INTERNATIONAL ISO/IEC
STANDARD 10373-6

Second edition
2011-01-15

AMENDMENT 4
2012-12-15

Identification cards — Test'methods —

Part ©:
Proximity cards

AMENDMENT 4: Bit rates of fc/8, fc/4 and
fc/2 and frame size from 512 to 4096 bytes

Cartes d'identification — Méthodes d'essai —
Partie 6: Cartes.de proximité

AMENDEMENT 4: Débits binaires de fc/8, fc/4 et fc/2 et tailles de frame
allant dey512 a 4096 octets

Reference number
ISO/IEC 10373-6:2011/Amd.4:2012(E)

© [SO/IEC 2012

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

x COPYRIGHT PROTECTED DOCUMENT

© ISOHEEC2612

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20

Tel. +4122749 01 11

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

Foreword

and non-governmental, in liaison with 1ISO and IEC, also take part in the work. In the field|ef infornpation
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Stahdards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publicatipn as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this ,document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any,er all such patent rights.

Amendment 4 to ISO/IEC 10373-6:2011 was prepared by \Joint Technical Committee ISO/IEC JTC 1,
Information technology, Subcommittee SC 17, Cards and personal identification.

© ISO/IEC 2012 — All rights reserved iii

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

Identification cards — Test methods —

Part 6:

Proximity cards

AMENDMENT 4: Bit rates of fc/8, fc/4 and fc/2 and frame size from
512 to 4096 bytes

Page 10, Figure 5

Replace component "C3" in Figure 5 with the following:
c3 — —
a ‘\ J) b
J2 I

Page 11, 5.4.2

Add the following two paragraphs at the end of 5.4.2:
"Position 'a' of J2 shall(be‘used for testing bit rates of fc/128, fc/64, fc/32 and fc/16.

Position 'b' of J2 shall be used for testing bit rates of fc/8, fc/4 and fc/2."

Page 167:1.4.1

Replace paragraph with the following:

L i PSP Y 1 PN dat H o H=o~ | £ alat: £ 4l DOND £l 1 o H Afall $: 3 d
rMS—teStiS—tHSet o aetermmetheMaeXx-or-moatrattonotr e Co e as—wemras—thefise—anartamrtmes an

the overshoot values as defined in ISO/IEC 14443-2 for all supported PCD to PICC bit rates."

Page 17, 7.1.4.2
Replace step g) with the following:

g) Repeat steps c) to f) for various positions within the operating volume and all supported PCD to PICC bit
rates.

© ISO/IEC 2012 — All rights reserved 1

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

Page

17,7.1.5.1

Replace paragraph with the following:

"This

test is used to verify that a PCD correctly detects the load modulation of a PICC which conforms to

ISO/IEC 14443-2 for PICC to PCD bit rates of fc/128, fc/8, fc/4 and fc/2, if supported.”

Page
Delet
"The

field 1
if sup

Page
Repld

"A RI
obtai

17,7.1.5.2
ce step h) with the following:

Repeat steps b) to g) for various positions within the operating volume for PICC to PCD bit rates.of fc/128,
£/8, fcl4 and fc/2, if supported.

18, 7.2.1.1
e NOTE and replace first sentence of paragraph with the following:
purpose of this test is to determine the load modulation amplitude V a of the PICC within the operating

ange [Hmin, Hmax] @s specified in ISO/IEC 14443-2 for PICC to PCD\bit rates of fc/128, fc/8, fc/4 and fc/2,
ported."

18, 7.2.1.2
ce second paragraph of Step 2 with the following:

FQA or a REQB command sequence as defined in ISO/IEC 14443-3 shall be sent by the Test PCD to
h a signal or load modulation response from the PICC when testing PICC transmission at a bit rate of

fc/128. An S(PARAMETERS) sequence as:>defined in ISO/IEC 14443-4 and an I-block shall be sent by the

Test
trans

Add |

"NOT
subca

Page

Repld

PCD to obtain a signal or load .medulation response from the PICC when testing optional PICC
mission bit rates of fc/8, fc/4 and fc/2."

Note 1 after second paragraph-of Step 2 and renumber subsequent Notes:

E 1 No load modulatien test is required for bit rates of fc/64, fc/32 and fc/16 because these bit rates use the same
rrier frequency of fc/128;"

19,7.2.2.2

ce'/~2.2.2 heading text with the following:

"PICC Type A for bit rates of fc/128, fc/64, fc/32 and fc/16"

Page

20,7.2.2.3

Replace 7.2.2.3 heading text with the following:

"PICC Type B for bit rates of fc/128, fc/64, fc/32 and fc/16"

© ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

Page 20, 7.2.2.3.1

Replace first paragraph with the following:

"Three test conditions are defined with timings at the border of the PICC modulation waveform timing

parameters zone defined in ISO/IEC 14443-2, 9.1.2:"

Replace last dash text with the following:

— minimum and maximum modulation index m for the associated field strength applied
ISO/IEC 14443-2, 9.1.2).

