid)) =
D- Nl is N
D-modify-e

D-modify-envj

where environment is Neweny,
hvironment(FI, Newenv, F2).

ronment(for(N, F1, F2), Newenv, for(N,

Fl, F3)) 4
not D-equal(F2, vid),
D-modify-environment(F2, Neweny, F3).
NOTE — Refefences: D- is.*. where environment is _

A.3.3.4, D-equal A3.1

D-create-child(for(Nl, FI, F2), Nl -NI2, fof(NI, Fl,
F3)) <
D-create-child(F2, NlI, NI2, IE3).

NOTE — References: D-addreot’ A.3.3.2

A.3.4 Abstract lists;,atoms, characters and ligts

An abstract list has the form B1.B2.....nil where the
elements may(be terms (it is thus an arg-list),| clauses,
extended~goals, streams, dewey numbers, naturals or
substitagions.

AXlist is the abstract representation of a concrefe list of
the form [ty,---,ts].
D-is-an-atom(A) — iff A is an atom.

D-is-an-atom(func(N, nil)) <=
L-atom(N).

NOTE — References: L-atom A.3.1,

D-is-atomic(A) — if A is a term then A is a constant
(it has the form: func(-, nil)).

D-is-atomic(A) <
D-is-an-atom(A).

D-modify-node(El\ N1, NI2, F2) — if N1 is a node D-is-atomic(A) <
label of the forést F'1 and NI2 a new node label D-is-a-number(A)
corresponding to the same node then F72 1s F'1 except

that N2 replaces N{1.

D-modify-node(for(NI, F1, F2), NI, Nli, for(Nll, Fl,

F2)).

D-modify-node(for(Nl, Fi, F2), Nl, NI2, for(Nl, F3,

F2) <

D-modify-node(F1, NiI, Ni2, F3).

D-modify-node(for(NI, F1, F2), NI, Ni2, for(Nl, FlI,

F3)) <

D-modify-node(F2, NI, Ni2, F3).

146

D-char-instantiated-list(L) — iff L is a list whose
elements are variables or characters.

D-char-instantiated-list(func([1, nil)).

D-char-instantiated-list(func(., X.L.nil)) <
L-var(X),
D-char-instantiated-list(L).

D-char-instantiated-list(func(., X.L.nil)) <
D-is-a-char(X),
D-char-instantiated-list(L).

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

NOTE — References: L-var A.3.1, D-is-a-char A.3.7

D-var-in-list(L) — if L is a list then it contains a
variable.

D-var-in-list(func(., X.L.nil)) <
L-var(X).

D-var-in-list(func(., X.L.nil)) <
not L-var(X),

ISO/IEC 13211-1 : 1995(E)

D-is-a-partial-list(func(., X.L.nil)) <
D-is-a-term(X),
L-var(L).

D-is-a-partial-list(func(., X.L.nil)) <
D-is-a-term(X),
D-is-a-partial-list(L).

NOTE — References: L-var A.3.1, D-is-a-term A.3.1

D-var-n-Hst(L)-
NOTE — References: L-var A.3.1

D-bad-element-in-char-list(L.E) — if L is a non
empty ljst then an element E of L is neither a
variable nor a one-char atom.

D-bad-element-in-char-list(func(., E.L.nil), E) <
not Livar(E),
not Dtis-a-char(E).

D-bad-element-in-char-list(func(., X.L.nil), E) <
L-var(X),
D-bad-element-in-char-list(L, E).

D-bad-element-in-char-list(func(., X.L.nil), E) <
D-is-4-char(X),
D-bad-element-in-char-list(L, E).

NOTE —} References: L-var A.3.1, D-is-a-char A.3.7

D-code-Jnstantiated-list(L) — iff L is aclist whose
elementd are variables or codes.

D-code-Instantiated-list(func(1, nil)).

D-code-']nstantiated-list((fune(¥X.L.nil)) <=
L-van|(X),
D-code-instantiated4list(L).

D-code-Instantiated-list(func(., X.L.nil)) <
L-is-3-character-code(X),
D-code-instantiated-list(L).

P=c —12; = re abstract lists
then L3 is the concatenation of L1 and|(L2, and if L3
is an abstract list then L1 and L2 ‘are-abstract lists such
that L3 is the concatenation of L1'and [2.

D-conc(nil, L, L).

D-conc(X.L1, L2, X.L3) <
D-conc(L1, L2,"E3).

L-concatdist(A, L) — if A is an atom|then L is the
list of couples (Aj, A2) such that the cgncatenation of
Ay and) A; gives A.
D<delete(L, A, L1) — if L is an abstract list then A

is the first occurrence of A in L, and [1 is L where
this occurrence is deleted.

D-delete(A.L, A, L).

D-delete(A.L, B, A.Ll) <
not D-equal(A, B),
D-delete(L, B, LI).

NOTE — References: D-equal A.3.1

D-one-delete(L, A, LI) — if L is a lij,t., then A is an
element of L and L1 is L where this element is deleted.

D-one-delete(func(., A.L.nil), A, L).

D-one-delete(func(., A.L.nil), B, func(.,|A.Ll.nil)) <=
D-one-delete(L, B, LI).

NOTE — References: L-var A.3.1, L-is-a-character-code
A3.1

D-is-a-list(L) — iff L is a list.

D-is-a-list(func([1, nil)).

D-is-a-list(func(., X.L.nil)) <
D-is-a-term(X),
D-is-a-list(L).

NOTE — References: D-is-a-term A.3.1

D-is-a-partial-list(L) — iff L is a partial list of terms.

NOTE — References: D-equal A.3.1

D-member(X, L) — if L is an abstract list then X is
an element of L.

D-member(X, X.L).

D-member(X, YL) <
D-member(X, L).

D-position(X, L, N) — if L is an abstract list then N
is a concrete integer and X is the Nh element of L.

147

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

D-position(X, X.L, 1).

D-position(Y, X.L, N) <
L-integer-plus(P, 1, N),
D-position(Y, L, P).

NOTE — References: L-integer-plus A.3.6

D-length-list(L, N) — if L is an abstract list then N
is the concrete integer corresponding to the number of

© ISO/IEC 1995

L-atom-chars(X, Y) — iff X is a concrete atom and
Y the arg-list of characters such that the juxtaposi-
tion of their concrete form corresponds to X (see
atom_chars/2 built-in predicate).

