
IEC 62304
Edition 1.1 2015-06

FINAL VERSION

INTERNATIONAL
STANDARD

Medical device software – Software life cycle processes

IE
C

 6
23

04
:2

00
6-

05
+A

M
D

1:
20

15
-0

6
C

SV
(e

n)

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

– 2 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

CONTENTS

FOREWORD .. 4

INTRODUCTION .. 6

INTRODUCTION to Amendment 1 .. 8

1 Scope .. 9

1.1 * Purpose .. 9

1.2 * Field of application .. 9

1.3 Relationship to other standards ... 9

1.4 Compliance ... 9

2 * Normative references ... 10

3 * Terms and definitions ... 10

4 * General requirements .. 15

4.1 * Quality management system ... 15

4.2 * RISK MANAGEMENT .. 15

4.3 * Software safety classification .. 16

4.4 * LEGACY SOFTWARE ... 17

5 Software development PROCESS .. 18

5.1 * Software development planning ... 18

5.2 * Software requirements analysis ... 21

5.3 * Software ARCHITECTURAL design... 22

5.4 * Software detailed design ... 23

5.5 * SOFTWARE UNIT implementation ... 24

5.6 * Software integration and integration testing ... 25

5.7 * SOFTWARE SYSTEM testing .. 26

5.8 * Software release ... 27

6 Software maintenance PROCESS .. 28

6.1 * Establish software maintenance plan ... 28

6.2 * Problem and modification analysis ... 29

6.3 * Modification implementation .. 30

7 * Software RISK MANAGEMENT PROCESS .. 30

7.1 * Analysis of software contributing to hazardous situations 30

7.2 RISK CONTROL measures .. 31

7.3 VERIFICATION of RISK CONTROL measures .. 31

7.4 RISK MANAGEMENT of software changes .. 31

8 * Software configuration management PROCESS .. 32

8.1 * Configuration identification .. 32

8.2 * Change control ... 32

8.3 * Configuration status accounting .. 33

9 * Software problem resolution PROCESS ... 33

9.1 Prepare PROBLEM REPORTS ... 33

9.2 Investigate the problem ... 33

9.3 Advise relevant parties .. 33

9.4 Use change control process .. 34

9.5 Maintain records .. 34

9.6 Analyse problems for trends .. 34

9.7 Verify software problem resolution ... 34

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 3 –
+AMD1:2015 CSV  IEC 2015

9.8 Test documentation contents ... 34

Annex A (informative) Rationale for the requirements of this standard 35

Annex B (informative) Guidance on the provisions of this standard 38

Annex C (informative) Relationship to other standards ... 56

Annex D (informative) Implementation .. 75

Bibliography ... 77

Index of defined terms .. 79

Figure 1 – Overview of software development PROCESSES and ACTIVITIES 7

Figure 2 – Overview of software maintenance PROCESSES and ACTIVITIES 7

Figure 3 – Assigning software safety classification .. 16

Figure B.2 – Pictorial representation of the relationship of HAZARD, sequence of
events, HAZARDOUS SITUATION, and HARM – from ISO 14971:2007 Annex E 42

Figure B.1 – Example of partitioning of SOFTWARE ITEMS .. 44

Figure C.1 – Relationship of key MEDICAL DEVICE standards to IEC 62304 56

Figure C.2 – Software as part of the V-model .. 59

Figure C.3 – Application of IEC 62304 with IEC 61010-1 ... 67

Table A.1 – Summary of requirements by software safety class ... 37

Table B.1 – Development (model) strategies as defined in ISO/IEC 12207 39

Table C.1 – Relationship to ISO 13485:2003 ... 57

Table C.2 – Relationship to ISO 14971:2007 ... 58

Table C.3 – Relationship to IEC 60601-1 .. 61

Table C.5 – Relationship to ISO/IEC 12207 ... 69

Table D.1 – Checklist for small companies without a certified QMS 76

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

– 4 – IEC 62304:2006
+AMD1:2015 CSV  IEC 2015

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MEDICAL DEVICE SOFTWARE –
SOFTWARE LIFE CYCLE PROCESSES

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

This consolidated version of the official IEC Standard and its amendment has been prepared
for user convenience.

IEC 62304 edition 1.1 contains the first edition (2006-05) [documents 62A/523/FDIS and 62A/528/
RVD] and its amendment 1 (2015-06) [documents 62A/1007/FDIS and 62A/1014/RVD].

This Final version does not show where the technical content is modified
by amendment 1. A separate Redline version with all changes highlighted is
available in this publication.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 5 –
+AMD1:2015 CSV  IEC 2015

International Standard IEC 62304 has been prepared by a joint working group of subcommittee
62A: Common aspects of electrical equipment used in medical practice, of IEC technical
committee 62: Electrical equipment in medical practice and ISO Technical Committee 210,
Quality management and corresponding general aspects for MEDICAL DEVICES. Table C.5 was
prepared by ISO/IEC JTC 1/SC 7, Software and system engineering.

It is published as a dual logo standard.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

In this standard the following print types are used:

• requirements and definitions: in roman type;
• informative material appearing outside of tables, such as notes, examples and references:

in smaller type. Normative text of tables is also in a smaller type;
• terms used throughout this standard that have been defined in Clause 3 and also given in

the index: in small capitals.

An asterisk (*) as the first character of a title or at the beginning of a paragraph indicates that
there is guidance related to that item in Annex B.

The committee has decided that the contents of the base publication and its amendment will
remain unchanged until the stability date indicated on the IEC web site under
"http://webstore.iec.ch" in the data related to the specific publication. At this date, the
publication will be

• reconfirmed,

• withdrawn,

• replaced by a revised edition, or

• amended.

NOTE The attention of National Committees is drawn to the fact that equipment MANUFACTURERS and testing
organizations may need a transitional period following publication of a new, amended or revised IEC or
ISO publication in which to make products in accordance with the new requirements and to equip themselves for
conducting new or revised tests. It is the recommendation of the committee that the content of this publication be
adopted for mandatory implementation nationally not earlier than 3 years from the date of publication.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct understanding
of its contents. Users should therefore print this document using a colour printer.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 6 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

INTRODUCTION

Software is often an integral part of MEDICAL DEVICE technology. Establishing the SAFETY and
effectiveness of a MEDICAL DEVICE containing software requires knowledge of what the software
is intended to do and demonstration that the use of the software fulfils those intentions without
causing any unacceptable RISKS.

This standard provides a framework of life cycle PROCESSES with ACTIVITIES and TASKS
necessary for the safe design and maintenance of MEDICAL DEVICE SOFTWARE. This standard
provides requirements for each life cycle PROCESS. Each life cycle PROCESS consists of a set of
ACTIVITIES, with most ACTIVITIES consisting of a set of TASKS.

As a basic foundation it is assumed that MEDICAL DEVICE SOFTWARE is developed and
maintained within a quality management system (see 4.1) and a RISK MANAGEMENT system (see
4.2). The RISK MANAGEMENT PROCESS is already very well addressed by the International
Standard ISO 14971. Therefore IEC 62304 makes use of this advantage simply by a normative
reference to ISO 14971. Some minor additional RISK MANAGEMENT requirements are needed for
software, especially in the area of identification of contributing software factors related to
HAZARDS. These requirements are summarized and captured in Clause 7 as the software RISK
MANAGEMENT PROCESS.

Whether software is a contributing factor to a HAZARDOUS SITUATION is determined during the
HAZARD identification ACTIVITY of the RISK MANAGEMENT PROCESS. HAZARDOUS SITUATIONS that
could be indirectly caused by software (for example, by providing misleading information that
could cause inappropriate treatment to be administered) need to be considered when
determining whether software is a contributing factor. The decision to use software to control
RISK is made during the RISK CONTROL ACTIVITY of the RISK MANAGEMENT PROCESS. The software
RISK MANAGEMENT PROCESS required in this standard has to be embedded in the device RISK
MANAGEMENT PROCESS according to ISO 14971.

The software development PROCESS consists of a number of ACTIVITIES. These ACTIVITIES are
shown in Figure 1 and described in Clause 5. Because many incidents in the field are related to
service or maintenance of MEDICAL DEVICE SYSTEMS including inappropriate software updates
and upgrades, the software maintenance PROCESS is considered to be as important as the
software development PROCESS. The software maintenance PROCESS is very similar to the
software development PROCESS. It is shown in Figure 2 and described in Clause 6.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 7 –
+AMD1:2015 CSV  IEC 2015

SYSTEM development ACTIVITIES (including RISK MANAGEMENT)

Customer needs Customer needs
satisfied

7 Software RISK MANAGEMENT

8 Software configuration management

9 Software problem resolution

Activities outside the scope of this standard

5.2
Software

requirements
analysis

5.1
Software

development
planning

5.8
Software release

5.7
Software SYSTEM

testing

5.3
Software

ARCHITECTURAL
design

5.4
Software
detailed
design

5.6
Software integration

and integration
testing

5.5
Software UNIT

implementation and
VERIFICATION

Figure 1 – Overview of software development PROCESSES and ACTIVITIES

System maintenance ACTIVITIES (including RISK MANAGEMENT)

Maintenance
request

Request
satisfied

7 Software RISK MANAGEMENT

8 Software configuration management

9 Software problem resolution

5.8
Software release

Activities outside the scope of this standard

6.3 Modification implementation

5.3
Software

ARCHITECTURAL
design

5.4
Software
detailed
design

5.7
Software SYSTEM

testing

5.5
Software UNIT

implementation and
VERIFICATION

5.6
Software integration

and integration
testing

6.2
Problem and

modification analysis

6.1
Establish software

maintenance
plan

Figure 2 – Overview of software maintenance PROCESSES and ACTIVITIES

This standard identifies two additional PROCESSES considered essential for developing safe
MEDICAL DEVICE SOFTWARE. They are the software configuration management PROCESS (Clause
8) and the software problem resolution PROCESS (Clause 9).

Amendment 1 updates the standard to add requirements to deal with LEGACY SOFTWARE, where
the software design is prior to the existence of the current version, to assist manufacturers who
must show compliance to the standard to meet European Directives. Software safety

IEC 722/06

IEC 723/06

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 8 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

classification changes include clarification of requirements and updating of the software safety
classification to include a risk-based approach.

This standard does not specify an organizational structure for the MANUFACTURER or which part
of the organization is to perform which PROCESS, ACTIVITY, or TASK. This standard requires only
that the PROCESS, ACTIVITY, or TASK be completed to establish compliance with this standard.

This standard does not prescribe the name, format, or explicit content of the documentation to
be produced. This standard requires documentation of TASKS, but the decision of how to
package this documentation is left to the user of the standard.

This standard does not prescribe a specific life cycle model. The users of this standard are
responsible for selecting a life cycle model for the software project and for mapping the
PROCESSES, ACTIVITIES, and TASKS in this standard onto that model.

Annex A provides rationale for the clauses of this standard. Annex B provides guidance on the
provisions of this standard.

For the purposes of this standard:
• “shall” means that compliance with a requirement is mandatory for compliance with this

standard;
• “should” means that compliance with a requirement is recommended but is not mandatory

for compliance with this standard;
• “may” is used to describe a permissible way to achieve compliance with a requirement;
• “establish” means to define, document, and implement; and
• where this standard uses the term “as appropriate” in conjunction with a required PROCESS,

ACTIVITY, TASK or output, the intention is that the MANUFACTURER shall use the PROCESS,
ACTIVITY, TASK or output unless the MANUFACTURER can document a justification for not so
doing.

INTRODUCTION to Amendment 1

The first edition of IEC 62304 was published in 2006. This amendment is intended to add
requirements to deal with LEGACY SOFTWARE, where the software design is prior to the
existence of the current version, to assist manufacturers who must show compliance to the
standard to meet European Directives. Software safety classification changes needed for this
amendment include clarification of requirements and updating of the software safety
classification to include a risk-based approach. Work is continuing in parallel to develop the
second edition of IEC 62304.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 9 –
+AMD1:2015 CSV  IEC 2015

MEDICAL DEVICE SOFTWARE –
SOFTWARE LIFE CYCLE PROCESSES

1 Scope

1.1 * Purpose

This standard defines the life cycle requirements for MEDICAL DEVICE SOFTWARE. The set of
PROCESSES, ACTIVITIES, and TASKS described in this standard establishes a common framework
for MEDICAL DEVICE SOFTWARE life cycle PROCESSES.