Page 20, 7.2.2.3.2
Replace second, third and fourth paragraph with the following:

"For each optional PCD to PICC bit rate supported by the PICC, the PICC shallloperate under the cond
defined in 7.2.2.3.1 after selection of that optional bit rate. This PICC shall’respond correctly to an |-
transmitted at that optional bit rate."

Page 20

Renumber existing subclause 7.2.2.4 to 7.2.2.5 and add hew subclause 7.2.2.4:

7.2.2.4 PICC Type A or Type B for bit rates of f¢/8, fc/4 and fc/2

See 7.2.2.3.

Page 23, Annex A

Replace all occurrences of "forbit rates of fc/64, fc/32 and fc/16" with "for bit rates higher than fc/128".

Page 27, Table A1

Replace "From fc/128 to fc/16" with "All bit rates".

E.2.1 Sampling for bit rates of fc/128, fc/64, fc/32 and fc/16

© ISO/IEC 2012 — All rights reserved

(see

itions
block

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

MNNHNN«MMWMM“NM\M‘N\ImHm

Long modulation pulse

e.g. SOF low

Figure-E.3 — Modulation pulses

The time and voltage data of a PCD frame containing short and long modulation pulses (preferably a complete
S(DESELECT) command) as illustrated in Figure E.3, with at least 20 carrier periods before the first and after

ISO/IEC 10373-6:2011/Amd.4:2012(E)

Add new subclause E.2.2:

E.2.2 Sampling for bit rates of fc/8, fc/4 and fc/2

the Igst modurlation pulse, shall be transterred 1o a suitable computer.

Page 35

A 4th order, Butterworth type band pass filter with center frequency of 13,56 MHz and 15 MHz 3-dB bandwidth

Add new subclause E.3.1 and-move existing paragraph of E.3 and Figure E.3 to this subclause:
shall be used for filtering the DC and higher harmonic components.

E.3.1 Filtering for bit rates of fc/128, fc/64, fc/32 and fc/16

E.3.2 Filtering for bit rates of fc/8, fc/4 and fc/2

Add newsubclause E.3.2:

Pagel 35
Pagel 35

© ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

Page 36

Add new subclause E.5.1 and move existing paragraph of E.5 and Figure E.4 to this subclause:

E.5.1 Envelope smoothing for bit rates of fc/128, fc/64, fc/32 and fc/16

Page 36

Add new subclause E.5.2:

E.5.2 Envelope smoothing for bit rates of fc/8, fc/l4 and fc/2

No smoothing of signal envelope shall be applied.

Page 36, E.6
Add the following paragraph and figure after the paragraph:

For bit rates of fc/8, fc/4 and fc/2 the minimum value of modulatiofiindex m shall be determined within the
complete PCD frame (see Figure E.5.). The PCD frame shall centain (10101010)b.

A Amplitude

— I S 1 - Minimum-value of -
TIT modulation index m |

/.

i | : | | JTime

Figure E.5 — Minimum value of modulation index m

Page 36, E.7
Add at the end of paragraph:

For bit rates of fc/8, fc/4 and fc/2 the timings shall be determined at positions with long modulation pulse
positions e.g. f; at transition to SOF low and {, at transition to EOF high.

© ISO/IEC 2012 — All rights reserved 5

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

Page 38
Add after line "double b; //Type B"

"double bVHBR; //Bit rates of fc/8,

=0

fc/4 and fc/2"

Pagerss

Replace function "createtime" with:

"voi@l createtime (TIMES *new, double tr, double tf, double b, double bVHBR/ double
trstlartind, double trendind, double tfstartind, double tfendind, double t1,
doubjle tlstartind, double tlstart, double tlendind, double t2, double t¥Zstartind,
doubjle t2start, double t3, double t3end, double t3endind, doublg “4, double

tdendind, double t5,
doublle a, double tploone)

Add gfter line "new->b=b;":

"newt>bVHBR=bVHBR; "

Pagel 59

Add fpllowing function:
// Ffinds the value of m min for bit
double

Mminfinder (double *env,
*timeres, int numsamples)

int 1=0;

int j3=0;

double compare hi=0.0;
double compare 1lo=0.0;
double compare=0.0;
double difference=0L0y;
Int going up=0;

double ampl=0.0%
double ampl max=0.0;

dqouble
double
borders

douldle
double

Hnax cm=0.0;

b cm=0.0;
mmin=0.0;

double tbstartind, double to,

// represents the amplitude

m_deviation=0.0; // countermeasure 1:
// countermeasure 2:

rates{of¥ fc/8,

Hmaxs, double Hmin,

(Hmax-b) ,

double té6end, déuple t6endind,

fc/4 and fc/2

double *HmaxVHBR, TIMES

and indirectly

m min < 0.2*m is not considered
m min does not start or end on

oOuplLce I[U[lill_(, ulf=v . v,
// Skip all zeros
while (env[]j]==0)
J++i

// where do we start?
difference=env[j]-env[j+1];
if (difference<0)

© ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

going up=1; // going up
compare lo=env([j];

}

else if (difference>0)

{
going up=0; // going down
compare hi=env[j];