L-atom-codes(X, Y) — iff X is a concrete atom and
Y the arg-list of character codes such that the juxta-
position of the corresponding characters of these codes
corresponds to X (see atom codes/2 built-in predicate).

elements of L

D-length-list(pil, 0).

D-length-list(X.L, N) <
D-length-list(L, P),
L-integer-glus(P, 1, N).

NOTE — Refefences: L-integer-plus A.3.6

D-same-length(Ll, L2) — if L1 and L2 are abstract
lists then they have the same number of elements.

D-same-length(nil, nil).

D-same-length(X.LI, YL2) <
D-same-lenggth(L/, L2).

D-buildlist-offvar(L, N) — iff L is an abstract list of
length N whqse elements are distinct variables.

D-buildlist-o

var(X.L, N) <
of-var(L, P),
lus(P, 1, N),

L-integer-
L-var(X),
not D-member(X, L).

NOTE — Refprences: L-integer-plus A.3.6, L-var A3.l,
D-member A.3.4

D-transformdlist(LI~E2) — if L1 is an arg-list then
L2 is the corfesponding list of the elements of L1, and
if L2 is a ligt of’terms then L1 is an arg-list formed

A.3.5 Substitutions and unification

T -mumber-chars(X, Y)— Iff X IS a concrete number
and Y the arg-list of characters corresponding to a
character sequence of X (see number_chars/p built-in
predicate).

L-number-codes(X, Y) — iff.’X. is a concrete number
and Y the arg-list of character, codes corresponding to a
character sequence of X (see number_codes/p built-in
predicate).

L-atom-order(X,\Y) — iff X and Y are| concrete
atoms such that=X is less than Y in the term ¢rder (see
7.2).

L-sovted(X, Y) — iff X and Y are lists gnd Y is
the list X sorted according to term ordered (7.2) with
duplicates removed except the same order is used when
two variables are compared. (see also 7.1.6.5

D-is-a-substitution(S) — iff S is a substitutjon.

NOTE — No formal representation is defined for sybstitutions
except for the empty substitution which is denoted empsubs.

L-unify(X, ¥, S) — iff X and Y are NSTO terms
and S is one of their most general unifiers (§ee clause
7.3).

L-unify-occur-check(X, ¥, S) — iff X and Y are
terms and S is one of their most general unifiers
(see clause 7.3).

by terms in L2.
D-transform-list(nil, func((1, nil)).

D-transform-list(Term.L1, func(., Term.L2.nil)) <
D-transform-list(L/, L2).

L-var-order(X,Y) — iff X and Y are variables such
that X term-precedes Y (this order is implementation

dependent, see 7.2.1).

L-char-code(X, Y) — iff X is a concrete character
and Y its code (see char_code/2 built-in predicate).

148

L-unify-members-list(L, S) — iff S is a most general
unifier of all the elements of the abstract list of terms
L.

D-unifiable(X, Y) — iff X and Y are NSTO terms
and they are unifiable terms (see clause 7.3).

D-unifiable(7, T1) <
L-unify(7, T1,).

L-not-unifiable(X, Y) — iff X and Y are NSTO terms
and they are not unifiable (see clause 7.3).

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

A3.6 Ani

© ISO/IEC 1995

L-occur-in(T1, T2) — iff T1 and T2 are terms and
some variables of T'1 occur in T72.

L-not-occur-in(71, T2) — iff T1 and T2 are terms
and do not share any variable.

L-composition(S1, 2, S3) — iff S1, S2 and S3 are
substitutions on terms where S3 is the composition of
S1 and S2 (see clause 7.3).

ISO/IEC 13211-1 : 1995(E)

L-value(E, V) — iff F is an elementary arithmetic
expression (see 9.1) which can be successfully evaluated
and V is the number corresponding to its value.

L-arithmetic-comparison(X, Op, Y) — iff X and Y
denote numbers and Op an arithmetic comparison
operator such that X Op Y following the definition (see
8.7).

L-instance(T/, S, T2) — iff T'1 is an any-term, S is a
substitultrif)n and 772 is the any-term obtained by applying
the subptitution S to T'1 (applying the substitution
modifie only the concrete variables occurring in 7'l
(3.95)).

NOTE — any-term denotes any kind of term that is to say
terms buflt with any functor used in the formal specification
language|

L-rename(E X, Y) — iff F' is a search tree, and X

and Y are any-terms such that Y is a copy of X except
its varidbles are renamed so that they do not occur in
F.

L-rename-except(F, T, X, Y) — iff F' is a search tree,
and X and Y are any-terms such that Y

L-variapts(T/, T2) — iff T'1 and T2 are variant_terms
accordirlg to definition 7.1.6.1.

D-complose-list(L, S, L1) — if L is an abstract list of
substitufions and S a substitution then £} is the abstract
list of shbstitutions obtained by cemposition with S of
each substitution of L.

D-compose-list(nil, S, nil).
D-complose-list(SI.LE:S, S2.1L2) <=

L-composition(S7, S, S2),
D-compose:list(L], S, L2).

A.3.7 Difference lists and environmenty

D-is-an-environment(E) — iff E)yis jn environment
with all flags (defined only once) “and ajl open streams
(all streams have different stream names).

D-is-an-environment(en(PF, IF, OF IF|L, OFL)) <
D-is-a-list-of-flags(‘PF),
D-is-a-stream(/[F)),
D-is-a-stream(OF),
D-is-a-list-of-streams(LIF),
D-is-a-list-of-streams(LOF).

D-is-a<list-of-flags(PF) — iff PF is ar| abstract list of
flag terms.

D-is-a-list-of-flags(nil).

D-is-a-list-of-flags(F.PF) <=
D-is-a-flag-term(F),
D-is-a-list-of-flags(PF).

D-is-a-flag-term(Flag) — iff Flag is| a term repre-
senting a flag.

D-is-a-flag-term(func(flag,
Name. Actual — valuey gme.Possible —[valuesy gme.nil))
e
D-is-a-flag(Name).

Where Name, Actugl — value Name
and Possible — valuesNgme stand forl the name of
a flag and its actual value and possible vplues as defined
in clause 7.11,

L-integer-less(X, Y) — iff X and Y are concrete
integers such that X <Y.

L-integer-plus(X, ¥, Z) — iff X, Y, and Z are con-
crete integers such that Z = X + Y.

L-float-less(X, Y) — iff X and Y are concrete reals
such that X < Y.