1.2 * Field of application

This standard applies to the development and maintenance of MEDICAL DEVICE SOFTWARE when
software is itself a MEDICAL DEVICE or when software is an embedded or integral part of the final
MEDICAL DEVICE.

NOTE 1 This standard can be used in the development and maintenance of software that is itself a medical
device. However, additional development activities are needed at the system level before this type of software can
be placed into service. These system activities are not covered by this standard, but can be found in IEC 82304-11
[22].

This standard describes PROCESSES that are intended to be applied to software which executes
on a processor or which is executed by other software (for example an interpreter) which
executes on a processor.

This standard applies regardless of the persistent storage device(s) used to store the software
(for example: hard disk, optical disk, permanent or flash memory).

This standard applies regardless of the method of delivery of the software (for example:
transmission by network or email, optical disk, flash memory or EEPROM). The method of
software delivery itself is not considered MEDICAL DEVICE SOFTWARE.

This standard does not cover validation and final release of the MEDICAL DEVICE, even when the
MEDICAL DEVICE consists entirely of software.

NOTE 2 If a medical device incorporates embedded software intended to be executed on a processor, the
requirements of this standard apply to the software, including the requirements concerning software of unknown
provenance (see 8.1.2).

NOTE 3 Validation and other development activities are needed at the system level before the software and
medical device can be placed into service. These system activities are not covered by this standard, but can be
found in related product standards (e.g., IEC 60601-1, IEC 82304-1, etc.).

1.3 Relationship to other standards

This MEDICAL DEVICE SOFTWARE life cycle standard is to be used together with other appropriate
standards when developing a MEDICAL DEVICE. Annex C shows the relationship between this
standard and other relevant standards.

1.4 Compliance

Compliance with this standard is defined as implementing all of the PROCESSES, ACTIVITIES, and
TASKS identified in this standard in accordance with the software safety class.

NOTE The software safety classes assigned to each requirement are identified in the normative text following the
requirement.

1 In preparation.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 10 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

Compliance is determined by inspection of all documentation required by this standard
including the RISK MANAGEMENT FILE, and assessment of the PROCESSES, ACTIVITIES and TASKS
required for the software safety class.

NOTE 1 This assessment could be carried out by internal or external audit.

NOTE 2 Although the specified PROCESSES, ACTIVITIES, and TASKS are performed, flexibility exists in the methods
of implementing these PROCESSES and performing these ACTIVITIES and TASKS.

NOTE 3 Where any requirements contain “as appropriate” and were not performed, documentation for the
justification is necessary for this assessment.

NOTE 4 The term “conformance” is used in ISO/IEC 12207 where the term “compliance” is used in this standard.

NOTE 5 For compliance of LEGACY SOFTWARE see 4.4.

2 * Normative references

The following referenced documents are indispensable for the application of this document. For
dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including any amendments) applies.

ISO 14971, Medical devices – Application of risk management to medical devices.

3 * Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1
ACTIVITY
a set of one or more interrelated or interacting TASKS

3.2
ANOMALY
any condition that deviates from the expected based on requirements specifications, design
documents, standards, etc. or from someone’s perceptions or experiences. ANOMALIES may be
found during, but not limited to, the review, test, analysis, compilation, or use of MEDICAL
DEVICE SOFTWARE or applicable documentation

NOTE Based on IEEE 1044:1993, definition 3.1.

3.3
ARCHITECTURE
organizational structure of a SYSTEM or component

[IEEE 610.12:1990]

3.4
CHANGE REQUEST
a documented specification of a change to be made to a MEDICAL DEVICE SOFTWARE

3.5
CONFIGURATION ITEM
entity that can be uniquely identified at a given reference point

NOTE Based on ISO/IEC 12207:2008, 4,7.

3.6
DELIVERABLE
required result or output (includes documentation) of an ACTIVITY or TASK

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 11 –
+AMD1:2015 CSV  IEC 2015

3.7
EVALUATION
a systematic determination of the extent to which an entity meets its specified criteria

[ISO/IEC 12207:2008, 4.12]

3.8
HARM
physical injury, damage, or both to the health of people or damage to property or the
environment

[ISO 14971:2007, 2.2]

3.9
HAZARD
potential source of HARM

[ISO 14971:2007, 2.3]

3.10
MANUFACTURER
natural or legal person with responsibility for designing, manufacturing, packaging, or labelling
a MEDICAL DEVICE; assembling a SYSTEM; or adapting a MEDICAL DEVICE before it is placed on
the market and/or put into service, regardless of whether these operations are carried out by
that person or by a third party on that person’s behalf

NOTE 1 Attention is drawn to the fact that the provisions of national or regional regulations can apply to the
definition of manufacturer.

NOTE 2 For a definition of labelling, see ISO 13485:2003, definition 3.6.

[ISO 14971:2007, 2,8]

3.11
MEDICAL DEVICE
any instrument, apparatus, implement, machine, appliance, implant, in vitro reagent or
calibrator, software, material or other similar or related article, intended by the MANUFACTURER
to be used, alone or in combination, for human beings for one or more of the specific
purpose(s) of
– diagnosis, prevention, monitoring, treatment or alleviation of disease,
– diagnosis, monitoring, treatment, alleviation of or compensation for an injury,
– investigation, replacement, modification, or support of the anatomy or of a physiological

PROCESS,
– supporting or sustaining life,
– control of conception,
– disinfection of MEDICAL DEVICES,
– providing information for medical purposes by means of in vitro examination of specimens

derived from the human body,
and which does not achieve its primary intended action in or on the human body by
pharmacological, immunological or metabolic means, but which may be assisted in its function
by such means

NOTE 1 This definition has been developed by the Global Harmonization Task Force (GHTF). See bibliographic
reference [15] (in ISO 13485:2003).

[ISO 13485:2003, definition 3.7]

NOTE 2 Some differences can occur in the definitions used in regulations of each country.

NOTE 3 In conjunction with IEC 60601-1:2005 and IEC 60601-1:2005/AMD1:2012 the term “medical device”
assumes the same meaning as ME EQUIPMENT or ME SYSTEM (which are defined terms of IEC 60601-1).

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

– 12 – IEC 62304:2006
+AMD1:2015 CSV  IEC 2015

3.12
MEDICAL DEVICE SOFTWARE
SOFTWARE SYSTEM that has been developed for the purpose of being incorporated into the
MEDICAL DEVICE being developed or that is intended for use as a MEDICAL DEVICE

NOTE This includes a MEDICAL DEVICE software product, which then is a MEDICAL DEVICE in its own right.

3.13
PROBLEM REPORT
a record of actual or potential behaviour of a MEDICAL DEVICE SOFTWARE that a user or other
interested person believes to be unsafe, inappropriate for the intended use or contrary to
specification

NOTE 1 This standard does not require that every PROBLEM REPORT results in a change to the MEDICAL DEVICE
SOFTWARE. A MANUFACTURER can reject a PROBLEM REPORT as a misunderstanding, error or insignificant event.

NOTE 2 A PROBLEM REPORT can relate to a released MEDICAL DEVICE SOFTWARE or to a MEDICAL DEVICE SOFTWARE
that is still under development.

NOTE 3 This standard requires the MANUFACTURER to perform extra decision making steps (see Clause 6) for a
PROBLEM REPORT relating to a released product to ensure that regulatory actions are identified and implemented.

3.14
PROCESS
a set of interrelated or interacting ACTIVITIES that transform inputs into outputs

[ISO 9000:2000, definition 3.4.1]

NOTE The term “ACTIVITIES” covers use of resources.

3.15
REGRESSION TESTING
the testing required to determine that a change to a SYSTEM component has not adversely
affected functionality, reliability or performance and has not introduced additional defects

[ISO/IEC 90003:2004, definition 3.11]

3.16
RISK
combination of the probability of occurrence of HARM and the severity of that HARM

[ISO 14971:2007, 2.16]

3.17
RISK ANALYSIS
systematic use of available information to identify HAZARDS and to estimate the RISK

[ISO 14971:2007, 2.17]

3.18
RISK CONTROL
PROCESS in which decisions are made and RISKS are reduced to, or maintained within, specified
levels

[ISO 14971:2007, 2.19]

3.19
RISK MANAGEMENT
systematic application of management policies, procedures, and practices to the TASKS of
analyzing, evaluating, and controlling RISK

[ISO 14971:2007, 2.22, modified – The phrase "and monitoring" has been removed]

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 13 –
+AMD1:2015 CSV  IEC 2015

3.20
RISK MANAGEMENT FILE
set of records and other documents, not necessarily contiguous, that are produced by a RISK
MANAGEMENT PROCESS

[ISO 14971:2007, 2.23]

3.21
SAFETY
freedom from unacceptable RISK

[ISO 14971:2007, 2.24]

3.22
SECURITY
protection of information and data so that unauthorized persons or systems cannot read or
modify them an authorized persons or systems are not denied access to them

NOTE Based on ISO/IEC 12207: 2008, 4.39.

3.23
SERIOUS INJURY
injury or illness that:
a) is life threatening,
b) results in permanent impairment of a body function or permanent damage to a body

structure, or
c) necessitates medical or surgical intervention to prevent permanent impairment of a body

function or permanent damage to a body structure
NOTE Permanent impairment means an irreversible impairment or damage to a body structure or function
excluding trivial impairment or damage.

3.24
SOFTWARE DEVELOPMENT LIFE CYCLE MODEL
conceptual structure spanning the life of the software from definition of its requirements to its
release, which:
– identifies the PROCESS, ACTIVITIES and TASKS involved in development of MEDICAL DEVICE

SOFTWARE,
– describes the sequence of and dependency between ACTIVITIES and TASKS, and
– identifies the milestones at which the completeness of specified DELIVERABLES is verified.
NOTE Based on ISO/IEC 12207:1995, definition 3.11

3.25
SOFTWARE ITEM
any identifiable part of a computer program, i.e., source code, object code, control code,
control data, or a collection of these items

NOTE Three terms identify the software decomposition. The top level is the SOFTWARE SYSTEM. The lowest level
that is not further decomposed is the SOFTWARE UNIT. All levels of composition, including the top and bottom levels,
can be called SOFTWARE ITEMS. A SOFTWARE SYSTEM, then, is composed of one or more SOFTWARE ITEMS, and each
SOFTWARE ITEM is composed of one or more SOFTWARE UNITS or decomposable SOFTWARE ITEMS. The responsibility
is left to the MANUFACTURER to provide the granularity of the SOFTWARE ITEMS and SOFTWARE UNITS.

NOTE 2 Based on ISO/IEC 90003:2004, 3.14 and ISO/IEC 12207:2008, 4.41

3.26
Not used

3.27
SOFTWARE SYSTEM
integrated collection of SOFTWARE ITEMS organized to accomplish a specific function or set of
functions

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 14 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

3.28
SOFTWARE UNIT
SOFTWARE ITEM that is not subdivided into other items

NOTE The granularity of SOFTWARE UNITS is defined by the MANUFACTURER (see B.3).

3.29
SOUP
software of unknown provenance (acronym)
SOFTWARE ITEM that is already developed and generally available and that has not been
developed for the purpose of being incorporated into the MEDICAL DEVICE (also known as “off-
the-shelf software”) or SOFTWARE ITEM previously developed for which adequate records of the
development PROCESSES are not available

NOTE A MEDICAL DEVICE SOFTWARE SYSTEM in itself cannot be claimed to be SOUP.

3.30
SYSTEM
integrated composite consisting of one or more of the PROCESSES, hardware, software,
facilities, and people, that provides a capability to satisfy a stated need or objective

NOTE Based on ISO/IEC ISO/IEC 12207:2008, 4.48.