)

compare=env[j];

ampl max=(Hmax-Hmin) ;

m _deviation=ampl max*0.2;
Hmax cm=Hmax*0.95;

b cm=Hmin*1.05;
timeres->bVHBR=0;

for (i=j; i<=numsamples-j; i++)
{
if (going up==0) // GOING DOWN
{
if (compare>=env[i])
{
compare=env[i];
}
else if (compare<env[i])
{
compare=env[i];
compare lo=env([i];
going up=1; // change ,divection
ampl=(compare hi-compare 1o);
mmin= (ampl/ (compare¢hi+tcompare lo))*100;
if (ampl>m deviatien® && ampl<ampl max &&
compare lo>b cm)) //Countermg@sures
{
*HmaxVHBR£¢ompare hi;
timeres=>pbVHBR=compare lo;
ampl max=ampl;

}
}
if (going up==1) // GOING UP
{

16 (compare<=env[i])

{

compare=env[i];
}
else 1if (compare>env[i])

{

compare=env[i];

(compare hi<Hmax cm

compare hi=env[i];
going up=0; // change direction
ampl=(compare hi-compare 1lo);
mmin= (ampl/ (compare hi+compare lo))*100;
if (ampl>m deviation && ampl<ampl max &&
compare lo>b cm)) //Countermeasures
{
*HmaxVHBR=compare hi;
timeres->bVHBR=compare lo;
ampl max=ampl;

© ISO/IEC 2012 — All rights reserved

(compare hi<Hmax cm

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

mmin cum=mmin;

}
}

if (*HmaxVHBR==0 || timeres->bVHBR==0) // in case Waveform has only two
levels (typical 1M7) Mmin=M
{
*HmaxVHBR=HmAa
timeres->bVHBR=Hmin;
}
Pagel 59
Repldce function "envfilt" with the following:
int |envfilt (int rate, double *output, double *toutput, int Afilterlength, double
tini|, double tend, int lengthp, double *envelope)
Pagel 60
Replace line "LinearConvolution (cof, output, envelogpe, lengthf, lengthp) ;" withthe
following:
1f (rate==106 || rate==212 || rate==424 || rate==848)
LinearConvolution (cof, output,envelope, lengthf, lengthp);
glse 1f (rate==1700 || rate=<3400 || rate==6800)
cof[0]=1;
for (xx=1; xx<2000; ,xx++)
cof [xx]=0;
lengthf=1;
LinearConvoluation (cof, output, envelope, lengthf, lengthp);
Pagel 62
Add ipsfunction "tfinder" after line " int i=0;" the following:

double *toutput2=NULL;
int counter=0;

int rev_counter=0;

int VHBR step=0;
double VHBR tr=0.0;
double VHBR tf=0.0;
double tr accum=0.0;

© ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

double tf accum=0.0;

int tr counter=0;

int tf counter=0;

double t one sample=0.0;
double tlo=0.0;

double v10=0.0;

double thi=0.0;

double vhi=0.0;

toutput2=toutput;

Page 65
Replace line "createtime (timeres, 0,0,0,0,0,0,0,t1,....,0,0,0,0) ;" with;

"createtime (timeres,0,0,0,0,0,0,0,0,tl,tlstartind, tlstart, tlendind, t2, t2startind,
t2start,t3,t3end, t3endind, t4, t4dendind, 0,0,0,0,0,0,0);"

Page 67

Replace line "createtime (timeres, 0,0,0,0,0,0,0,...[&, tploone) ;" with:

"createtime (timeres,0,0,0,0,0,0,0,0,tl,tlstfartind, tlstart,tlendind,0,0,0,0,0,(,0,
0,t5,t5startind, t6, téend, téendind, a, tpkbone) ;"
Page 67
Replace complete code for 'case BLwith:
{
switch (ratey
{
case~106:
case~212:
casé 424:
Gcase 848:
{
B low=pb+0.1* (Hmax-b); // Calculates target
flag=localizador (envc, toutput,B low, &crosses,env_length); /

Findg target
if (flag>=2)
{

crosses WORK=crosses;

tploone=crosses WORK->time; // Temporary values
are stored for future use
while (x_improv<flag)
{
tplotwo=crosses WORK->time; // Temporary values
are stored for future use
vplotwo=crosses WORK->volt;
crosses_WORK=crosses WORK->sig;
X _improv++;

© ISO/IEC 2012 — All rights reserved 9

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

freelist (crosses);

}

else

{
fprintf (stdout, "Monotony not fulfilled\n");

}

B_hi=Hmax-0.1* (Hmax-Db); // Calculates target
flag=localizador (envc,toutput,B hi, &écrosses?2,env length);

Finds target

are

are

if (flag>=2)
{
x improv=0;
flag improv=0;
crosses_ WORK=crosses2;
while (x_improv<flag)
{
if (crosses WORK->time<tploone)
{
tphione=crosses WORK->time; / /nPemporary values
stored for future use
vphione=crosses WORK->volt;

if (crosses WORK->time>tplotwo & flag improv==0)

tphitwo=crosses WORK->tfime; // Temporary values
stored for future use

vphitwo=crosses WORK=>volt;

flag improv=1;

crosses WORK=grosses WORK->sig;
X_improv++;
}

freelist (crosses?) ;