L-error-in-expression(E, T) — iff E' is an erroneous
elementary expression and T is the type of the corre-
sponding error (see 9).

Pris-a-flagFtag)——iff Ftag—ts—aflag-term as defined
in 7.11.

D-is-a-flag(func(flag-name,nil)).

with flag-name € {bounded,
max-integer,
min_integer,
integer_rounding-function,
char_conversion,
debug,
max_arity,
unknown,
double_quotes}

149

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

D-is-a-modifiable-flag(Flag) —

ifiable flag

iff Flag is a mod-
(its value <can be updated by

set_prolog.flag/2 built-in predicate).

D-is-a-modifiable-flag(func(flag-name,nil)).

with flag-name € {char_conversion,

D-is-a-flag-va
and Flag is a
in F.

D-root-dat

debug,
unknown,
double_quotes}

© ISO/IEC 1995

D-is-a-list-of-streams(L) —
list of streams.

iff L represents an abstract

D-is-a-list-of-streams(nil).

D-is-a-list-of-streams(X.L) <=
D-is-a-stream(X),
D-is-a-list-of-streams(L).

D-is-an-io-mode(M) —

iff M is an input/output

lLe(E Flag, Value) — if I' is a forest
flag then Value is a valid value of F'lag

base-and-env(F, _ env(PE _, _, _ _)),

D-is-a-ﬂag-va{le(E Flag, Value) <

D-correspo

ding-flag-term(Flag, PE T),

D-equal(7, func(flag,-_.func([],nil).nil)).

D-root-dat

base-and-env(E _ env(PE _, _, _, _))

D-is-a-ﬂag-va{le(E Flag, Value) <=

D-correspo

ding-flag-term(Flag, PE T),

D-equal(7, func(flag,-_.V.nil)),
not D-equal(V, func([], nil)),
D-transform-list(V1,V),

D-member

NOTE — Refprences:

D-equal A.3.1,

D-corresponding-flag-term(Flag, PE T) —

Value, V1).

D-root-database-and-env A.3.3.4,
D-transform-list A.3.4, D-member A.3.4

if Ftlag

is a flag and PF is a non empty abstract *list of
flag terms th¢n 7' is the flag term corresponding to

Flag.

D-correspond

ng-flag-term(Flag, func(flag,

Flag. V.LV.nil).PE func(flag, Flag.V.LV.nil)).

D-correspond
D-correspo

D-is-a-stream

D-is-a-stream

ng-flag-term(Flag, TI.PE T) <
nding-flag=term(Flag, PF T).

S)~~) iff S represents a stream.

mode.

D-is-an-io-mode(func(read, nil)).
D-is-an-io-mode(func(write, nil)).
D-is-an-io-mode(func(append, nil)).

D-is-a-difference-list-of-char(L-L) <
D-is-a-list-of~-char(L).

D-is-a-differénce-list-of-char(C.LI-L2) <
D-is-a‘char(C),
Dis:a-difference-list-of-char(L/-L2).

D-is-a-list-of-char(nil).
D-is-a-list-of-char(C.L) <

D-is-a-char(C),
D-is-a-list-of-char(L).

D-is-a-char(func(C, nil)) <=
L-char(C).

D-is-an-in-char(Char) — iff C is the abstrdct repre-
sentation of a concrete character or of end_off file.

D-is-an-in-char(Char) <
D-is-a-char(Char).

D-is-an-in-char(func(end of _file, nil)).

(stream(S, L)) <=

L-stream-name(S),
D-is-a-difference-list-of-char(L).

L-stream-name(X) —

iff X is a ground term denoting

a stream identifier defined in ??.

L-stream-property(SP) —

iff SP is a stream property

as defined in clause 7.10.2.13.

L-binary-stream(BS) —

L-text-stream(7S) —

150

iff BS is a binary stream.

iff TS is a text stream.

L-char(X) — iff X is a concrete atom of length 1.
L-io-option(F, Op, V) — if F is a stream, and Op a
stream option then V is the value of option Op of the
stream F as defined in 3.167.

A.3.8 Built-in predicates and packets

D-is-a-bip(B) — if B is a predication then it is the
predication of a built-in predicate.

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

D-is-a-bip(B) <
D-is-a-term-unification-bip(B).

D-is-a-bip(B) <
D-is-a-term-comparison-bip(B).

D-is-a-bip(B) <
D-is-an-all-solution-bip(B).

D-is-a-bip(B) <
D-is-a=type-testing-hip(R)

ISO/IEC 13211-1 : 1995(E)

with B € {func(var, _nil),

func(nonvar, _nil),
func(atom, _nil),
func(atomic, _.nil),
func(number, _nil),
func(integer, _.nil),
func(float, _.nil),
func(compound, _nil)}

D-is-a-term-creation-decomposition-bip(B).

D-is-a-bip(B) <

D-is-a-term-creation-decomposition-bip(B).

D-is-a-bip(B) <
D-is-4-database-bip(B).

D-is-a-bip(B) <
D-is-gn-arithmetic-bip(B).

D-is-a-bip(B) <
D-is-qn-atom-processing-bip(B).

D-is-a-bjp(B) <
D-is-gn-input-output-bip(B).

D-is-a-bjp(B) <
D-is-4-logic-control-bip(B).

D-is-a-bjp(B) <
D-is-4-control-construct-bip(B).

D-is-a-bjp(B) <
D-is-gn-environment-bip(B).

D-is-a-t¢rm-unification-bip(B):
with B ¢ {func(=, _._nil)
func(\=£2.-nil)}

D-is-a-t¢rm-comparison-bip(B).

with B € {fanc(==, _._.nil).

func(unifywith_occurs_check, _._.nil),

with B € {func(arg, _._._nil),
func(functor, _._._.nil);
func(=. ., _._nil),
func(copy_term, _..nil)}

D-is-a-database-bip(B),<%
D-is-a-clause-retrieyal-information-bip(B).

D-is-a-database<bip(B) <«
D-is-a-clause-creation-destruction-bip(B).

D-is-a-¢lause-retrieval-information-bip(B).

with B € {func(clause, _._.nil),
func(current_predicate, _il)}

D-is-a-clause-creation-destruction-bip(B).