3.31
TASK
a single piece of work that needs to be done

3.32
TRACEABILITY
degree to which a relationship can be established between two or more products of the
development PROCESS

[IEEE 610.12:1990]

NOTE Requirements, architecture, risk control measures, etc. are examples of deliverables of the development
PROCESS.

3.33
VERIFICATION
confirmation through provision of objective evidence that specified requirements have been
fulfilled

NOTE 1 “Verified” is used to designate the corresponding status.

[ISO 9000:2000, definition 3.8.4]
NOTE 2 In design and development, VERIFICATION concerns the PROCESS of examining the result of a given
ACTIVITY to determine conformity with the stated requirement for that ACTIVITY.

3.34
VERSION
identified instance of a CONFIGURATION ITEM

NOTE 1 Modification to a VERSION of MEDICAL DEVICE SOFTWARE, resulting in a new VERSION, requires software
configuration management action.

NOTE 2 Based on ISO/IEC 12207:2008, 4.56.

3.35
HAZARDOUS SITUATION
circumstance in which people, property or the environment are exposed to one or more
HAZARD(S)

[SOURCE: ISO 14971:2007, 2.4]

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 15 –
+AMD1:2015 CSV  IEC 2015

3.36
LEGACY SOFTWARE
MEDICAL DEVICE SOFTWARE which was legally placed on the market and is still marketed today
but for which there is insufficient objective evidence that it was developed in compliance with
the current version of this standard

3.37
RELEASE
particular VERSION of a CONFIGURATION ITEM that is made available for a specific purpose

NOTE Based on ISO/IEC 12207:2008, definition 4.35.

3.38
RESIDUAL RISK
RISK remaining after RISK CONTROL measures have been taken

NOTE 1 Adapted from ISO/IEC Guide 51:1999, definition 3.9.

NOTE 2 ISO/IEC Guide 51:1999, definition 3.9 uses the term “protective measures” rather than “RISK CONTROL
measures.” However, in the context of this International Standard, “protective measures” are only one option for
controlling RISK as described in 6.2 [of ISO 14971:2007].

[SOURCE: ISO 14971:2007, 2.15].

3.39
RISK ESTIMATION
PROCESS used to assign values to the probability of occurrence of HARM and the severity of that
HARM

[SOURCE: ISO 14971:2007 2.20]

3.40
RISK EVALUATION
PROCESS of comparing the estimated RISK against given RISK criteria to determine the
acceptability of the RISK

[SOURCE: ISO 14971:2007 2.21]

4 * General requirements

4.1 * Quality management system

The MANUFACTURER of MEDICAL DEVICE SOFTWARE shall demonstrate the ability to provide
MEDICAL DEVICE SOFTWARE that consistently meets customer requirements and applicable
regulatory requirements.

NOTE 1 Demonstration of this ability can be by the use of a quality management system that complies with:

- ISO 13485 [8]; or

- a national quality management system standard; or

- a quality management system required by national regulation.

NOTE 2 Guidance for applying quality management system requirements to software can be found in ISO/IEC
90003 [15].

4.2 * RISK MANAGEMENT

The MANUFACTURER shall apply a RISK MANAGEMENT PROCESS complying with ISO 14971.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 16 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

4.3 * Software safety classification

a) The MANUFACTURER shall assign to each SOFTWARE SYSTEM a software safety class (A, B, or
C) according to the RISK of HARM to the patient, operator, or other people resulting from a
HAZARDOUS SITUATION to which the SOFTWARE SYSTEM can contribute in a worst-case-
scenario as indicated in Figure 3.

Figure 3 – Assigning software safety classification

The SOFTWARE SYSTEM is software safety class A if:

– the SOFTWARE SYSTEM cannot contribute to a HAZARDOUS SITUATION; or
– the SOFTWARE SYSTEM can contribute to a HAZARDOUS SITUATION which does not result in

unacceptable RISK after consideration of RISK CONTROL measures external to the SOFTWARE
SYSTEM.

The SOFTWARE SYSTEM is software safety class B if:

– the SOFTWARE SYSTEM can contribute to a HAZARDOUS SITUATION which results in
unacceptable RISK after consideration of RISK CONTROL measures external to the SOFTWARE
SYSTEM and the resulting possible HARM is non-SERIOUS INJURY.

The SOFTWARE SYSTEM is software safety class C if:

– the SOFTWARE SYSTEM can contribute to a HAZARDOUS SITUATION which results in
unacceptable RISK after consideration of RISK CONTROL measures external to the SOFTWARE
SYSTEM and the resulting possible HARM is death or SERIOUS INJURY.

For a SOFTWARE SYSTEM initially classified as software safety class B or C, the MANUFACTURER
may implement additional RISK CONTROL measures external to the SOFTWARE SYSTEM (including
revising the system architecture containing the SOFTWARE SYSTEM) and subsequently assign a
new software safety classification to the SOFTWARE SYSTEM.

NOTE 1 External RISK CONTROL measures can be hardware, an independent SOFTWARE SYSTEM, health care
procedures, or other means to minimize that software can contribute to a HAZARDOUS SITUATION.

NOTE 2 See ISO 14971:2007 subclause 3.2, Management Responsibilities, for the definition of risk acceptability.

IEC

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 17 –
+AMD1:2015 CSV  IEC 2015

b) Not used.
c) The MANUFACTURER shall document the software safety class assigned to each SOFTWARE

SYSTEM in the RISK MANAGEMENT FILE.
d) When a SOFTWARE SYSTEM is decomposed into SOFTWARE ITEMS, and when a SOFTWARE

ITEM is decomposed into further SOFTWARE ITEMS, such SOFTWARE ITEMS shall inherit the
software safety classification of the original SOFTWARE ITEM (or SOFTWARE SYSTEM) unless
the MANUFACTURER documents a rationale for classification into a different software safety
class (software safety classes assigned according to 4.3 a) replacing “SOFTWARE SYSTEM”
with “SOFTWARE ITEM”). Such a rationale shall explain how the new SOFTWARE ITEMS are
segregated so that they may be classified separately.

e) The MANUFACTURER shall document the software safety class of each SOFTWARE ITEM if that
class is different from the class of the SOFTWARE ITEM from which it was created by
decomposition.

f) For compliance with this standard, when applying this standard to a group of SOFTWARE
ITEMS, the MANUFACTURER shall use the PROCESSES and TASKS which are required by the
classification of the highest-classified SOFTWARE ITEM in the group unless the
MANUFACTURER documents in the RISK MANAGEMENT FILE a rationale for using a lower
classification.

g) For each SOFTWARE SYSTEM, until a software safety class is assigned, Class C
requirements shall apply.

NOTE In the clauses and subclauses that follow, the software safety classesfor which a specific requirement
applies are identified following the requirement in the form [Class . . .].

4.4 * LEGACY SOFTWARE

4.4.1 General

As an alternative to applying Clauses 5 through 9 of this standard, compliance of LEGACY
SOFTWARE may be demonstrated as indicated in 4.4.2 to 4.4.5.

4.4.2 RISK MANAGEMENT ACTIVITIES

In accordance with 4.2 of this standard, the MANUFACTURER shall:

a) assess any feedback, including post-production information, on LEGACY SOFTWARE
regarding incidents and / or near incidents, both from inside its own organization and / or
from users;

b) perform RISK MANAGEMENT ACTIVITIES associated with continued use of the LEGACY
SOFTWARE, considering the following aspects:
– integration of the LEGACY SOFTWARE in the overall MEDICAL DEVICE architecture;
– continuing validity of RISK CONTROL measures, implemented as part of the LEGACY

SOFTWARE;
– identification of HAZARDOUS SITUATIONS associated with the continued use of the LEGACY

SOFTWARE;
– identification of potential causes of the LEGACY SOFTWARE contributing to a HAZARDOUS

SITUATION;
– definition of RISK CONTROL measures for each potential cause of the LEGACY SOFTWARE

contributing to a HAZARDOUS SITUATION.

4.4.3 Gap analysis

Based on the software safety class of the LEGACY SOFTWARE (see 4.3), the MANUFACTURER shall
perform a gap analysis of available DELIVERABLES against those required according to 5.2, 5.3,
5.7, and Clause 7.

a) The MANUFACTURER shall assess the continuing validity of available DELIVERABLES.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 18 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

b) Where gaps are identified, the MANUFACTURER shall EVALUATE the potential reduction in
RISK resulting from the generation of the missing DELIVERABLES and associated ACTIVITIES.

c) Based on this evaluation, the MANUFACTURER shall determine the DELIVERABLES to be
created and associated ACTIVITIES to be performed. The minimum DELIVERABLE shall be
SOFTWARE SYSTEM test records (see 5.7.5).

NOTE Such gap analysis should assure that RISK CONTROL measures, implemented in LEGACY SOFTWARE, are
included in the software requirements.

4.4.4 Gap closure activities
a) The MANUFACTURER shall establish and execute a plan to generate the identified

DELIVERABLES. Where available, objective evidence may be used to generate required
DELIVERABLES without performing ACTIVITIES required by 5.2, 5.3, 5.7 and Clause 7.
NOTE A plan on how to address the identified gaps can be included in a software maintenance plan (see 6.1).

b) The plan shall address the use of the problem resolution PROCESS for handling problems
detected in the LEGACY SOFTWARE and DELIVERABLES in accordance with Clause 9.

c) Changes to the LEGACY SOFTWARE shall be performed in accordance with Clause 6.

4.4.5 Rationale for use of LEGACY SOFTWARE

The MANUFACTURER shall document the VERSION of the LEGACY SOFTWARE together with a
rationale for the continued use of the LEGACY SOFTWARE based on the outputs of 4.4.

NOTE Fulfilling 4.4 enables further use of LEGACY SOFTWARE in accordance with IEC 62304.

5 Software development PROCESS

5.1 * Software development planning

5.1.1 Software development plan

The MANUFACTURER shall establish a software development plan (or plans) for conducting the
ACTIVITIES of the software development PROCESS appropriate to the scope, magnitude, and
software safety classifications of the SOFTWARE SYSTEM to be developed. The sOFTWARE
DEVELOPMENT LIFE CYCLE MODEL shall either be fully defined or be referenced in the plan (or
plans). The plan shall address the following:

a) the PROCESSES to be used in the development of the SOFTWARE SYSTEM (see Note 4);
b) the DELIVERABLES (includes documentation) of the ACTIVITIES and TASKS;
c) TRACEABILITY between SYSTEM requirements, software requirements, SOFTWARE SYSTEM

test, and RISK CONTROL measures implemented in software;
d) software configuration and change management, including SOUP CONFIGURATION ITEMS and

software used to support development; and
e) software problem resolution for handling problems detected in the MEDICAL DEVICE

SOFTWARE, DELIVERABLES and ACTIVITIES at each stage of the life cycle.

[Class A, B, C]

NOTE 1 The SOFTWARE DEVELOPMENT LIFE CYCLE MODEL can identify different elements (PROCESSES, ACTIVITIES,
TASKS and DELIVERABLES) for different SOFTWARE ITEMS according to the software safety classification of each
SOFTWARE ITEM of the SOFTWARE SYSTEM.

NOTE 2 These ACTIVITIES and TASKS can overlap or interact and can be performed iteratively or recursively. It is not
the intent to imply that a specific life cycle model should be used.

NOTE 3 Other PROCESSES are described in this standard separately from the development PROCESS. This does not
imply that they must be implemented as separate ACTIVITIES and TASKS. The ACTIVITIES and TASKS of the other
PROCESSES can be integrated into the development PROCESS.

NOTE 4 The software development plan can reference existing PROCESSES or define new ones.

NOTE 5 The software development plan may be integrated in an overall SYSTEM development plan.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 19 –
+AMD1:2015 CSV  IEC 2015

5.1.2 Keep software development plan updated

The MANUFACTURER shall update the plan as development proceeds as appropriate. [Class A,
B, C]

5.1.3 Software development plan reference to SYSTEM design and development
a) As inputs for software development, SYSTEM requirements shall be referenced in the

software development plan by the MANUFACTURER.
b) In the software development plan, the MANUFACTURER shall include or reference procedures

for coordinating the software development with the system development necessary to
satisfy 4.1 (such as system integration, verification, and validation).