}

else

{
fprintf(stdout, "Monotony not fulfilled\n");

}

tf=fiploone-tphione; // Definitive values are calculated and

storfed for display

fr=tphitwo-tplotwo;
tfstartind=tphione; // Other important values for the coming

fundtions

tfendind=tploone;
trstartind=tplotwo;
trendind=tphitwo;

createtime (timeres, tr,tf,b,0,trstartind, trendind, tfstartind, tfendind, 0,0,0,0,

¢,9,0,0,0,0,0,0,0,0,0,0,0,0,0);

10

}

break;

case 1700:
case 3400:
case 6800:
{

© ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

B low=b+0.1* (Hmax-b); // Calculates target
B hi=Hmax-0.1* (Hmax-b); // Calculates target

flag=localizador (envc, toutput,B low, &crosses,env_length);
flag2=localizador (envc, toutput,B hi, &crosses2,env_length);

tfstartind=crosses2->time; // Reused as start point for

overshoot

tfendind=crosses->time; and undershoot

// LOCATE ADJACENT POINTS
while (crosses->sig!=NULL && crosses2->sig!=NULL)

{

tlo=crosses->time;
thi=crosses2->time;
if (thi<tlo) // FALLING EDGE

{

if

else if (crosses2->sig->time > tlo) // Analysis tf

{

(crosses2->sig->time < tlo) // Discard Poil
crosses2=crosses2->sig;

vlo=crosses->volt;
vhi=crosses2->volt;
while (toutput2[counter]==0) // set counters
{
counter++;
rev_counter++y
}
t_one sampleztoutput2[counter+2]-toutput2[counter+]
while (touwput2[counter]<=thi) // set counten
{
counkter++;
revijeounter++;
}
while (toutput2[rev counter]<=tlo) // set counten
rev_counter++;

while (vlo<vhi)

{
vlo=envc2[rev _counter-VHBR step];
vhi=envc2[counter+VHBR step];
VHBR step++;

}

if (vlo==vhi)
VHBR step=VHBR step*2;

else 1if (vlo>vhi)
VHBR step=VHBR step*2-1;

VHBR tf=VHBR step*t one sample;
tf counter++;

nt

—
~.

[

tf occocum=tf gcoccumtV/HBR 1—1:'-

VHBR_step=0.0; // Reset Counters
VHBR tf=0.0;

counter=0;

rev_counter=0;
crosses2=Ccrosses2->sig;

else 1if (tlo<thi) // RISING EDGE

© ISO/IEC 2012 — All rights reserved

11

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

if (crosses—->sig->time < thi) // Discard Point
crosses=crosses->sig;
else if (crosses->sig->time > thi) // RAnalysis tr

{
vlo=crosses->volt;
vhi=crosses2->volt;
while (toutput2[counter]==0) // set counters
{

counter++;
rev_counter++;
}
t one sample=toutput2[counter+2]-toutput2[countertld;
while (toutput2[counter]<=tlo) // set coultgrs
{
counter++;
rev_counter++;
}
while (toutput2[rev counter]<=thi) (/L Set counters
rev_counter++;

while (vlo<vhi)

{
vhi=envc2[rev counter-VHBR Jstep];
vlo=envc2 [counter+VHBR stép];
VHBR step++;

}

if (vlo==vhi)
VHBR step=VHBR /step*2;

else 1f (vlo>vhiy
VHBR step=VHBR’ step*2-1;

VHBR tr=VHBR\step*t one sample;
tr countext¥:;
tr accup=tr accum+VHBR tr;

VHBR\"$tep=0.0; // Reset Counters
VHBR tr=0.0;

counter=0;

rev_counter=0;

crosses=crosses->sig;

§
}

// Calculate and Save Parameters

tf=tf accum/tf counter; // Definitive values are calculated
and |stored £9r display
tr=tr accum/tr_ counter; // Reused as end point for overshoot

trendind=crosses2->time;
trstartind=crosses->time;

createtime (timeres, tr,tf,b,0,trstartind, trendind, tfstartind, tfendind, 0,0,0,0,
g,o0,0,0,0,0,0,0,0,0,0,0,0,0,0);
}

break;

12 © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

Page 71

Replace:

"while (index samples<=samples)

(env2[index samples]>above)

"while (env2[index samples]!=0)

Page 72
Replace:
"while (toutput[index samples]<(timesp->trstartind))

if (env2[index samples]<above b && env2[index’samples]!=0)"

"while (env2[index samples]!=0)

Page 72

Replace function declaration "display" with the following:

(env2[index samples]>above)

(env2[index samples]<abovexh)

"void displaw(¢har type, int rate, SHOOTREADER *shootreader2, TIMES *timesp,

double Hmax,. double m, double mmin)

Page 73

Replace line "fprintf (stdout, "Type B - Bitrate %d\n", rate) ;" with the following

(rate<=848)
fprintf (stdout, "Type B - bit rate %d\n", rate);

else

fprintf (stdout, "Type VHBR - bit rate %d\n", rate);

© ISO/IEC 2012 — All rights reserved 13

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

Page 74

Add after line " fprintf (stdout,"m = %f %% \n",m);"