~—

with B € {func(asserta, _.nil),
func(assertz, _.nil),
func(retract, _nil),
func(abolish, _nil)}

D-is-an-arithmetic-bip(B).

with B € {func(is, —._.nil),
func(=:=, _._nil),
func(=\=, _._nil),
func(<, _._.nil),
func(>, _._.nil),
func(=<, _._.nil),
func(>=, _._.nil)}

func(\==, _._.nil),
func(e<, _._.nil),
func(@=<, _._.nil),
func(e>, _._.nil),
func(e>=, _._nil)}

D-is-an-all-solution-bip(B).
with B € {func(findall, _._._.nil),
func(bagof, —._.-. nil),

func(setof, _._._nil)}

D-is-a-type-testing-bip(B).

D-is-an-atom-processing-bip(B).

with B € {func(atom_length, _._.nil),
func(atom_concat, -._._. nil),
func(sub_atom, —._._._._. nil),
func(atom_chars, -._.nil),
func(atom_codes, _._.nil),
func(number_chars, -._nil),
func(number_codes, -._.nil),
func(char_code, _._.nil)}

D-is-an-input-output-bip(B) <
D-is-a-char-input-output-bip(B).

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

D-is-an-input-output-bip(B) <

D-is-a-byte-input-output-bip(B).

D-is-an-input-output-bip(B) <

D-is-a-term-input-output-bip(B).

D-is-a-char-input-output-bip(B).

with B € {func(current_input, _nil),

func(current_output, _.nil),

© ISO/IEC 1995

with B € {func(\+, _.nil),
func(once, _.nil),
func(repeat, nil)}

D-is-a-control-construct-bip(func(!, D.nil)) <=

D-is-a-dewey-number(D).
D-is-a-control-construct-bip(B).

with B € {func(;, —._nil),

fupc(set_input, _.nil),
func(set_output, _.nil),
fuc(at_end_of_stream, nil),
func(at_end_of_stream, _nil),
func(get_char, _nil),
fupc(get_char, _._.nil),
fupc(get_code, _nil),
fupc(get_code, _._.nil),
fupc(peek_char, _nil),
fupc(peek_char, _._.nil),
fupc(peek_code, _nil),
fupc(peek_code, _._.nil),
func(put_char, _nil),
func(put_char, _._.nil),
fupc(put.code, _nil),
fupc(put_code, _._.nil),
fupc(nl, nil),

fupe(nl, _nil)}

D-is-a-byte-input-output-bip(B).

with B € {fufc(get_byte, _nil),

fupc(get_byte, _._.nil),
fupc(peek_byte, _nil),
fupc(peek_byte, _._.nil),
fupc(put_byte, _nil),

func(->, _._.nil),
func(true, nil),
func(fail, nil),
func(!, nil),
func(call, _nil),
func(catch, _._._.nil),
func(throw, _.nil)}

NOTE — References: D-is-a-dewey-number A.3.

D-is-an-environment-bip(B).

with B € {func(halt, nil),
func(halt, _.nil),

func(current_prolog_flag, _._.nj
func(set_prolog_flag, _..nil)}

D-boot-bip(B) — if B is a predication ther
predication of a boot-strapped built-in predica

D-boot-bip(B)

with B € {func(->, _._.nil),
func(\+, _.nil),
func(number, _nil),
func(is, _._.nil),

/ func(=:=, _._.nil),
fu lc(put_byte, _._.nll)} func(:\: _._.nil)
func(<, _._.nil),
D-is-a-term-ipput-output=bip(B). func(=<, _._.nil),
func(>, _._.nil),
with B € {fupc(read_term, _._._.nil), func(>=, _._.nil),
fupc(zead_term, _._.nil), func(once, _nil),
fupclread, _nil), func(setof nil)

0]

)

it is the

€.

func(read, -._.nil),

func(write_term, _._._.nil),
func(write_term, _._.nil),
func(write, _.nil),
func(write, _._nil),

func(writeq, _.nil),
func(writeq, _._.nil),
func(write_canonical, _.nil),

func(write_canonical, _._.nil),
func(op, _._._.nil),
func(current_op, _._._nil)}

D-is-a-logic-control-bip(B).

152

func(get_char , _.nil),
func(get_code , _.nil),
func(get_byte , _.nil),
func(peek_char , _nil),
func(peek_code , _nil),
func(peek_byte , _nil),
func(put_char, _nil),
func(put_code, _nil),
func(put_byte, _nil),

func(at_end_of_stream, nil),
func(at_end_of_stream, _nil),
func(read, _nil),
func(repeat, nil),

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

func(sub.atom, —._._._._. nil),
func(write, _.nil),
func(nl, nil),

func(nl, _.nil)}

D-database-backtrack-bip(B) — if B is a predication
then it is the predication of a re-executable built-in
predicate on database.

with B € {func(clause, _._.nil),

funclecurrent nvradicate nil)
< = Y Y

ISO/IEC 13211-1 : 1995(E)

with Func € {func(+, _._nil),
func(-, _._.nil),
func(*, _._.nil),
func(//, -._nil),
func(/, _._.nil),
func(rem, _._.nil),
func(mod, _._.nil),
func(**, _._nil),
func(>>, _._nil),
func(<<, _._.nil),

funcl L\ Pevi A
kYA 73

func(retract, _nil)}

D-is-a-backtrack-bip(B) — if B is the built-in predi-
cate atdm concat/3 then its third argument is ground.
or B is the built-in predicate current_prolog_flag/2.

D-is-a-bfacktrack-bip(func(atom_concat,
Al.A3.A3.nil)) <
D-is-an-atom(A3).

D-is-a-backtrack-bip(func(current_prolog-flag,
__nil)).

NOTE —} References: D-is-an-atom A.3.4

D-is-a-spibst-bip(B) — if B is a predication then it is
the prec]?cation of a class of built-in predicates which
does not affect the database or environment (the result
of execyting such a bip is either success leading toa
substitufion, or failure).

D-is-a-shibst-bip(B) <
D-is-a-term-unification-bip(B).

D-is-a-spbst-bip(B) <
D-is-j-type-testing-bip(B).

D-is-a-subst-bip(B) <
D-is-a-term-creation~decomposition-bip(B).

D-is-a-spbst-bip(B) <
D-is-pn-arithmetic-bip(B).