[Class A, B, C]

NOTE There might not be a difference between SOFTWARE SYSTEM requirements and SYSTEM requirements if the
SOFTWARE SYSTEM is a stand alone SYSTEM (software-only device).

5.1.4 Software development standards, methods and tools planning

The MANUFACTURER shall include or reference in the software development plan:

a) standards,
b) methods, and
c) tools
associated with the development of SOFTWARE ITEMS of class C. [Class C]

5.1.5 Software integration and integration testing planning

The MANUFACTURER shall include or reference in the software development plan, a plan to
integrate the SOFTWARE ITEMS (including SOUP) and perform testing during integration. [Class B,
C]

NOTE 1 It is acceptable to combine integration testing and SOFTWARE SYSTEM testing into a single plan and set of
ACTIVITIES.

NOTE 2 See 5.6.

5.1.6 Software VERIFICATION planning

The MANUFACTURER shall include or reference in the software development plan the following
VERIFICATION information:

a) DELIVERABLES requiring VERIFICATION;
b) the required VERIFICATION TASKS for each life cycle ACTIVITY;
c) milestones at which the DELIVERABLES are VERIFIED; and
d) the acceptance criteria for VERIFICATION of the DELIVERABLES.

[Class A, B, C]

5.1.7 Software RISK MANAGEMENT planning

The MANUFACTURER shall include or reference in the software development plan, a plan to
conduct the ACTIVITIES and TASKS of the software RISK MANAGEMENT PROCESS, including the
management of RISKS relating to SOUP. [Class A, B, C]

NOTE See Clause 7.

5.1.8 Documentation planning

The MANUFACTURER shall include or reference in the software development plan information
about the documents to be produced during the software development life cycle. For each

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 20 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

identified document or type of document the following information shall be included or
referenced:

a) title, name or naming convention;
b) purpose;
c) procedures and responsibilities for development, review, approval and modification.

[Class A, B, C]

NOTE See Clause 8 for consideration of configuration management of documentation.

5.1.9 Software configuration management planning

The MANUFACTURER shall include or reference software configuration management information
in the software development plan. The software configuration management information shall
include or reference:

a) the classes, types, categories or lists of items to be controlled;
b) the software configuration management ACTIVITIES and TASKS;
c) the organization(s) responsible for performing software configuration management

ACTIVITIES;
d) their relationship with other organizations, such as software development or maintenance;
e) when the items are to be placed under configuration control; and
f) when the problem resolution PROCESS is to be used.

[Class A, B, C]

NOTE See Clause 8.

5.1.10 Supporting items to be controlled

The items to be controlled shall include tools, items or settings, used to develop the MEDICAL
DEVICE SOFTWARE, which could impact the MEDICAL DEVICE SOFTWARE. [Class B, C]

NOTE 1 Examples of such items include compiler/assembler versions, make files, batch files, and specific
environment settings.

NOTE 2 See Clause 8.

5.1.11 Software CONFIGURATION ITEM control before VERIFICATION

The MANUFACTURER shall plan to place CONFIGURATION ITEMS under configuration management
control before they are VERIFIED. [Class B, C]

5.1.12 Identification and avoidance of common software defects

The MANUFACTURER shall include or reference in the software development plan a procedure
for:

a) identifying categories of defects that may be introduced based on the selected
programming technology that are relevant to their SOFTWARE SYSTEM; and

b) documenting evidence that demonstrates that these defects do not contribute to
unacceptable RISK.

NOTE See Annex B of IEC TR 80002-1:2009 for examples of categories of defects or causes contributing to
HAZARDOUS SITUATIONS.

[Class B, C]

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 21 –
+AMD1:2015 CSV  IEC 2015

5.2 * Software requirements analysis

5.2.1 Define and document software requirements from SYSTEM requirements

For each SOFTWARE SYSTEM of the MEDICAL DEVICE, the MANUFACTURER shall define and
document SOFTWARE SYSTEM requirements from the SYSTEM level requirements. [Class A, B, C]

NOTE There might not be a difference between SOFTWARE SYSTEM requirements and SYSTEM requirements if the
SOFTWARE SYSTEM is a stand alone SYSTEM (software-only device).

5.2.2 Software requirements content

As appropriate to the MEDICAL DEVICE SOFTWARE, the MANUFACTURER shall include in the
software requirements:
a) functional and capability requirements;
NOTE 1 Examples include:

– performance (e.g., purpose of software, timing requirements),

– physical characteristics (e.g., code language, platform, operating system),

– computing environment (e.g., hardware, memory size, processing unit, time zone, network infrastructure) under
which the software is to perform, and

– need for compatibility with upgrades or multiple SOUP or other device versions.

b) SOFTWARE SYSTEM inputs and outputs;
NOTE 2 Examples include:

– data characteristics (e.g., numerical, alpha-numeric, format)

– ranges,

– limits, and

– defaults.

c) interfaces between the SOFTWARE SYSTEM and other SYSTEMS;
d) software-driven alarms, warnings, and operator messages;
e) SECURITY requirements;
NOTE 3 Examples include:

– those related to the compromise of sensitive information,

– authentication,

– authorization,

– audit trail, and

– communication integrity,

– system security/malware protection.

f) user interface requirements implemented by software;
NOTE 4 Examples include those related to:

– support for manual operations,

– human-equipment interactions,

– constraints on personnel, and

– areas needing concentrated human attention.

NOTE 5 Information regarding usability engineering requirements can be found in IEC 62366-1 [21] among others
(e.g., IEC 60601-1-6 [3]).

g) data definition and database requirements;
NOTE 6 Examples include:

– form;

– fit;

– function.

h) installation and acceptance requirements of the delivered MEDICAL DEVICE SOFTWARE at the
operation and maintenance site or sites;

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 22 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

i) requirements related to methods of operation and maintenance;
j) requirements related to IT-network aspects;
NOTE 9 Examples include those related to:

– networked alarms, warnings, and operator messages;

– network protocols;

– handling of unavailability of network services.

k) user maintenance requirements; and
l) regulatory requirements.
NOTE 10 The requirements in a) through l) can overlap.

[Class A, B, C]

NOTE 7 All of these requirements might not be available at the beginning of the software development.

NOTE 8 Among others, ISO/IEC 25010 [12] provides information on quality characteristics that may be useful in
defining software requirements.

5.2.3 Include RISK CONTROL measures in software requirements

The MANUFACTURER shall include RISK CONTROL measures implemented in software in the
requirements as appropriate to the MEDICAL DEVICE SOFTWARE. [Class B, C]

NOTE These requirements might not be available at the beginning of the software development and can change
as the software is designed and RISK CONTROL measures are further defined.

5.2.4 Re-EVALUATE MEDICAL DEVICE RISK ANALYSIS

The MANUFACTURER shall re-EVALUATE the MEDICAL DEVICE RISK ANALYSIS when software
requirements are established and update it as appropriate. [Class A, B, C]

5.2.5 Update requirements

The MANUFACTURER shall ensure that existing requirements, including SYSTEM requirements,
are re-EVALUATED and updated as appropriate as a result of the software requirements analysis
ACTIVITY. [Class A, B, C]

5.2.6 Verify software requirements

The MANUFACTURER shall verify and document that the software requirements:

a) implement SYSTEM requirements including those relating to RISK CONTROL;
b) do not contradict one another;
c) are expressed in terms that avoid ambiguity;
d) are stated in terms that permit establishment of test criteria and performance of tests;
e) can be uniquely identified; and
f) are traceable to SYSTEM requirements or other source.

[Class A, B, C]

NOTE This standard does not require the use of a formal specification language.

5.3 * Software ARCHITECTURAL design

5.3.1 Transform software requirements into an ARCHITECTURE

The MANUFACTURER shall transform the requirements for the MEDICAL DEVICE SOFTWARE into a
documented ARCHITECTURE that describes the software’s structure and identifies the SOFTWARE
ITEMS. [Class B, C]

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 23 –
+AMD1:2015 CSV  IEC 2015
5.3.2 Develop an ARCHITECTURE for the interfaces of SOFTWARE ITEMS

The MANUFACTURER shall develop and document an ARCHITECTURE for the interfaces between
the SOFTWARE ITEMS and the components external to the SOFTWARE ITEMS (both software and
hardware), and between the SOFTWARE ITEMS. [Class B, C]

5.3.3 Specify functional and performance requirements of SOUP item

If a SOFTWARE ITEM is identified as SOUP, the MANUFACTURER shall specify functional and
performance requirements for the SOUP item that are necessary for its intended use. [Class
B, C]

5.3.4 Specify SYSTEM hardware and software required by SOUP item

If a SOFTWARE ITEM is identified as SOUP, the MANUFACTURER shall specify the SYSTEM hardware
and software necessary to support the proper operation of the SOUP item. [Class B, C]

NOTE Examples include processor type and speed, memory type and size, SYSTEM software type, communication
and display software requirements.

5.3.5 Identify segregation necessary for RISK CONTROL

The MANUFACTURER shall identify any segregation between SOFTWARE ITEMS that is necessary
for RISK CONTROL, and state how to ensure that such segregation is effective. [Class C]

NOTE An example of segregation is to have SOFTWARE ITEMS execute on different processors. The effectiveness
of the segregation can be ensured by having no shared resources between the processors. Other means of
segregation can be applied when effectiveness can be ensured by the software ARCHITECTURE design (see B.4.3).

5.3.6 Verify software ARCHITECTURE

The MANUFACTURER shall verify and document that:
a) the ARCHITECTURE of the software implements SYSTEM and software requirements including

those relating to RISK CONTROL;
b) the software ARCHITECTURE is able to support interfaces between SOFTWARE ITEMS and

between SOFTWARE ITEMS and hardware; and
c) the MEDICAL DEVICE ARCHITECTURE supports proper operation of any SOUP items.
[Class B, C]

NOTE A TRACEABILITY analysis of ARCHITECTURE to software requirements can be used to satisfy requirement a).

5.4 * Software detailed design

5.4.1 Subdivide software into SOFTWARE UNITS

The MANUFACTURER shall subdvide the software until it is represented by SOFTWARE UNITS.
[Class B, C]

NOTE Some SOFTWARE SYSTEMS are not divided further.

5.4.2 Develop detailed design for each SOFTWARE UNIT

The MANUFACTURER shall document a design with enough detail to allow correct implementation
of each SOFTWARE UNIT. [Class C]

5.4.3 Develop detailed design for interfaces

The MANUFACTURER shall document a design for any interfaces between the SOFTWARE UNIT
and external components (hardware or software), as well as any interfaces between SOFTWARE
UNITS, detailed enough to implement each SOFTWARE UNIT and its interfaces correctly. [Class C]

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 24 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

5.4.4 Verify detailed design

The MANUFACTURER shall verify and document that the software detailed design:

a) implements the software ARCHITECTURE; and
b) is free from contradiction with the software ARCHITECTURE.

[Class C]

NOTE It is acceptable to use a TRACEABILITY analysis of ARCHITECTURE to software detailed design to satisfy
requirement a).

5.5 * SOFTWARE UNIT implementation

5.5.1 Implement each SOFTWARE UNIT

The MANUFACTURER shall implement each SOFTWARE UNIT. [Class A, B, C]

5.5.2 Establish SOFTWARE UNIT VERIFICATION PROCESS

The MANUFACTURER shall establish strategies, methods and procedures for verifying the
SOFTWARE UNITS. Where VERIFICATION is done by testing, the test procedures shall be
EVALUATED for adequacy. [Class B, C]
NOTE It is acceptable to combine integration testing and SOFTWARE SYSTEM testing into a single plan and set of
ACTIVITIES.