"if ((rate==1700 || rate==3400 || rate==6800))
fprintf (stdout,"m min = $f %% \n", mmin); "
Page| 74

Replace function "main" with the following:

int] main (int argc, char *argvl[])

g¢har type;

int rate;

g¢har voltstr[25]; // intermediate char array to modify the voltage
values

g¢har timestr[25]; // intermediate char array to~modify the time
values

double snum=0;

double tnum=0;
double t=0;

Int filterlength=0;
double Hmax=0;
double HmaxVHBR=0;
double Hmin=0;
double Hmax2=0;
double Hmin2=0;
HILE *pointfile=NULL;
HILE *input_uZZNULL;
HILE *poutput=NULL;
double m=0.0;

double mmin=0.0;

int length=0;

dqouble val=0;

int posval=0;

int negval=0;

double tini=0;
double tfin=0;

Int samples=0;

Int out i=0j

Int length-total=0;
Int samplle ini=0;
Int sample end=0;
Int,flag cut=0;
intYsamplesp=0;

int £i=0; // Filter generic index
double bl=0; // Filter parameters
double b2=0;

double b3=0;

double b4=0;

double b5=0;

double al=0;

double a2=0;

double a3=0;

double a4=0;

14 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

double ab5=0;

double freql=0;

double freqg2=0;

double as[5]1={0};

double bs[5]1={0};

double t0=0;

double tlast=0;

int lineskip=0;

double *voutput=malloc (sizeof (double)*MAX SAMPIES) :

double *toutput=malloc (sizeof (double)*MAX SAMPLES) ;

double *envelope=malloc (sizeof (double)*MAX SAMPLES) ;

double *vfilter=malloc (sizeof (double)*MAX SAMPLES) ;

double *tfilter=malloc (sizeof (double)*MAX SAMPLES) ;

TIMES *timesp=(TIMES *)malloc (sizeof (TIMES))

TIMES *timesp2=(TIMES *)malloc(sizeof (TIMES))

SHOOTREADER *shootreader2=(SHOOTREADER *)malloc (sizeof (SHOOTREADER)) ;

if (voutput!=NULL && toutput!=NULL && envelope!=NULL && yfilter!=NULL &&
tfilter!=NULL && timesp!=NULL && timesp2!=NULL && shootreader?!=NULL)
{
memset (voutput, 0, MAX SAMPLES) ;
memset (toutput, 0, MAX SAMPLES);
memset (envelope, 0, MAX SAMPLES) ;
memset (vfilter, 0, MAX SAMPLES);
memset (tfilter, 0, MAX SAMPLES);

type=*argv([1l];
rate=atoi (argv[2]);
if (type!='A' && type!='B' && typel='V'")
fprintf (stdout, "Wrong Types (&, B or VHBR))");
else 1if ((type=='A' || type==¢B") && (rate!=106 && rate!=212 && rate!=4
&& rate!=848))
fprintf (stdout, "Wrong ‘it rate (106, 212, 424, 848)");
else if ((type=='V') && (rate!=1700 && rate!=3400 && rate!=6800))
fprintf (stdout, "Wrong bit rate (1700, 3400, 6800)");
else
{
if (type=='V'p)

type='B';
pointfile=fopen(argv[3],"r");
input uZsfopen ("pre Hilbert.txt","w"); // modified-

intermediate amplitude vector

ifi(pointfile!=NULL && input u2!=NULL)
{
//1. LOAD DATA + CHECKING DATA (WITHOUT FILTER)
for (lineskip=0; lineskip<l1l0; lineskip++) // Skips the firs
lineswwhich are the header of csv files
{
skip line (pointfile);
)

24

- 10

read line (pointfile,voltstr, timestr);
tO=atof (timestr) ;
while (!feof (pointfile)) // Reading the lines
the voltage input file
{
if (voltstr[0]!='\0")
{
snum=atof (voltstr);
tnum=atof (timestr) ;
if (snum<0)

© ISO/IEC 2012 — All rights reserved

of

15

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

negval++;
else
posval++;
vfilter[samplesp]=snum;
tfilter[samplesp]=tnum;
samplesp++;
read line (pointfile,voltstr, timestr);
}

tlast=tfilter[samplesp-11;

}

samplesp=samplesp+3;
samplesp=datacheck (posval, negval, samplesp, tlast, pointfile) ;
tlast=tfilter[samplesp];

//2. DATA FILTER BANDWIDTH (10 MHz OR 20 MHz DEPENDING /ON'BIT RATE)
if (rate==106 || rate==212 || rate==424 || rate==848)
{
freql=8.56e6/ (1/(2* ((tlast-t0)/ (samplesp-1))) M
freq2=18.56e6/ (1/(2* ((tlast-t0) / (samplesp-1)HVY;
}
else 1f (rate==1700 || rate==3400 || rate==6800)
{
freql=6.06e6/ (1/(2* ((tlast-t0)/ (sampiésp-1))));
freq2=21.06e6/ (1/(2* ((tlast-t0)/ (sémplesp-1))));
}

butterworth coeffs(freql, freq2/, as, bs);
bl=bs[0];

for (fi=0¢ fi<samplesp; fi++)

ife(fi<7 || fi>samplesp-7)
voutput [fi]=0;
else
voutput [fi]=(bl*vfilter[fi]+b2*vfilter[fi-1]+b3*vfilter[fi-
21+
bd*vfilter [fi-3]1+b5*vfilter[fi-4]-a2*voutput[fi-1]-
a3*voutput[fi-2]-ad*voutput[fi-3]-a5*voutput[fi-
41) /lX;