D-is-a-subst-bip(R) <

func(\/, —._nil),
func(-, _.nil),
func(abs, _.nil),
func(sign, -.nil);
func(float.integer_pazt, _.nil),
func(fYear_fractionallpart, _nil),
func(fisat, _.nil),
func(floor, _.nil),
furc(truncate, _.nil),
func(round, _nil),
func(ceiling, _.nil),
func(sin, _.nil),
func(cos, _.nil),
func(atan, -.nil),
func(exp, _.nil),
func(log, _.nil),
func(sqrt, _nil),
func(\, _nil)}

D-packet(DB, Env, A, Q) — if DB is|a database and
Env an environment and A is a predicgtion then

— @ is the list of clauses defining the procedure
corresponding to A;

— or all clauses of DB if A corresponds to the fol-
lowing re-executable built-in predicates: clause/2,
current_predicate/1l, retract/1;

— or a list of pairs of atoms (Aj, A2) such that
the concatenation of A; and A, |gives the 3rd
argument of A (if A corresponds to the re-executable
atom_concat/3 built-in predicate); T

D-is-a-term-comparison-bip(B).

D-is-a-subst-bip(B) <
D-is-an-atom-processing-bip(B),
D-name(B, Func),

D-arity(B, Arity),
not D-equal(Func, func(atom concat, nil)),
not D-equal(Arity, func(3, nil)).

D-is-an-evaluable-expression(Exp) — if Ezp is an
expression whose principal functor is an evaluable one.

D-is-an-evaluable-expression(Func)

— or a list of the prolog flags in Env (if A
corresponds to the re-executable built-in predicate
current_prolog._flag/2).

D-packet(nil, _, A, nil) <
not D-is-a-bip(A),
not D-is-a-special-pred(A).

D-packet(DB, _, A, Q) <
not D-is-a-bip(A),
D-name(A, F),
D-arity(A, N),

153

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

corresponding-pred-definition(func(/, FN.nil), DB,
def(- - Q). -)-

D-packet(DB, _, A, nil) <
not D-is-a-bip(A),
D-name(A, F),
D-arity(A, N),
not exist-corresponding-pred-definition(func(/,
EN.nil), DB).

© ISO/IEC 1995

NOTE — References: D-conc A.3.4

D-delete-packet(PI, PI, P2) — if P1 is an abstract
list of clauses and P a predicate indicator pattern then
P2 is P1 from which all the clauses of the procedure
whose predicate indicator unifies with PI have been
removed.

D-delete-packet(nil, PI, nil).

D-packet(DB, A~
D-is-a-bip(4),
D-databasefbacktrack-bip(A),
D-all-claus¢s(DB, Q).

D-packet(, _|[A, nil) <
D-is-a-bip(4),
not D-database-backtrack-bip(A),
not D-bootibip(A),
not D-is-a-backtrack-bip(A).

D-packet(, _|func(atom.concat, Al.A2.A3.nil), L) <
D-is-an-atom(A3),
L-concat-list(A3, L).

D-packet(_, Hmw, func(current_prolog_flag, --_.nil),
PF) <
D-equal(Eny, env(PE _, _ _ _)).

D-packet(_, _|SP, nil).

with SP € {special-pred(inactivate, _.nil),
special-pred(undefined-action, _.nil),
special-pred(forward-error, _.nil)
special-pred(halt-system-actiony nil),
special-pred(halt-system-action, _.nil),
special-pred(value, _._.fit}),
special-pred(comparey-2nil),
special-pred(simple=comparison, _.nil),
special-pred(eperation-value, _._.nil),
special-pred(sorted, _._.nil) }

NOTE — Further clauses for packet are given (implicitly) by
the boot-strap definitions of so defined built-in predicates.

A.3.9 Input and output

P-delete-packetfrnec——H—nibPI—PLP2)
D-name(H, At),
D-arity(H, Ar),
D-unifiable(PI, func(/, At.Arnil)),
D-delete-packet(PI, PI, P2).

1

D-delete-packet(func(:-, H.B.nil).P1, PI, |func(:-,
H.B.nil).P2) <
D-name(H, At),
D-arity(H, Ar),
L-not-unifiable(Bl, func(/, At.Arnil)),
D-delete-packet(P1, PI, P2).

NOTE -<£,References: D-name A.3.1, D-arity A.3.1, D-
unifiablé\A.3.5, L-not-unifiable A.3.5

D:same-predicate(A, B) — if A and B are| predica-
tions then they correspond to the same predicpte.

D-same-predicate(A, B) <
D-equal(A, func(N, L1)),
D-equal(B, func(N, L2)),
D-same-length(L/, L2).

NOTE — References: D-equal A.3.1, D-same-length A.3.4

L-coding-term(7, L1 - L2) — iff T is a t¢grm con-
cretely represented by the sequence of charactgrs of the
difference list of characters L1 — L2 as specifipd by the
concrete syntax in clause 6.

D-open-input(St. Env) — if Env is an enyironment

NOTE — References: D-is-a-special-pred A.3.1, D-name
A.3.1, D-arity A.3.1, D-equal A3.]1, corresponding-pred-
definition A.4.1.52, exist-corresponding-pred-definition
A.4.1.53, L-concat-list A.3.4

D-all-clauses(DB, Q) — if DB is a database then ()
is the list of clauses defining all the predicates of DB.

D-all-clauses(nil, nil).
D-all-clauses(def(_, -, Q1).DB, Q) <

D-all-clauses(DB, Q2),
D-conc(Q1, Q2, Q).

154

and St a name of a stream in Env then the stream
corresponding to St is open for input.

D-open-input(St, env(_, [E, OF IFL, OFL)) <=
streamname(/F, St).

D-open-input(St, env(_, IF, OF IFL, OFL)) <
not streamname(/F, St),
D-member(F IFL),
streamname(F, St).

NOTE — References: streamname A.4.1.61, D-member
A34

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

D-open-output(St, Env) — if Env is an environment
and St a name of a stream in Env then the stream
corresponding to St is open for output.

D-open-output(St, env(_, IF, OF IFL, OFL)) <
streamname(OF, St).

D-open-output(St, env(_, IF, OF IFL, OFL)) <
not streamname(OF, St),
D-member(F, OFL),

ISO/IEC 13211-1 : 1995(E)

predication-choice(A, A) <
not D-is-a-conjunction(A).

predication-choice(func(’ , ', G._.nil), A) <
predication-choice(G, A).

NOTE — References: D-is-a-conjunction A.3.1

A.4.13 buildforest(FI, N, F2)

strearthname(£, St).

NOTE —} References: streamname A.4.1.61, D-member
A34

A.4 The| Formal Semantics

A4.1 The kernel
NOTES
1 PVST sfands for Partially Visited Search Tree.