5.5.3 SOFTWARE UNIT acceptance criteria

The MANUFACTURER shall establish acceptance criteria for SOFTWARE UNITS prior to integration
into larger SOFTWARE ITEMS as appropriate, and ensure that SOFTWARE UNITS meet acceptance
criteria. [Class B, C]

NOTE Examples of acceptance criteria are:

– does the software code implement requirements including RISK CONTROL measures?

– is the software code free from contradiction with the interface design of the SOFTWARE UNIT?

– does the software code conform to programming procedures or coding standards?

5.5.4 Additional SOFTWARE UNIT acceptance criteria

When present in the design, the MANUFACTURER shall include additional acceptance criteria as
appropriate for:

a) proper event sequence;
b) data and control flow;
c) planned resource allocation;
d) fault handling (error definition, isolation, and recovery);
e) initialisation of variables;
f) self-diagnostics;
g) memory management and memory overflows; and
h) boundary conditions.

[Class C]

5.5.5 SOFTWARE UNIT VERIFICATION

The MANUFACTURER shall perform the SOFTWARE UNIT VERIFICATION and document the results.
[Class B, C]

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 25 –
+AMD1:2015 CSV  IEC 2015

5.6 * Software integration and integration testing

5.6.1 Integrate SOFTWARE UNITS

The MANUFACTURER shall integrate the SOFTWARE UNITS in accordance with the integration plan
(see 5.1.5). [Class B, C]

5.6.2 Verify software integration

The MANUFACTURER shall verify that the SOFTWARE UNITS have been integrated into SOFTWARE
ITEMS and/or the SOFTWARE SYSTEM in accordance with the integration plan (see 5.1.5) and
retain records of the evidence of such verification.

[Class B, C]

NOTE This VERIFICATION is only that the integration has been done according to the plan. This VERIFICATION is
most likely implemented by some form of inspection.

5.6.3 Software integration testing

The MANUFACTURER shall test the integrated SOFTWARE ITEMS in accordance with the integration
plan (see 5.1.5) and document the results. [Class B, C]

5.6.4 Software integration testing content

For software integration testing, the MANUFACTURER shall address whether the integrated
SOFTWARE ITEM performs as intended.

[Class B, C]

NOTE 1 Examples to be considered are:

- the required functionality of the software;

- implementation of RISK CONTROL measures;

- specified timing and other behaviour;

- specified functioning of internal and external interfaces; and

- testing under abnormal conditions including foreseeable misuse.

NOTE 2 It is acceptable to combine integration testing and SOFTWARE SYSTEM testing into a single plan and set of
ACTIVITIES.

5.6.5 EVALUATE software integration test procedures

The MANUFACTURER shall EVALUATE the integration test procedures for adequacy. [Class B, C]

5.6.6 Conduct regression tests

When software items are integrated, the MANUFACTURER shall conduct REGRESSION TESTING
appropriate to demonstrate that defects have not been introduced into previously integrated
software. [Class B, C]

5.6.7 Integration test record contents

The MANUFACTURER shall:

a) document the test result (pass/fail and a list of ANOMALIES);
b) retain sufficient records to permit the test to be repeated; and
c) identify the tester.

[Class B, C]

NOTE Requirement b) could be implemented by retaining, for example:

- test case specifications showing required actions and expected results;

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 26 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

- records of the equipment;

- records of the test environment (including software tools) used for test.

5.6.8 Use software problem resolution PROCESS

The MANUFACTURER shall enter ANOMALIES found during software integration and integration
testing into a software problem resolution PROCESS. [Class B, C]

NOTE See Clause 9.

5.7 * SOFTWARE SYSTEM testing

5.7.1 Establish tests for software requirements

a) The MANUFACTURER shall establish and perform a set of tests, expressed as input stimuli,
expected outcomes, pass/fail criteria and procedures, for conducting SOFTWARE SYSTEM
testing, such that all software requirements are covered. [Class A, B, C]

NOTE 1 It is acceptable to combine integration testing and SOFTWARE SYSTEM testing into a single plan and
set of ACTIVITIES. It is also acceptable to test software requirements in earlier phases.

NOTE 2 Not only separate tests for each requirement, but also tests of combinations of requirements can be
performed, especially if dependencies between requirements exist.

b) The MANUFACTURER shall EVALUATE the adequacy of VERIFICATION strategies and test
procedures.

5.7.2 Use software problem resolution PROCESS

The MANUFACTURER shall enter ANOMALIES found during software system testing into a software
problem resolution PROCESS. [Class A, B, C]

5.7.3 Retest after changes

When changes are made during SOFTWARE SYSTEM testing, the MANUFACTURER shall:

a) repeat tests, perform modified tests or perform additional tests, as appropriate, to verify the
effectiveness of the change in correcting the problem;

b) conduct testing appropriate to demonstrate that unintended side effects have not been
introduced; and

c) perform relevant RISK MANAGEMENT ACTIVITIES as defined in 7.4.

[Class A, B, C]

5.7.4 Evaluate SOFTWARE SYSTEM testing

The MANUFACTURER shall EVALUATE the appropriateness of VERIFICATION strategies and test
procedures.

The MANUFACTURER shall verify that:

a) all software requirements have been tested or otherwise VERIFIED;
b) the TRACEABILITY between software requirements and tests or other VERIFICATION is

recorded; and
c) test results meet the required pass/fail criteria.

[Class A, B, C]

5.7.5 SOFTWARE SYSTEM test record contents

In order to support the repeatability of tests, the MANUFACTURER shall document:

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 27 –
+AMD1:2015 CSV  IEC 2015

a) a reference to test case procedures showing required actions and expected results;
b) the test result (pass/fail and a list of ANOMALIES);
c) the version of software tested;
d) relevant hardware and software test configurations;
e) relevant test tools;
f) date tested; and
g) the identity of the person responsible for executing the test and recording the test results.

[Class A, B, C]

5.8 * Software RELEASE for utilization at a SYSTEM level

5.8.1 Ensure software VERIFICATION is complete

The MANUFACTURER shall ensure that all software VERIFICATION ACTIVITIES have been completed
and the results have been EVALUATED before the software is released. [Class A, B, C]

5.8.2 Document known residual ANOMALIES

The MANUFACTURER shall document all known residual ANOMALIES. [Class A, B, C]

5.8.3 EVALUATE known residual ANOMALIES

The MANUFACTURER shall ensure that all known residual ANOMALIES have been EVALUATED to
ensure that they do not contribute to an unacceptable RISK. [Class B, C]

5.8.4 Document released VERSIONS

The MANUFACTURER shall document the VERSION of the MEDICAL DEVICE SOFTWARE that is being
released. [Class A, B, C]

5.8.5 Document how released software was created

The MANUFACTURER shall document the procedure and environment used to create the released
software. [Class B, C]

5.8.6 Ensure activities and tasks are complete

The MANUFACTURER shall ensure that all software development plan (or maintenance plan)
ACTIVITIES and TASKS are complete along with the associated documentation. [Class B, C]

NOTE See 5.1.3.b).

5.8.7 Archive software

The MANUFACTURER shall archive:

a) the MEDICAL DEVICE SOFTWARE and CONFIGURATION ITEMS; and
b) the documentation

for at least a period of time determined as the longer of: the life time of the MEDICAL DEVICE
SOFTWARE as defined by the MANUFACTURER or a time specified by relevant regulatory
requirements. [Class A, B, C]

5.8.8 Assure reliable delivery of released software

The MANUFACTURER shall establish procedures to ensure that the released MEDICAL DEVICE
SOFTWARE can be reliably delivered to the point of use without corruption or unauthorised

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 28 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

change. These procedures shall address the production and handling of media containing the
MEDICAL DEVICE SOFTWARE including as appropriate:
– replication,
– media labelling,
– packaging,
– protection,
– storage, and
– delivery.

[Class A, B, C]

6 Software maintenance PROCESS

6.1 * Establish software maintenance plan

The MANUFACTURER shall establish a software maintenance plan (or plans) for conducting the
ACTIVITIES and TASKS of the maintenance PROCESS. The plan shall address the following:

a) procedures for:
– receiving,
– documenting,
– evaluating,
– resolving and
– tracking
feedback arising after release of the MEDICAL DEVICE SOFTWARE;

b) criteria for determining whether feedback is considered to be a problem;
c) use of the software RISK MANAGEMENT PROCESS;
d) use of the software problem resolution PROCESS for analysing and resolving problems

arising after release of the MEDICAL DEVICE SOFTWARE;
e) use of the software configuration management PROCESS (Clause 8) for managing

modifications to the existing SOFTWARE SYSTEM; and
f) procedures to EVALUATE and implement:

– upgrades,
– bug fixes,
– patches and
– obsolescence
of SOUP.

[Class A, B, C]

6.2 * Problem and modification analysis

6.2.1 Document and EVALUATE feedback

6.2.1.1 Monitor feedback

The MANUFACTURER shall monitor feedback on MEDICAL DEVICE SOFTWARE released for intended
use.
[Class A, B, C]

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 29 –
+AMD1:2015 CSV  IEC 2015

6.2.1.2 Document and EVALUATE feedback

Feedback shall be documented and EVALUATED to determine whether a problem exists in a
released MEDICAL DEVICE SOFTWARE. Any such problem shall be recorded as a PROBLEM REPORT
(see Clause 9). PROBLEM REPORTS shall include actual or potential adverse events, and
deviations from specifications. [Class A, B, C]

6.2.1.3 Evaluate PROBLEM REPORT’S affects on SAFETY

Each PROBLEM REPORT shall be EVALUATED to determine how it affects the SAFETY of MEDICAL
DEVICE SOFTWARE released for intended use (see 9.2) and whether a change to that software is
needed to address the problem. [Class A, B, C]

6.2.2 Use software problem resolution PROCESS

The MANUFACTURER shall use the software problem resolution PROCESS (see Clause 9) to
address PROBLEM REPORTS. [Class A, B, C]

NOTE A problem could show that a SOFTWARE SYSTEM or SOFTWARE ITEM has not been placed in the correct
software safety class. The problem resolution process can suggest changes of the software safety class. When the
PROCESS has been completed, any change of safety class in the SOFTWARE SYSTEM or its SOFTWARE ITEMS should be
made known and documented.

6.2.3 Analyse CHANGE REQUESTS
In addition to the analysis required by Clause 9, the MANUFACTURER shall analyse each CHANGE
REQUEST for its effect on the organization, MEDICAL DEVICE SOFTWARE released for intended use ,
and SYSTEMS with which it interfaces. [Class A, B, C]

6.2.4 CHANGE REQUEST approval

The MANUFACTURER shall EVALUATE and approve CHANGE REQUESTS which modify released
MEDICAL DEVICE SOFTWARE. [Class A, B, C]

6.2.5 Communicate to users and regulators

The MANUFACTURER shall identify the approved CHANGE REQUESTS that affect released MEDICAL
DEVICE SOFTWARE.

As required by local regulation, the MANUFACTURER shall inform users and regulators about:

a) any problem in released MEDICAL DEVICE SOFTWARE and the consequences of continued
unchanged use; and

b) the nature of any available changes to released MEDICAL DEVICE SOFTWARE and how to
obtain and install the changes.

[Class A, B, C]

6.3 * Modification implementation

6.3.1 Use established PROCESS to implement modification

The MANUFACTURER shall identify and perform any Clause 5 ACTIVITIES that need to be repeated
as a result of the modification. [Class A, B, C]

NOTE For requirements relating to RISK MANAGEMENT of software changes see 7.4.

6.3.2 Re-release modified SOFTWARE SYSTEM

The MANUFACTURER shall release modifications according to 5.8. [Class A, B, C]

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 30 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

NOTE Modifications can be released as part of a full re-release of a SOFTWARE SYSTEM or as a modification kit
comprising changed SOFTWARE ITEMS and the necessary tools to install the changes as modifications to an existing
SOFTWARE SYSTEM.