1

¥

rewind (pointfile);

lineskip=0;

for (lineskip=0; lineskip<10; lineskip++) // Skips the first 10
lines (header of csv files)

{

skip line (pointfile);

}

for (£i=0; fi<(samplesp-7); fi++) // Reading the lines of
the voltage input file

16 © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

val=voutput[fi];
read line (pointfile,voltstr,timestr);
fprintf (input u2,"%s,%$f\n", timestr,val);
length++;

}

//3. HILBERT TRANSFORM AND THE COMPLEX ENVELOPE
rewind (input u2);

hilbert ("pre Hilbert.txt"); // performs Hilbert transfofm
poutput=fopen ("output.txt","r"); // Hilbert transform cutput
vector
read line (poutput,voltstr,timestr);
tini=atof (timestr);
rewind (poutput);
if (poutput !=NULL)
{
while (!feof (poutput)) // Reading the.lines of the voltage ihput
file */
{
read line (poutput,voltstr,timestr);
if (timestr[0]!="\0")
{
snum=atof (voltstr);
voutput [samples]=snum;
t=atof (timestr) ;
toutput [samples]=t;
samples++;//%#>0S // Same variable as the one in
Hmaxfinder
tfin=t;
}
}
}
else
fprintf(stdout, "Error in Hilbert transform\n");
fclose (poutput) ;
//4(USING A SMOOTHING FILTER (MOV. AVG) TO REDUCE THE NOISE
filterlength=3;
length total=envfilt (rate, voutput, toutput, filterlength, tini,
tfin, samples) envelope);
//5. 100% OF H INITIAL
Hmaxfinder (envelope, &Hmax, &Hmin, length total);
//6. COMPUTING THE ISO BASED TIMES
1-‘F'Ehr4cv‘(1-lpc'chxrc.| I‘\c"f- 11+—I'\11+-’+-'ih'i’1'—7m:1 ’Um'Eh’v:i-Q’.lohrji—h fni—:.lli-'imacp):

//7. M min FOR BIT RATES OF fc/8, fc/4 AND fc/2
if (rate==1700 || rate==3400 || rate==6800)
Mminfinder (envelope, Hmax, Hmin, &HmaxVHBR, timesp,

length total);

//8. CHECKING FOR ISO DEFINED MONOTONY
if (rate==106 || rate==212 || rate==424 || rate==848)
monocheck (envelope, toutput, Hmax, timesp, rate, type);

© ISO/IEC 2012 — All rights reserved 17

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

out 1=0;
while (out i<MAX SAMPLES) // Finds how many zeros are at the
beginning of vector envelope
{
if (envelopelout i]==0 && flag cut==0)
{
sample ini=out i;
tini=toutput[sample ini+1];

if (envelope[out 1i]!=0)

flag cut=1;
sample end=out i;
tfin=toutput[sample end];
}
out i++;
}

samples=sample end-sample ini-1; //==>US

for (out i=0; out i<samples; out i++)

{
voutput [out i]=envelope[out i+sample inixl];
toutput [out i]=toutput[out i+sample dHAF+1];

for (out i=samples+1l; out i<MAX SAMEEES; out i++)

voutput [out 1]=0.0;
toutput[out i1]=0.0;

}

tini=toutput[0];
tfin=toutput[samples];

//9. OVERSHOOT OF THE' READER

fprintf (stdout,"\w"); // 2nd set of functions, "New Line" printed
for [debug purposes
if (rate==106, | rate==212 || rate==424 || rate==848)

{

filtenlength=3;

length total=envfilt(rate, voutput, toutput, filterlength, tini,
tfin|, samples, envelope); // 2nd Filtering to find the alternate envelope
Hmaxfinder (envelope, &Hmax2, &Hmin2, length total);

ffinder (type) envelope, toutput, tini, Hmax2, Hmin2, rate, length total, timesp2);
monocheck (envelope, toutput, Hmax2, timesp2, rate, type);

)/ The parameters of the alternate envelope are calculated
overshoot (timesp2, Hmax2, envelope, toutput, rate, type, samples,

shoolt¥eader?) ; // This time the over- and undershoots are found
)

¥

else 1f (rate==1700 || rate==3400 || rate==6800)
{
filterlength=3;
length total=envfilt (106, voutput, toutput, filterlength, tini,
tfin, samples, envelope); // 2nd Filtering to find the alternate envelope
Hmaxfinder (envelope, &Hmax2, &Hmin2, length total);
overshoot (timesp, Hmax, envelope, toutput, rate, type, samples,
shootreader?2) ; // This time the over- and undershoots are found