2 CVST sfands for Completely Visited Search Tree.

A4.1.1 semantics(P, G, E, F)

if P is a|well-formed complete database, G is a well-
formed godl, and F' is an environment then F' is & PVST
up to som¢ node which is any leaf before or on-the first
infinite branch or CVST if there is no infinite:branch.

semantics(|P G, E, F) <

D-equal(V,

nd(nil, func(catch, G.X.special-pred(undefined-action,
X.nil).nif),
P nil, B, empsubs, nil, partial)),
buildfoxest(for(N, vidsvid), nil, F),
L-var(X),
L-not-ofcur-in(X, G).

if F'1 is a PVST up to node N then F'2-i} the extension
of F'1 up to some node after N whichis gny leaf before
or on the first infinite branch of the complete extension or
is a CVST if the complete extension is fin]te.

buildforest(FI, N, Fl) <
D-root(Fi, N).

buildforest(F1, N,<F2) <
treatment(F/)'N, F2).

buildforest(FI, N, F2) <
nat,D-root(F1, N),
treatment(FI, N, F3),
clause-choice(N, F3, M),
buildforest(F3, M, F2).

NOTE — References: D-root A.3.3.2, treatment A.4.1.13,
clause-choice A.4.1.4

A.4.14 clause-choice(N, F M)

if ' is a PVST up to node N then M is the next eligible
node.

clause-choice(N, F M) <
D-lastchild(N, £ M),
not completely-visited-node(M, F).

clause-choice(N, £ M) <
D-lastchild(N, F M1),
completely-visited-node(M], F),

NOTES

1 in all other comments ‘“database” means extended well-
formed database and “goal” means extended well-formed goal.

2 References: D-equal A.3.1, L-not-occur-in A3.5, L-var
A.3.1, buildforest A.4.1.3

A.4.12 predication-choice(G, A)

if G is a goal then A is the chosen predication in G
following the standard strategy (the “first” predication in
the goal).

next BHG@StCT\”\’, I«: A
clause-choice(N, £ M) <
not D-has-a-child(N, F),
next-ancestor(N, F M).

NOTE — References: D-lastchild A.3.3.3, completely-visited-
node A.4.1.5, next-ancestor A.4.1.7, D-has-a-child A.3.3.3

A.4.1.5 completely-visited-node(N, F)

if N is a node of the PVST F then N is a completely
visited node.

155

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

completely-visited-node(N, F) <
D-choice of node N in F is nil,
D-visit mark of node N in F is complete.

NOTE — References: D-choice of node _ in _is - A3.34,
D-visit mark of node _ in _is - A3.34

A4.1.6 completely-visited-tree(F, N)

© ISO/IEC 1995

D-last-child(K, F, M),
not completely-visited-node(M, F).

available-ancestor(N, £ M) <
D-parent(N, F K),
not eligible-node(K, F),
available-ancestor(K, F M).

NOTE — References: D-parent A.3.3.3, eligible-node A.4.1.10,
available-ancestor A.4.1.8

if Fis a PVST yp-ta node N then F is a CVST of root
N.

completely-visit¢d-tree(F, N) <
D-root(E N),
completely-visited-node(N, F).

NOTE — Referenfes: D-root A.3.3.2, completely-visited-node
A4.15

A.4.1.7 next-ancestor(N, £ M)

if ' is a PVST yp to node N then M is the next ancestor
of N which is ah eligible node, if it exists, else the root.

next-ancestor(N| £ M) <
available-ancgstor(N, £ M).

next-ancestor(N| E M) <
not has-an-avjailable-ancestor(N, F),
D-root(F, N1i)
D-lastchild(N|, £ M),
not completely-visited-node(M, F).

next-ancestor(N| F, M) <
not has-an-available-ancestor(N, E),
D-root(F, M),
D-lastchild(M, £ M1),
completely-visited-node(M4 \F).

NOTE — Refer¢nces: _available-ancestor A.4.1.8, has-an-
available-ancestot A.4179; D-root A.3.3.2, D-lastchild A.3.3.3,
completely-visited-ngde-A 4.1.5

A.4.1.9 has-an-available-ancestor(N, F)

if F is a PVST up to node N then V. has an eligible
node ancestor.

has-an-available-ancestor(N, F) <
available-ancestor(N, F__).

NOTE — References: available-ancestor A.4.1.8

A.4.1.10 eligiblesnode(N, F)

if N is anqde of the PVST F then N is neither cgmpletely
visited{rot’ is a catch node (a catch node cannot He chosen
againceven if it is marked not completely visited).

¢eligible-node(N, F) <
not completely-visited-node(N, F),
not is-a-catch-node(N, F).

NOTE — References: completely-visited-node A.4{1.5, is-a-
catch-node A.4.1.11

A.4.1.11 is-a-catch-node(N, F)

if N is a node of the PVST F then N is a nogle whose
chosen predication is the bip catch.

is-a-catch-node(N, F) <
chosen predication of node N in F is func(cptch, _).

NOTE — References: chosen predication of node |- in _ is_
A4.1.12

A.4.1.8 available-ancestor(N, £ M)

if I’ is a PVST up to node N then M is the next ancestor
of N which is an eligible node.

available-ancestor(N, £ M) <«
D-parent(N, £ M),
eligible-node(M, F).

available-ancestor(N, £ M) <

D-parent(N, E K),
is-a-catch-node(K, F),

156

A.4.1.12 chosen predication of node N in F is A

if N is a node of the PVST F then A is the chosen
predication in the goal field of the corresponding label
node in F'.

chosen predication of node N in F is A <
D-goal of node N in F is G,
predication-choice(G,A).