7 * Software RISK MANAGEMENT PROCESS

7.1 * Analysis of software contributing to hazardous situations

7.1.1 Identify SOFTWARE ITEMS that could contribute to a hazardous situation

The MANUFACTURER shall identify SOFTWARE ITEMS that could contribute to a hazardous situation
identified in the MEDICAL DEVICE RISK ANALYSIS ACTIVITY of ISO 14971 (see 4.2). [Class B, C]

NOTE The hazardous situation could be the direct result of software failure or the result of the failure of a RISK
CONTROL measure that is implemented in software.

7.1.2 Identify potential causes of contribution to a hazardous situation

The MANUFACTURER shall identify potential causes of the SOFTWARE ITEM identified above
contributing to a hazardous situation.

The MANUFACTURER shall consider potential causes including, as appropriate:

a) incorrect or incomplete specification of functionality;
b) software defects in the identified SOFTWARE ITEM functionality;
c) failure or unexpected results from SOUP;
d) hardware failures or other software defects that could result in unpredictable software

operation; and
e) reasonably foreseeable misuse.

[Class B, C]

7.1.3 EVALUATE published SOUP ANOMALY lists

If failure or unexpected results from SOUP is a potential cause of the SOFTWARE ITEM
contributing to a hazardous situation, the MANUFACTURER shall EVALUATE as a minimum any
ANOMALY list published by the supplier of the SOUP item relevant to the VERSION of the SOUP
item used in the MEDICAL DEVICE to determine if any of the known ANOMALIES result in a
sequence of events that could result in a hazardous situation. [Class B, C]

7.1.4 Document potential causes

The MANUFACTURER shall document in the RISK MANAGEMENT FILE potential causes of the
SOFTWARE ITEM contributing to a hazardous situation (see ISO 14971). [Class B, C]

7.2 RISK CONTROL measures

7.2.1 Define RISK CONTROL measures

For each case documented in the RISK MANAGEMENT FILE where a SOFTWARE ITEM could
contribute to a HAZARDOUS SITUATION, the MANUFACTURER shall define and document RISK
CONTROL measures in accordance with ISO 14971. [Class B, C]

NOTE The RISK CONTROL measures can be implemented in hardware, software, the working environment or user
instruction.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 31 –
+AMD1:2015 CSV  IEC 2015

7.2.2 RISK CONTROL measures implemented in software

If a RISK CONTROL measure is implemented as part of the functions of a SOFTWARE ITEM, the
MANUFACTURER shall:
a) include the RISK CONTROL measure in the software requirements;
b) assign to each SOFTWARE ITEM that contributes to the implementation of a RISK CONTROL

measure a software safety class based on the RISK that the RISK CONTROL measure is
controlling (see 4.3 a)); and

c) develop the SOFTWARE ITEM in accordance with Clause 5.

[Class B, C]

NOTE This requirement provides additional detail for RISK CONTROL requirements of ISO 14971

7.3 VERIFICATION of RISK CONTROL measures

7.3.1 Verify RISK CONTROL measures

The implementation of each RISK CONTROL measure documented in 7.2 shall be VERIFIED, and
this VERIFICATION shall be documented. The MANUFACTURER shall review the RISK CONTROL
measure and determine if it could result in a new HAZARDOUS SITUATION. [Class B, C]

7.3.2

Not used.

7.3.3 Document TRACEABILITY

The MANUFACTURER shall document TRACEABILITY of software HAZARDS as appropriate:

a) from the hazardous situation to the SOFTWARE ITEM;
b) from the SOFTWARE ITEM to the specific software cause;
c) from the software cause to the RISK CONTROL measure; and
d) from the RISK CONTROL measure to the VERIFICATION of the RISK CONTROL measure.

[Class B, C]

NOTE See ISO 14971 – RISK MANAGEMENT report.

7.4 RISK MANAGEMENT of software changes

7.4.1 Analyse changes to MEDICAL DEVICE SOFTWARE with respect to SAFETY

The MANUFACTURER shall analyse changes to the MEDICAL DEVICE SOFTWARE (including SOUP) to
determine whether:
a) additional potential causes are introduced contributing to a hazardous situation; and
b) additional software RISK CONTROL measures are required.

[Class A, B, C]

7.4.2 Analyse impact of software changes on existing RISK CONTROL measures

The MANUFACTURER shall analyse changes to the software, including changes to SOUP, to
determine whether the software modification could interfere with existing RISK CONTROL
measures. [Class B, C]

7.4.3 Perform RISK MANAGEMENT ACTIVITIES based on analyses

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 32 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

The MANUFACTURER shall perform relevant RISK MANAGEMENT ACTIVITIES defined in 7.1, 7.2 and
7.3 based on these analyses. [Class B, C]

8 * Software configuration management PROCESS

8.1 * Configuration identification

8.1.1 Establish means to identify CONFIGURATION ITEMS

The MANUFACTURER shall establish a scheme for the unique identification of CONFIGURATION
ITEMS and their VERSIONS to be controlled according to the development and configuration
planning specified in 5.1. [Class A, B, C]

8.1.2 Identify SOUP

For each SOUP CONFIGURATION ITEM being used, including standard libraries, the MANUFACTURER
shall document:
a) the title,
b) the MANUFACTURER, and
c) the unique SOUP designator
[Class A, B, C]
NOTE The unique SOUP designator could be, for example, a VERSION, a release date, a patch number or an
upgrade designation.

8.1.3 Identify SYSTEM configuration documentation

The MANUFACTURER shall document the set of CONFIGURATION ITEMS and their VERSIONS that
comprise the SOFTWARE SYSTEM configuration. [Class A, B, C]

8.2 * Change control

8.2.1 Approve CHANGE REQUESTS

The MANUFACTURER shall change CONFIGURATION ITEMS identified to be controlled according to
8.1 only in response to an approved CHANGE REQUEST. [Class A, B, C]

NOTE 1 The decision to approve a CHANGE REQUEST can be integral to the change control PROCESS or part of
another PROCESS. This subclause only requires that approval of a change precede its implementation.

NOTE 2 Different acceptance PROCESSES can be used for CHANGE REQUESTS at different stages of the life cycle, as
stated in plans, see 5.1.1 d) and 6.1 e).

8.2.2 Implement changes

The MANUFACTURER shall implement the change as specified in the CHANGE REQUEST. The
MANUFACTURER shall identify and perform any ACTIVITY that needs to be repeated as a result of
the change, including changes to the software safety classification of SOFTWARE SYSTEMS and
SOFTWARE ITEMS. [Class A, B, C]
NOTE This subclause states how the change should be implemented to achieve adequate change control. It does
not imply that the implementation is an integral part of the change control PROCESS. Implementation should use
planned PROCESSES, see 5.1.1 e) and 6.1 e).

8.2.3 Verify changes

The MANUFACTURER shall verify the change, including repeating any VERIFICATION that has been
invalidated by the change and taking into account 5.7.3 and 9.7. [Class A, B, C]

NOTE This subclause only requires that changes be VERIFIED. It does not imply that VERIFICATION is an integral
part of the change control PROCESS. VERIFICATION should use planned PROCESSES, see 5.1.1 e) and 6.1 e).

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 33 –
+AMD1:2015 CSV  IEC 2015

8.2.4 Provide means for TRACEABILITY of change

The MANUFACTURER shall maintain records of the relationships and dependencies between:
a) CHANGE REQUEST;
b) relevant PROBLEM REPORT; and
c) approval of the CHANGE REQUEST

[Class A, B, C]

8.3 * Configuration status accounting

The MANUFACTURER shall retain retrievable records of the history of controlled CONFIGURATION
ITEMS including SYSTEM configuration. [Class A, B, C]

9 * Software problem resolution PROCESS

9.1 Prepare PROBLEM REPORTS

The MANUFACTURER shall prepare a PROBLEM REPORT for each problem detected in the MEDICAL
DEVICE SOFTWARE. PROBLEM REPORTS shall include a statement of criticality (for example, effect
on performance, SAFETY, or SECURITY) as well as other information that may aid in the
resolution of the problem (for example, devices affected, supported accessories affected).

[Class A, B, C]

NOTE Problems can be discovered before or after release, inside the MANUFACTURER’S organization or outside it.

9.2 Investigate the problem

The MANUFACTURER shall:
a) investigate the problem and if possible identify the causes;
b) EVALUATE the problem’s relevance to SAFETY using the software RISK MANAGEMENT PROCESS

(Clause 7);
c) document the outcome of the investigation and evaluation; and
d) create a CHANGE REQUEST(S) for actions needed to correct the problem, or document the

rationale for taking no action.

[Class A, B, C]

NOTE A problem does not have to be corrected for the MANUFACTURER to comply with the software problem
resolution PROCESS, provided that the problem is not relevant to SAFETY.

9.3 Advise relevant parties

The MANUFACTURER shall advise relevant parties of the existence of the problem, as
appropriate.

[Class A, B, C]

NOTE Problems can be discovered before or after release, inside the MANUFACTURER’S organisation or outside it.
The MANUFACTURER determines the relevant parties depending on the situation.

9.4 Use change control process

The MANUFACTURER shall approve and implement all CHANGE REQUESTS, observing the
requirements of the change control PROCESS (see 8.2). [Class A, B, C]

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 34 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

9.5 Maintain records

The MANUFACTURER shall maintain records of PROBLEM REPORTS and their resolution including
their VERIFICATION.

The MANUFACTURER shall update the RISK MANAGEMENT FILE as appropriate. [Class A, B, C]

9.6 Analyse problems for trends

The MANUFACTURER shall perform analysis to detect trends in PROBLEM REPORTS. [Class A, B, C]

9.7 Verify software problem resolution

The MANUFACTURER shall verify resolutions to determine whether:
a) problem has been resolved and the PROBLEM REPORT has been closed;
b) adverse trends have been reversed;
c) CHANGE REQUESTS have been implemented in the appropriate MEDICAL DEVICE SOFTWARE and

ACTIVITIES; and
d) additional problems have been introduced.

[Class A, B, C]

9.8 Test documentation contents

When testing, retesting or REGRESSION TESTING SOFTWARE ITEMS and SYSTEMS following a
change, the MANUFACTURER shall include in the test documentation:
a) test results;
b) ANOMALIES found;
c) the VERSION of software tested;
d) relevant hardware and software test configurations;
e) relevant test tools;
f) date tested; and
g) identification of the tester.

[Class A, B, C]

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 35 –
+AMD1:2015 CSV  IEC 2015

Annex A
(informative)

Rationale for the requirements of this standard

Rationale for the clauses of this standard is provided in this annex.

A.1 Rationale

The primary requirement of this standard is that a set of PROCESSES be followed in the
development and maintenance of MEDICAL DEVICE SOFTWARE, and that the choice of PROCESSES
be appropriate to the RISKS to the patient and other people. This follows from the belief that
testing of software is not sufficient to determine that it is safe in operation.

The PROCESSES required by this standard fall into two categories:
– PROCESSES which are required to determine the RISKS arising from the operation of each

SOFTWARE ITEM in the software;
– PROCESSES which are required to achieve an appropriately low probability of software failure

for each SOFTWARE ITEM, chosen on the basis of these determined RISKS.

This standard requires the first category to be performed for all MEDICAL DEVICE SOFTWARE and
the second category to be performed for selected SOFTWARE ITEMS.

A claim of compliance with this standard should therefore include a documented RISK ANALYSIS
that identifies foreseeable sequences of events that include software and that can result in a
HAZARDOUS SITUATION (see ISO 14971). HAZARDOUS SITUATIONS that can be indirectly caused by
software (for example, by providing misleading information that could cause inappropriate
treatment to be administered) should be included in this RISK ANALYSIS.

All ACTIVITIES that are required as part of the first category of PROCESSES are identified in the
normative text as "[Class A, B, C]", indicating that they are required irrespective of the
classification of the software to which they apply.

ACTIVITIES are required for all classes A, B, and C for the following reasons:
– the ACTIVITY produces a plan relevant to RISK MANAGEMENT or software safety classification;
– the ACTIVITY produces an output that is an input to RISK MANAGEMENT or software safety

classification;
– the ACTIVITY is a part of RISK MANAGEMENT or software safety classification;
– the ACTIVITY establishes an administration system, documentation or record-keeping

system that supports RISK MANAGEMENT or software safety classification;
– the ACTIVITY normally takes place when the classification of the related software is

unknown;
– the ACTIVITY can cause a change that could invalidate the current software safety

classification of the associated software. This includes the discovery and analysis of safety
related problems after release.