}

18 © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

//10. MODULATION

m=modulation (type, Hmax, timesp->Db);

if((type=='B') && (rate==1700 || rate==3400 || rate==6800))
mmin=modulation (type, HmaxVHBR, timesp->bVHBR) ;

//11. DISPLAY

display(type, rate, shootreader2, timesp, Hmax, m, mmin);
}
else if (pointfile==NULL || input u2!=NULL)

fprintf (stdout,"file(s) could not be opened \n");

fclose (pointfile);
fclose (input u2);

}

else
fprintf (stdout, "Memory could not be allocated");

free (voutput);

free (toutput);

free (envelope);
free (vfilter);

free (tfilter);

free (timesp);

free (timesp2);

free (shootreader?);

return 0;

Page 80

Replace Annex F with the following:

© ISO/IEC 2012 — All rights reserved 19

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

Annex F
(informative)

Program for the evaluation of the spectrum

The fpllowing program written in C language gives an example for the calculation of the magnitude of the
spectrum from the PICC.

/***/
/*** This program calculates the Fourier coefficients xxx/
/*** of load modulated voltage of a PICC according * k[
/*** the ISO/IEC 10373-6 Test methods *Hx/
/*** The coefficients are calculated at the frequencies: *xx/
Yk Carrier: Fcm (=13.5600 for 13.56 MHz) xHxx/
J** K Upper sideband: Fcm + fs * kA
Vel Lower sideband: Fcm - fs *A& W)
/*** fs is the subcarrier frequency and its value is: *xx/
/*** Fcm/1l6 for bit rates up to fc/16, Fcm/8 for a bit ratger**/
/*** of fc/8, Fcm/4 for a bit rate of fc/4 or Fcm/2 for a *xk /
/*** bit rate of fc/2 *Kx K/
/***/
/*** Input: ***/
/*** File in CSV Format containing a table of twé *xk/
/*** columns (time and test PCD output voltage ‘wd, clause 7)***/
/**‘k ***/
/*** data format of input-file: *x Ak /
/*** _________________________ ***/
/*** - one data-point per line: xR/
Vi (time[seconds], sense-coil-volkage[volts]) *xAk/
/*** - contents in ASCII, no headers *xk/
/*** - data-points shall be equidistant in time *x Ak /
/*** - modulation waveform centefed *xk/
Ve (max. tolerance: half of“subcarrier cycle) *xk/
/*** 'k'k'k/
/*** ***/
/*** example for spreadsheet file (start in next line): *xx/
Vi (time) (voltage) *Hxx/
/*** 3.00000e-06,1.00 xAx/
/*** 3.00200e-06, 1. 01 *Hx/
/*** ***/
/***/
/*** RUN: ***/
/*** “exefil¥ename” [filenamel[.csv] SubcarrierCode] *xk/
/***/
/*** IS@/IEC 10373-6 DFT CALCULATION xRk
/*** ¥ersion history: *xk/
/** L WIT. 2000, version 1 1: original published version * Kk *

/*** APR 2008, version 2.0: add the Bartlett window *kx [
/*** NOV 2008, version 2.1: published version with revision ***/
/*** SEP 2010, version 3.0: support higher subcarrier freq. ***/

* k%

/********************** **************************************/
#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <math.h>

20 © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

#define MAX_SAMPLES 50000
#define MAX POINTS 500
#define MAX MOYENNE 200

double pi; /* pi=3.14.... */
/* Array for time and sense coil voltage vd */

double vtime [MAX SAMPLES]; /* time array */
double vd[MAX SAMPIES]: * Array for different coil voltage *

/***/

Vaadd Read CSV File Function *x*/
/*** ***/
[FE* Description: RV
[FE* This function reads the table of time and sense coil **¥/
[xH* voltage from a File in CSV Format O */
/*** ***/
[xx* Input: filename * Kk /
/*** ***/
[xH* Return: Number of samples (sample Count) *xK/
VA 0 if an error occurred *xK/
/*** ***/
[xx* Displays Statistics: * Kk /
/*** ***/
[FE* Filename, SampleCount, Sample rate,Max/Min Voltage ***/

/***/

int readcsv (char* fname)
{
double a,b;
double max vd,min vd;
int 1i;
FILE *sample file;

/************ Open File ***********************************/

if (!strchr (fname, '&')) strcat (fname, ".csv");

if ((sample file (5 fopen(fname, "r"))== NULL)
{
printf ("Cannot open input file %s.\n", fname);
return 0;

}

/**/

/* Read CSV File */
/**/
max/ vd=-1le-9F;

min vd=-max vd;

i=0;

while (!feof (sample file))
{
if (i>=MAX_SAMPLES)
{

printf ("Warning: File truncated !!!\n");
printf ("To much samples in file %$s\b\n", fname) ;
break;

}
fscanf(sampleifile,"%Lf,%Lf\n", &a, &b);
vtime[i] = a;

© ISO/IEC 2012 - All rights reserved 21

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

vd[i] = b;

if (vd[i]>max vd) max vd=vd[i];
if (vd[i]<min vd) min vd=vd[i];
i++; B B

}

fclose (sample file);