NOTE — References: D-goal of node _ in _ is _ A3.34,

predication-choice A.4.1.2

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

© ISO/IEC 1995

A.4.1.13 treatment(FI, N, F2)

if 1 is a PVST up to the first not completely visited
node N then F2 is the extension of F'1 obtained after
one step of resolution from V.

treatment(FI, N, F2) <
success-node(N, FI),
erasepack(FI, N, F2).

treatment(FL_N, [2) <

ISO/IEC 13211-1 : 1995(E)

D-is-a-bip A.3.8, error A.4.1.14, D-boot-bip A.3.8, D-is-
a-special-pred A.3.1, expand A.4.1.18, treat-bip A.4.1.32,
in-error A.4.1.15, treat-special-pred A.4.1.17,

A4.1.14 error(E B)

if F is a forest and B is a predication then it is a
predication of a built-in predicate whose execution raises
an error in F'.

not sucdess-node(N, F1),

chosen predication of node N in FI is A,
D-is-a-bjip(A),

not error(Fl, A),

D-boot-bip(A),

expand(|FI, N, F2).

treatment(FI/, N, F2) <
not sucdess-node(N, F1),
chosen predication of node N in FI is A,
D-is-a-blip(A),
not error(Fl, A),
not D-bpot-bip(A),
treat-bip(F1, N, A, F2).

treatment([F/, N, F2) <
not sucdess-node(N, Fl),
chosen predication of node N in FI is A,
D-is-a-blip(A),
in-erroffFl, A, T),
treat-bip(FI, N, func(throw, Tnil), F2).

treatment(|FI, N, F2) <
not sucdess-node(N, FI),
chosen predication of node N in £/ is A,
D-is-a-special-pred(A),
treat-spgcial-pred(FI, N, A, F2).

treatment(|FI, N, F2) <
not sucgess-node(N, K1),
chosen predication’ of node N in FI is A,

if-a-bip(A),

id-a¢special-pred(A),

error(F, B) <=
in-error(F, B, _).

NOTE — References: in-error A.4,1:15

A.4.1.15 in-error(F B, T)

if F' is a forest andy B is a predication then it is a
predication of a built-in predicate whose execution raises
an error of typeyI.

The appropriate clauses of in-error are piven with the
definitions of each built-in predicate.

A.4.1.16 success-node(N, F)

if ' is a PVST up to node N then the goal carried by
N is the goal true.

success-node(N, F) <
D-goal of node N in F is func(true,nil).

NOTE — References: D-goal of node _in _is - A3.3.4

A.4.1.17 treat-special-pred(FI, N, A, F2

if F'1 is a PVST up to node N and the chdsen predication
A in the goal of N is a special predicate then F'2 is the
new PVST obtained after its execution.

treat-special-pred(FI, N, special-pred(inqctivate, J.nil),
F2) <

i

not D-equal(Q, nil),
expand(FI, N, F2).

treatment(FI, N, F2) <
not success-node(N, Fl),
chosen predication of node N in F/ is A,
not D-is-a-bip(A),
not D-is-a-special-pred(A),
D-choice of node N in F/ is nil,
erasepack(FI, N, F2).

NOTE — References: success-node A.4.1.16, erasepack
A.4.1.24, chosen predication of node _ in _ is. A4.1.12,

treat-inactivate(r/, N, J, F2Z).

treat-special-pred(FI, N, special-pred(undefined-action,
E.nil), FI).

treat-special-pred(F], N, special-pred(forward-error,

E.nil), FI).

treat-special-pred(FI, N, special-pred(halt-system-action,
nil), FI).

treat-special-pred(FI, N, special-pred(halt-system-action,
Lnil), FI).

157

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

ISO/IEC 13211-1 : 1995(E)

treat-special-pred(F1, N, special-pred(value, Exp.V.nil),
F2) <
not errox(FI, special-pred(value, Exp.Vnil)), ex-
pand(Fl, N, F2).

treat-special-pred(F1, N, special-pred(value, Exp.V.nil),
F2) <
in-error(F1, special-pred(value, Exp.V.nil), T),
treat-bip(FI, N, func(throw, Tnil), F2).

© ISO/IEC 1995

D-label of node N in FI is NI,

D-equal(Nl, nd(N, G, P, _ E, S, L, .)),
final-resolution-step(G, empsubs, P, E, GI, Q),
D-equal(NlI, nd(zero.N, GI, P Q, E, empsubs, L,
partial)),

addchild(FI, NI, Nli, nil, F2).

treat-special-pred(F1, N, special-pred(simple-comparison,
Comp.nil), F2) <
not L-arithmetic-comparison(Comp),

in-error(_, special-pred(value FExp Vnil) instantigtion- _ erasepack(FI, N, F?2).

error) <
L-var(Exp).

in-error(_, special-pred(value, Exp.V.nil), type-
error(evaluablg, func(/, Func.Arity.nil))) <=
not L-var(Exp),
not D-is-a-number(Exp),
not D-is-an-evaluable-expression(Exp),
D-name(Exp, Func),
D-arity(Exp, Arity).

treat-
special-pred(HI, N, special-pred(compare, Comp.nil),
F2) <
expand(F1, N| F2).

treat-special-prefl(F/, N, special-pred(operation-value,
Exp.Vinil), F2) <
not error(F1, |special-pred(operation-value, Exp.V.nil)),
L-value(Exp, Value),
D-label of nodle N in FI is N,
D-equal(Nl, ngl(l, G, P. O, E, _ L,)
D-number-of-ghild(l, F1, J),
erase(G, GI),
D-equal(G2, ([V = Value ', Gl)),
predication-chpice(G2, Al),
D-packet(P, | Al, QI),
D-equal(NL1, pd(J.1, G2, P, Ql, E/ empsubs, L, partial)),
addchild(F1, NI, Nl1, nil, £2):

treat-special-pred(FI, <-N,~ special-pred(operation-value,
Exp.Vnil), F2) <=
in-error(F1, |spéeial-pred(operation-value, Exp.V.nil),

NOTE — References: treat-inactivate A.4.0064;| expand
A.4.1.18, error A4.1.14, in-error A.4.1.15, “L-valge A.3.6,
treat-bip A.4.1.32, L-sorted A.3.4, L-errorsin-expressjon A.3.6,
L-arithmetic-comparison A.3.6

A.4.1.18 expand(FI, N, F2)

if F'1 is a PVST up to.node N and the chosen prgdication
in the goal of N is a@ser defined predicate with ngn empty
list of choice or @”boot-strapped built-in predicpte then
F?2 is the new PVST obtained after one step of rgsolution
(So the node N in F'2 either has a new youngestf child or
has no néw child and is marked completely visited).

expand(FI, N, F2) <
D-choice of node N in FI is Q,
chosen predication of node N in FI is A,
D-label of node N in FI is NI,
not possible-child(Q, FI, NI, A)),
fail-or-undefined-pred-treatment(FI, N, A, FP).

expand(Fi, N, F2) <
chosen predication of node N in FI is A,
D-equal(A, special-pred(value, E.V.nil)),
D-label of node N in FI is NI,
add-value-child(FI, NI, A, F2).

expand(F/, N, F2) <
chosen predication of node N in F/ is A,
D-equal(A, special-pred(compare, Comp.nil)),
D-label of node N in FI is NI,
add-compare-child(Fi, NI, A, F2).