Other PROCESSES are required only for SOFTWARE SYSTEMS or SOFTWARE ITEMS classified in
software safety classes B or C. ACTIVITIES required as parts of these PROCESSES are identified
in the normative text as "[Class B, C]", or "[Class C]" indicating that they are required
selectively depending on the classification of the software to which they apply.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 36 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

ACTIVITIES are required selectively for software in classes B and C for the following reasons:
– the ACTIVITY enhances the reliability of the software by requiring more detail or more rigor in

the design, testing or other VERIFICATION;
– the ACTIVITY is an administrative ACTIVITY that supports another ACTIVITY required for

classes B or C;
– the ACTIVITY supports the correction of safety-related problems;
– the ACTIVITY produces records of design, implementation, VERIFICATION and release of

safety-related software.

ACTIVITIES are required selectively for software in class C for the following reasons:
– the ACTIVITY further enhances the reliability of the software by requiring more detail, or

more rigour, or attention to specific issues in the design, testing or other VERIFICATION

Note that all PROCESSES and ACTIVITIES defined in this standard are considered valuable in
assuring the development and maintenance of high quality software. The omission of many of
these PROCESSES and ACTIVITIES as requirements for software in class A should not imply that
these PROCESSES and ACTIVITIES would not be of value or are not recommended. Their
omission is intended to recognize that software that cannot cause a HAZARD can be assured of
SAFETY and effectiveness primarily through overall validation ACTIVITY during the design of a
MEDICAL DEVICE (which is outside the scope of this standard) and through some simple software
life cycle controls.

A.2 Summary of requirements by class

Table A.1 summarizes which software safety classes are assigned to each requirement. This
table is informative and only provided for convenience. The normative section identifies the
software safety classes for each requirement.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 37 –
+AMD1:2015 CSV  IEC 2015

Table A.1 – Summary of requirements by software safety class

Clauses and subclauses Class A Class B Class C

Clause 4 All requirements X X X

5.1 5.1.1, 5.1.2, 5.1.3, 5.1.6, 5.1.7, 5.1.8, 5.1.9 X X X

 5.1.5, 5.1.10, 5.1.11, 5.1.12 X X

 5.1.4 X

5.2 5.2.1, 5.2.2, 5.2.4, 5.2.5, 5.2.6 X X X

 5.2.3 X X

5.3 5.3.1, 5.3.2, 5.3.3, 5.3.4, 5.3.6 X X

 5.3.5 X

5.4 5.4.1 X X

 5.4.2, 5.4.3, 5.4.4 X

5.5 5.5.1 X X X

 5.5.2, 5.5.3, 5.5.5 X X

 5.5.4 X

5.6 All requirements X X

5.7 All requirements X X X

5.8 5.8.1, 5.8.2, 5.8.4, 5.8.7, 5.8.8 X X X

 5.8.3, 5.8.5, 5.8.6 X X

Clause 6 All requirements X X X

7.1 All requirements X X

7.2 All requirements X X

7.3 All requirements X X

7.4 7.4.1 X X X

 7.4.2, 7.4.3 X X

Clause 8 All requirements X X X

Clause 9 All requirements X X X

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 38 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

Annex B
(informative)

Guidance on the provisions of this standard

B.1 Scope

B.1.1 Purpose

The purpose of this standard is to provide a development PROCESS that will consistently
produce high quality, safe MEDICAL DEVICE SOFTWARE. To accomplish this, the standard
identifies the minimum ACTIVITIES and TASKS that need to be accomplished to provide
confidence that the software has been developed in a manner that is likely to produce highly
reliable and safe MEDICAL DEVICE SOFTWARE.

This annex provides guidance for the application of the requirements of this standard. It does
not add to, or otherwise change, the requirements of this standard. This annex can be used to
better understand the requirements of this standard.

Note that in this standard, ACTIVITIES are subclauses called out within the PROCESSES and
TASKS are defined within the ACTIVITIES. For example, the ACTIVITIES defined for the software
development PROCESS are software development planning, software requirements analysis,
software ARCHITECTURAL design, software detailed design, SOFTWARE UNIT implementation and
VERIFICATION, software integration and integration testing, SOFTWARE SYSTEM testing, and
software release. The TASKS within these ACTIVITIES are the individual requirements.

This standard does not require a particular SOFTWARE DEVELOPMENT LIFE CYCLE MODEL.
However, compliance with this standard does imply dependencies between PROCESSES,
because inputs of a PROCESS are generated by another PROCESS. For example, the software
safety classification of the SOFTWARE SYSTEM should be completed after the RISK ANALYSIS
PROCESS has established what HARM could arise from failure of the SOFTWARE SYSTEM.

Because of such logical dependencies between processes, it is easiest to describe the
processes in this standard in a sequence, implying a “waterfall” or “once-through” life cycle
model. However, other life cycles can also be used. Some development (model) strategies as
defined at ISO/IEC 12207 [9] include (see also Table B.1):

– Waterfall. The “once-through" strategy, also called “waterfall”, consists of performing the
development PROCESS a single time. Simplistically: determine customer needs, define
requirements, design the SYSTEM, implement the system, test, fix and deliver.

– Incremental: The “incremental” strategy determines customer needs and defines the
SYSTEM requirements, then performs the rest of the development in a sequence of builds.
The first build incorporates part of the planned capabilities, the next build adds more
capabilities, and so on, until the SYSTEM is complete.

– Evolutionary: The “evolutionary” strategy also develops a SYSTEM in builds but differs from
the incremental strategy in acknowledging that the user need is not fully understood and all
requirements cannot be defined up front. In this strategy, customer needs and SYSTEM
requirements are partially defined up front, then are refined in each succeeding build.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 39 –
+AMD1:2015 CSV  IEC 2015

Table B.1 – Development (model) strategies as defined in ISO/IEC 12207

Development Strategy Define all requirements
first?

Multiple development
cycles?

Distribute interim
software?

Waterfall
 (Once-through) yes no no

Incremental
(Preplanned product

improvement)
yes yes maybe

Evolutionary no yes yes

Whichever life cycle is chosen it is necessary to maintain the logical dependencies between
PROCESS outputs such as specifications, design documents and software. The waterfall life
cycle model achieves this by delaying the start of a PROCESS until the inputs for that PROCESS
are complete and approved.

Other life cycles, particularly evolutionary life cycles, permit PROCESS outputs to be produced
before all the inputs for that PROCESS are available. For example, a new SOFTWARE ITEM can be
specified, classified, implemented and VERIFIED before the whole software ARCHITECTURE has
been finalised. Such life cycles carry the RISK that a change or development in one PROCESS
output will invalidate another PROCESS output. All life cycles therefore use a comprehensive
configuration management system to ensure that all PROCESS outputs are brought to a
consistent state and the dependencies maintained.

The following principles are important regardless of the software development life cycle used:

– All PROCESS outputs should be maintained in a consistent state; whenever any PROCESS
output is created or changed, all related PROCESS outputs should be updated promptly to
maintain their consistency with each other and to maintain all dependencies explicitly or
implicitly required by this standard;

– all PROCESS outputs should be available when needed as input to further work on the
software.

– before any MEDICAL DEVICE SOFTWARE is released, all PROCESS outputs should be consistent
with each other and all dependencies between PROCESS outputs explicitly or implicitly
required by this standard should be observed.

B.1.2 Field of application

This standard applies to the development and maintenance of MEDICAL DEVICE SOFTWARE as
well as the development and maintenance of a MEDICAL DEVICE that includes SOUP.

The use of this standard requires the MANUFACTURER to perform MEDICAL DEVICE RISK
MANAGEMENT that is compliant with ISO 14971. Therefore, when the MEDICAL DEVICE SYSTEM
ARCHITECTURE includes an acquired component (this could be a purchased component or a
component of unknown provenance), such as a printer/plotter that includes SOUP, the acquired
component becomes the responsibility of the MANUFACTURER and must be included in the RISK
MANAGEMENT of the MEDICAL DEVICE. It is assumed that through proper performance of MEDICAL
DEVICE RISK MANAGEMENT, the MANUFACTURER would understand the component and recognize
that it includes SOUP. The MANUFACTURER using this standard would invoke the software RISK
MANAGEMENT PROCESS as part of the overall MEDICAL DEVICE RISK MANAGEMENT PROCESS.

The maintenance of released MEDICAL DEVICE SOFTWARE applies to the post-production
experience with the MEDICAL DEVICE SOFTWARE. Software maintenance includes the combination
of all technical and administrative means, including supervision actions, to act on problem
reports to retain an item in, or restore it to, a state in which it can perform a required function
as well as modification requests related to released MEDICAL DEVICE SOFTWARE. For example,
this includes problem rectification, regulatory reporting, re-validation and preventive action. See
ISO/IEC 14764 [10].

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 40 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

B.2 Normative references

ISO/IEC 90003 [15] provides guidance for applying a quality management system to software
development. This guidance is not required by this standard but is highly recommended.

B.3 Terms and definitions

Where possible, terms have been defined using definitions from international standards.

This standard chose to use three terms to describe the decomposition of a SOFTWARE SYSTEM
(top level). The SOFTWARE SYSTEM can be a subsystem of the MEDICAL DEVICE (see IEC 60601-
1-4 [2]) or a MEDICAL DEVICE in its own right, which then becomes a software MEDICAL DEVICE.
The lowest level that is not further decomposed for the purposes of testing or software
configuration management is the SOFTWARE UNIT. All levels of composition, including the top
and bottom levels, can be called SOFTWARE ITEMS. A SOFTWARE SYSTEM, then, is composed of
one or more SOFTWARE ITEMS, and each SOFTWARE ITEM is composed of one or more SOFTWARE
UNITS or decomposable SOFTWARE ITEMS. The responsibility is left to the MANUFACTURER to
provide the definition and granularity of the SOFTWARE ITEMS and SOFTWARE UNITS. Leaving
these terms vague allows one to apply them to the many different development methods and
types of software used in MEDICAL DEVICES.

B.4 General requirements

There is no known method to guarantee 100 % SAFETY for any kind of software.

There are three major principles which promote SAFETY for MEDICAL DEVICE SOFTWARE:

– RISK MANAGEMENT;
– quality management;
– software engineering.

For the development and maintenance of safe MEDICAL DEVICE SOFTWARE it is necessary to
establish RISK MANAGEMENT as an integral part of a quality management system as an overall
framework for the application of appropriate software engineering methods and techniques.
The combination of these three concepts allows a MEDICAL DEVICE MANUFACTURER to follow a
clearly structured and consistently repeatable decision-making PROCESS to promote SAFETY for
MEDICAL DEVICE SOFTWARE.

B.4.1 Quality management system

A disciplined and effective set of software PROCESSES includes organizational PROCESSES such
as management, infrastructure, improvement, and training. To avoid duplication and to focus
this standard on software engineering, these PROCESSES have been omitted from this standard.
These PROCESSES are covered by a quality management system. ISO 13485 [8] is an
International Standard that is specifically intended for applying the concepts of quality
management to MEDICAL DEVICES. Conformance to ISO 13485 quality management system
requirements does not automatically constitute conformity with national or regional regulatory
requirements. It is the MANUFACTURER’S responsibility to identify and establish compliance with
relevant regulatory requirements.

B.4.2 RISK MANAGEMENT

Software development participates in RISK MANAGEMENT ACTIVITIES sufficiently to ensure that all
reasonably foreseeable RISKS associated with the MEDICAL DEVICE SOFTWARE are considered.

Rather than trying to define an appropriate RISK MANAGEMENT PROCESS in this software
engineering standard, it is required that the MANUFACTURER apply a RISK MANAGEMENT PROCESS

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 41 –
+AMD1:2015 CSV  IEC 2015

that is compliant with ISO 14971, which deals explicitly with RISK MANAGEMENT for MEDICAL
DEVICES. Specific software RISK MANAGEMENT ACTIVITIES resulting from HAZARDOUS SITUATIONS
that have software as a contributing cause are identified in a supporting PROCESS described in
Clause 7.