/************ Dlsplays Statlstlcs ************************/

printf(" n‘k*‘k*‘k*‘k****‘k*‘k*‘k*‘k***************************** n");
printf ("\nStatistics: \n");
printf (" Filename : %$s\n", fname) ;
printf (" Sample count: %d\n",1i);
printf (" Sample rate : %$1.0f MHz\n",le-6/(vtime[l]-vtime[0]));
printf (" Max (vd) : %4.0f mvAn",max vd*1000) ;
printf (" Min (vd) : %4.0f mvVAn",min vd*1000) ;
return 1i;
}/**************** End Readcsv ***************/

/***/

J*xH DFT : Discrete Fourier Transformation *xk /
/********‘k********‘k********‘k*‘k*‘k****‘k*‘k*‘k***********************/
J**H Description: RV
Vel This function calculate the Fourier coefficient *Kxx/
/*** ***/
Vad Input: Number of samples xA K/
Vel Carrier divider of the subcarrier *x Kk /
/*** ***/
Ve Global Variables: *xx/
/*** ***/
Ve Displays Results: *xx/
/*** ***/
Vi Carrier coefficient *xx/
Vi Upper sideband coefficient *xx/
Ve Lower sideband coefficient *xx/
/*** ***/

/***/

void dft (int count, int Carr¥erDivider)

double cO0 real,cO0 imdg,c0 abs,cO phase;
double cl real,cl imag,cl abs,cl phase;
double c2 real,c2simag,c2 abs,c2 phase;
int N _data,center), start;

double w0, wu, wl;

dojuble Wb; /* Bartlett window coefficient */

int i, k»

doubXe fc; /* add variable for carrier frequency */
fc=13.56e6;

w0= (double) (fc*2.0) *pi; /* carrier 13.56 MHz */

wu= (double) (1.0+1.0/CarrierDivider) *w0; /* upper sideband 14.41 MHz */
wl=(double) (1.0-1.0/CarrierDivider) *w0; /* lower sideband 12.71 MHz */
c0 real=0; /* real part of the carrier fourier coefficient */
cO0_imag=0; /* imag part of the carrier fourier coefficient */

cl real=0; /* real part of the up. sideband fourier coefficient */

cl imag=0; /* imag part of the up. sideband fourier coefficient */

22 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

c2 real=0; /* real part of the lo. sideband fourier coefficient */
c2 imag=0; /* imag part of the lo. sideband fourier coefficient */

center=(count+1)/2; /* center address */

/********** Signal Selection ******************************/

/* Number of samples for six subcarrier periods */

N data=(int) (0.5+6.0F*CarrierDivider/ (vtime[2]-vtime[1l])/fc);
/* Note: (vtime[2]-vtime[l]) is the scope sample rate */

start=center - (int) N data / 2;

/******************* DFET ********************************/

for(i=0;1i<=N_data-1;i++)
{
/* Bartlett window */
if ((N_data & 1) == 0)
{
/* N_data is even */
if (1 < (int) N data /2)
{
Wb=2.0F*i/(double)(N_data - 1);
}
else
{
Wb=2.0F* (N _data-i-1)/ (double) (N¢data - 1);
}
}
else
{
/*N data is odd */
if (i < (int) N data /29
{
Wb:2.0F*i/(double)(N_data - 1);
}
else
{
Wb=2.0F-2.0F*i/ (double) (N data - 1);
}

}
k=itstart;
¢O real=cO0 real+vd[k]* (double)cos (wO*vtime [

c0 imag=cO0_imag+vd[k]* (double)sin (wO*vtime [
cl roal=cl v‘a:1+7r4[]z]*lr‘]m11h1o\ﬁmc (i k 71-'imo[

c2 real=c2 real+vd[k]* (double)cos (wl*vtime[
c2 imag=c2 imag+vd[k]* (double)sin (wl*vtime[

}

k])
k])
k1)
cl:imag=cl:imag+vd[k]*(double)sin(wu*vtime[k])*W
k1)
k])

/******************* DFT Scale 'k'k'k************************/
cO0 real=4.0F*cO real/(double) N data;

cO0 _imag=4.0F*cO imag/ (double) N data;
cl real=4.0F*cl real/(double) N _data;

© ISO/IEC 2012 — All rights reserved 23

https://iecnorm.com/api/?name=c4174c7512f85b9ccc45193edc55b121

	"PICC Type A for bit rates of fc/128, fc/64, fc/32 and fc/16"
	"PICC Type B for bit rates of fc/128, fc/64, fc/32 and fc/16"
	7.2.2.4 PICC Type A or Type B for bit rates of fc/8, fc/4 and fc/2
	E.2.1 Sampling for bit rates of fc/128, fc/64, fc/32 and fc/16
	E.2.2 Sampling for bit rates of fc/8, fc/4 and fc/2
	E.3.1 Filtering for bit rates of fc/128, fc/64, fc/32 and fc/16
	E.3.2 Filtering for bit rates of fc/8, fc/4 and fc/2
	E.5.1 Envelope smoothing for bit rates of fc/128, fc/64, fc/32 and fc/16
	E.5.2 Envelope smoothing for bit rates of fc/8, fc/4 and fc/2