T),
treat-bip(Fl, N, func(throw, Tnil), F2).

in-error(_, special-pred(operation-value, Exp.V.nil), T) <
L-error-in-expression(Exp, T).

treat-special-pred(FI, N, special-pred(sorted, L1.L2.nil),
Fl) <
L-sorted(L1, L2).

treat-special-pred(F1, N, special-pred(simple-comparison,

Comp.nil), F2) <
L-arithmetic-comparison(Comp),

158

expand(FI, N, F2) <
D-choice of node N in F/ is Q,
chosen predication of node N in F/ is A,
D-label of node N in FI is NI,
buildchild(Q, FI, NI, A, NliI, Ql),
addchild(FI, NI, NlI, Ql, F2).

NOTE — References: D-choice of node _ in _is - A.3.3.4,
chosen predication of node _ in _ is - A.4.1.12, D-label
of node _ in _is _ A.3.3.4, possible-child A.4.1.23, fail-or-
undefined-pred-treatment A.4.1.19, add-value-child A.4.1.21,
add-compare-child A.4.1.22, buildchild A.4.1.25, addchild
A4.1.26

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

(© ISO/IEC 1995 ISO/IEC 13211-1 : 1995(E)

A4.1.19 fail-or-undefined-pred-treatment(FI, N, A, F2) undefined-pred-treatment(F1, N, A, F2) <
D-environment of node N in FI is Eny,
if F'1 is a PVST up to node N, and A is the predicate D-equal(Env, env(PE, _, _, _)
fail or is an undefined predication then F2 is the corresponding-flag-and-value(func(unknown, nil),
extension of F'1 after execution of fail or according to func(warning, nil), PF, _, _),
the value of the flag unknown (7.11.2.4). D-label-of-node-in-is(N, F1,NI),
D-equal(Nl, nd(N, G, P, L, E, S, L, _)),
fail-or-undefined-pred-treatment(FI, N, func(fail, nil), erase(G, G2),
F2) < D-equal(G1,
erasepack(FI, N, F2). (write(output_warning_stream,unknown_procedure_message
‘L fajl . (G2))
fail-or-undefined-pred-treatment(F/, N, A, F2) < predication-choice(G/, Al),
not D-efual(A, func(fail, nil)), D-packet(£ £, Al, Q),
D-namd(A, Func), D-equal(NlI, nd(zero.N, GI, P\Q, H empsubs, L,
D-arity(A, Arity), partia{), .
D-datallase of node N in FI is DB, addchild(F1, N, NUI, nil; F2).
e < -definiti
;,XlSt Zo-resl.)lon(ll)l;g pred-definition(finc(/, NOTE — References: D-environment of ngde _ in _ is _
unc.Arfty.nil),). A.3.3.4, D-equal A.3.}; corresponding-flag-and-value A.4.1.75,
erasepafk(F1, N, F2). D-name A.3.1, D-arity’ A.3.1, erasepack A.4.1.24, treat-bip
A.4.132
fail-or-undefined-pred-treatment(F/, N, A, F2) <
not D-efjual(A, func(fail, nil)),
D-namﬂ(A FM}’lC), A4.1.21 add-value-child(F], Nl, A, FZ)
D-arity(A, Arity), ¢ . . .
D-dataBase of node N in FI is DB, if {A)is the special predication value chosen in the goal of
not exist-corresponding-pred-definition(func(/, the node label NI in t.he PVST F then |\F’ 2 18 th? new
Func.Arty.nil), DB) PVST with one new child whose node labdl is identical to
undefinpd-pred-treatment(FI, N, A, F2). N1 except that the new goal contains explicit evaluation

of the expression.
NOTE — [References: erasepack A.4.1.24, D-equal A:3.1,

D-name Al3.1, D-arity A3.1, D-database of node) _ in add-value-child(FI, NI, A, F2) <
_is _ A.J3[34, exist-corresponding-pred-definitioni~A.4.1.53, D-equal(Nl, nd(I, G, P, Q, E, . L, .))
undefined-pred-treatment A.4.1.20 D-number-of-child(l, FI, J),

D-equal(A, special-pred(value, Num.V.nil)),
D-is-a-number(Num),

A.4.1.20 |undefined-pred-treatment(¥/, N, A, F2) erase(G, GI),
D-equal(G2, (number(Num) ', Num V ', Gl)),
if F'1 is 4 PVST up to nod€ I; and A is an undefined predication-choice(G2, Al),
predication) then F'2 is the\extension of F'l according to D-packet(P. E, Al, QI),
the value pf the flag wiknown (7.11.2.4). D-equal(Nl1, nd(J.1, G2, P. Q1, E, empsybs, L, partial)),

addchild(F1, NI, Nli, nil, F2).

undefined{pred-treatment(F/, N, A, F2) <
D-envijonméent’ of node N in F/ is Eny, add-value-child(F1, Ni, A, F2) <
D-equal(Eny, env(PE _ _, - _)), D-equal(Nl, nd(l, G, P, Q, E, _, L, .))

corresponding- Ta —of= —F—;
func(fail, nil), PF, _, _, _), D-equal(A, special-pred(value, func(Op, Exp.nil).V.nil)),
erasepack(FI, N, F2). erase(G, G1),

L-var(VI),

undefined-pred-treatment(F/, N, A, F2) < L-rename(F1,VI,VII),

D-environment of node N in F/ is Eny, D-equal(G2, (special-pred(value, Exp.VIlL.nil) ', -
D-equal(Env, env(PE _, _, _ _)), special-pred(operation-value, func(Op, VI11.nil).V.nil)
corresponding-flag-and-value(func(unknown, nil), " Gl)),
func(errox, nil), PE _, _,), D-equal(NlI, nd(J.1, G2, P, Q, E, empsubs, L, partial)),
D-name(A, Func), addchild(FI, NI, NI, nil, F2).
D-arity(A, Arity),
treat-bip(F 1, N, func(throw, existence_error(procedure, add-value-child(FI, NI, A, F2) <
func(/, Func.Arity.nil).nil), F2). D-equal(Nl, nd(l, G, P Q, E, _ L, .)),

159

https://iecnorm.com/api/?name=21328b16360e90a8f2ab1eec3226aadb