B.4.3 Software safety classification

The RISK associated with software as a part of a MEDICAL DEVICE, as an accessory to a MEDICAL
DEVICE, or as a MEDICAL DEVICE in its own right, is used as the input to a software safety
classification scheme, which then determines the PROCESSES to be used during the
development and maintenance of software.

RISK is considered to be a combination of the severity of HARM and the probability of its
occurrence. However, no consensus exists for a method of quantitatively estimating the
probability of occurrence of a software failure. When software is present in a sequence or
combination of events leading to a HAZARDOUS SITUATION, the probability of the software failure
occurring cannot be considered in estimating the RISK for the HAZARDOUS SITUATION. In such
cases, considering a worst case probability is appropriate, and the probability for the software
failure occurring should be set to 1. When it is possible to estimate the probability for the
remaining events in the sequence (as it may be if they are not software) that probability can be
used for the probability of the HAZARDOUS SITUATION occurring (P1 in Figure B.2).

In many cases however, it might not be possible to estimate the probability for the remaining
events in the sequence, and the RISK should be EVALUATED on the basis of the nature of the
HARM alone (the probability of the HAZARDOUS SITUATION occurring should be set to 1). RISK
ESTIMATION in these cases should be focused on the SEVERITY of the HARM resulting from the
HAZARDOUS SITUATION. Subjective rankings of probability can also be assigned based on clinical
knowledge to distinguish failures that a clinician would be likely to detect from those that would
not be detected and would be more likely to cause HARM.

Estimates of probability of a HAZARDOUS SITUATION leading to HARM (P2 in Figure B.2) generally
require clinical knowledge to distinguish between HAZARDOUS SITUATIONS where clinical practice
would be likely to prevent HARM, and HAZARDOUS SITUATIONS that would be more likely to cause
HARM.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 42 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

NOTE P1 is the probability of a hazardous situation occurring

 P2 is the probability of a hazardous situation leading to harm

Figure B.2 – Pictorial representation of the relationship of HAZARD, sequence of events,
HAZARDOUS SITUATION, and HARM – from ISO 14971:2007 Annex E

If a SOFTWARE SYSTEM is decomposed into SOFTWARE ITEMS, then each SOFTWARE ITEM can
have its own software safety classification.

It is only possible to determine the RISK associated with failure of a SOFTWARE ITEM:

– if a SYSTEM ARCHITECTURE and a software ARCHITECTURE define the role of the SOFTWARE
ITEM in terms of its purpose and its interfaces with other software and hardware items;

– if changes to the SYSTEM are controlled;

– after RISK ANALYSIS has been done on the ARCHITECTURE and RISK CONTROL measures
specified.

This standard requires the minimum number of ACTIVITIES that will achieve the above
conditions for all classes of software.

The end of the software ARCHITECTURE ACTIVITY is the earliest point in the development when
the full set of SOFTWARE ITEMS is defined and the RISK MANAGEMENT ACTIVITY has identified how
the SOFTWARE ITEMS relate to SAFETY. This is therefore the earliest point at which SOFTWARE
ITEMS can be classified definitively according to their SAFETY role.

This point corresponds to the point where RISK CONTROL is begun in ISO 14971.

Before this point, the RISK MANAGEMENT PROCESS identifies ARCHITECTURAL RISK CONTROL
measures, for example adding protective subsystems, or reducing the opportunities for
software failures to cause HARM. After this point, the RISK MANAGEMENT PROCESS uses
PROCESSES aimed at reducing the probability of failure of SOFTWARE ITEMS. In other words, the
classification of a SOFTWARE ITEM specifies PROCESS-based RISK CONTROL measures to be
applied to that item.

IEC

Risk
Probability

of occurrence
of harm

P1 × P2

Severity of
the harm

Harm

Hazardous
situation

Hazard

Exposure (P1)

P2 S
eq

ue
nc

e
of

 e
ve

nt
s

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 43 –
+AMD1:2015 CSV  IEC 2015

It is expected that MANUFACTURERS will find it useful to classify software before this point, for
example to focus attention on areas to be investigated, but such classification should be
regarded as preliminary and should not be used to justify the omission of PROCESSES.

The software safety classification scheme is not intended to align with the RISK classifications
of ISO 14971. Whereas the ISO 14971 scheme classifies RISK according to their severity and
likelihood, the software safety classification scheme classifies SOFTWARE SYSTEMS and
SOFTWARE ITEMS according to the PROCESSES to be applied in their development and
maintenance.

As the design evolves, new RISKS might become evident. Therefore, RISK MANAGEMENT should
be applied as an integral part of the development PROCESS. This permits the development of an
ARCHITECTURAL design that identifies a complete set of SOFTWARE ITEMS, including those that
are required to function correctly to assure safe operation and those that prevent faults from
causing HARM.

The software ARCHITECTURE should promote segregation of software items that are required for
safe operation and should describe the methods used to ensure effective segregation of those
SOFTWARE ITEMS. Segregation is not restricted to physical (processor or memory partition)
separation but includes any mechanism that prevents one SOFTWARE ITEM from negatively
affecting another. The adequacy of a segregation is determined based on the RISKS involved
and the rationale which is required to be documented.

As stated in B.3, this standard chooses to use three terms to describe the decomposition of a
SOFTWARE SYSTEM (top level).

Figure B.1 illustrates the possible partitioning for SOFTWARE ITEMS within a SOFTWARE SYSTEM
and how the software safety classes would be applied to the group of SOFTWARE ITEMS in the
decomposition.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 44 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

SOFTWARE SYSTEM /
SOFTWARE ITEM

(CLASS C)

SOFTWARE ITEM
X

(Class A)

SOFTWARE ITEM
Y

(Class C)

SOFTWARE ITEM
W

(Class B)

SOFTWARE ITEM
Z

(Class C)

Figure B.1 – Example of partitioning of SOFTWARE ITEMS

For this example, the MANUFACTURER knows, due to the type of MEDICAL DEVICE SOFTWARE
being developed, that the preliminary software safety classification for the SOFTWARE SYSTEM is
software safety class C. During software ARCHITECTURE design the MANUFACTURER has decided
to partition the SYSTEM, as shown, with 3 SOFTWARE ITEMS – X, W and Z. The MANUFACTURER is
able to segregate all SOFTWARE SYSTEM contributions to HAZARDOUS SITUATIONS which could
result in death or SERIOUS INJURY to SOFTWARE ITEM Z and all remaining SOFTWARE SYSTEM
contributions to HAZARDOUS SITUATIONS which could result in a non-SERIOUS INJURY to
SOFTWARE ITEM W. SOFTWARE ITEm W is classified as software safety class B and SOFTWARE
ITEM Z is at software safety class C. SOFTWARE ITEM Y therefore must be classified as Class C,
per 4.3 d). The SOFTWARE SYSTEM is also at a software safety class C per this requirement.
SOFTWARE ITEM X has been classified at a software safety class of A. The MANUFACTURER is
able to document a rationale for the segregation between SOFTWARE ITEMS X and Y, as well as
SOFTWARE ITEMS W and Z, to assure the integrity of the segregation. If segregation is not
possible between SOFTWARE ITEMS X and Y, then SOFTWARE ITEM X must be classified in
software safety class C.

B.4.4 LEGACY SOFTWARE

Subclause 4.4 establishes a process for application of this standard to LEGACY SOFTWARE.
Some geographies may require the MANUFACTURER to show conformity to the standard to obtain
regulatory approval of the MEDICAL DEVICE SOFTWARE, even if that software was designed prior
to the existence of the current version of the standard (LEGACY SOFTWARE). In this case, the
requirements in 4.4 provide a method for the the MANUFACTURER to demonstrate compliance of
LEGACY SOFTWARE to the standard.

A MANUFACTURER may determine that retrospective documentation of an already finished
development-lifecycle performed as an isolated activity does not result in the reduction of RISK
associated with the use of the product. The process results in the identification of a subset of

IEC 724/06

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 45 –
+AMD1:2015 CSV  IEC 2015

ACTIVITIES defined in this standard which does result in reduction of RISK. Some additional
goals implicit in the process are:

– required ACTIVITIES and resulting documentation should rely on and make use of, wherever
possible, existing documentation, and

– a MANUFACTURER should utilize resources as effectively as possible to effect a reduction of
RISK.

In addition to a plan identifying the subset of ACTIVITIES to execute, the process also results in
objective evidence supporting safe continued use of the LEGACY SOFTWARE and a summary
rationale for this conclusion.

The RISKS associated with the planned continued use of the LEGACY SOFTWARE depend on the
context in which the LEGACY SOFTWARE will be used to create a SOFTWARE SYSTEM. The
MANUFACTURER will document all identified MEDICAL DEVICE HAZARDS associated with the LEGACY
SOFTWARE.

Subclause 4.4 requires a comprehensive assessment of available post-production field data
obtained for the LEGACY SOFTWARE during the time it has been in production and use. Typical
sources of post-production data include:

– adverse events attributable to the device,
– feedback received from users of the device, and
– ANOMALIES discovered by the MANUFACTURER.

Though no consensus exists for a method of prospectively estimating quantitatively the
probability of occurrence of a software failure, such information may be available for LEGACY
SOFTWARE, based on the usage of such software and EVALUATION of post-production data. If it
is possible in such cases to quantitatively estimate the probability of events in the sequence, a
quantitative value may be used for expressing the probability of the entire sequence of events
occurring. If such quantitative estimation is not possible, considering a worst case probability is
appropriate, and the probability for the software failure occurring should be assumed to be 1.

The MANUFACTURER determination of how the LEGACY SOFTWARE will be used in the overall
MEDICAL DEVICE SYSTEM ARCHITECTURE is input to the assessment of RISK. The RISKS to be
considered vary accordingly.

– When LEGACY SOFTWARE has been safely and reliably used and the MANUFACTURER wishes
to continue use of the LEGACY SOFTWARE, the rationale for continued use rests primarily on
the assessment of RISK based on post-production records.

– When LEGACY SOFTWARE is reused to create a new SOFTWARE SYSTEM, the intended use of
the LEGACY SOFTWARE might be different from its original intended use. In this case the RISK
assessment must take into account the modified set of HAZARDOUS SITUATIONS which can
arise due to failures of the LEGACY SOFTWARE.

– A reused LEGACY SOFTWARE may be used for similar intended use but integrated into a new
SOFTWARE SYSTEM. In this case the RISK assessment should take into account modification
of architectural RISK CONTROL measures according to 5.3.

When LEGACY SOFTWARE will be changed and used within a new SOFTWARE SYSTEM, the
MANUFACTURER should consider how the existing records of safe and reliable operation may be
invalidated by the changes.

Changes to the LEGACY SOFTWARE should be performed according to Clauses 4 to 9 of this
standard, including assessment of impact to RISK CONTROL measures according to 7.4. In the
case of LEGACY SOFTWARE, existing RISK CONTROL measures may not be fully documented and
special care should be taken to EVALUATE the potential impact of changes, utilizing available
documented design records as well as expertise of individuals having knowledge of the system.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 46 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

According to 4.4, the MANUFACTURER performs a gap analysis in order to determine the
available documentation including objective evidence of performed TASKS done during
development of the LEGACY SOFTWARE and compared to 5.2, 5.3, 5.7, and Clause 7. Typical
steps to accomplish this gap analysis include

a) identification of the LEGACY SOFTWARE, including VERSION, revision and any other means,
required for clear identification;

b) EVALUATION of existing DELIVERABLES corresponding to the deliverables required by 5.2, 5.3,
5.7, and Clause 7;

c) EVALUATION of available objective evidence, documenting the previously applied software
development lifecycle model (as appropriate);

d) EVALUATION of the adequacy of existing RISK MANAGEMENT documentation, taking ISO 14971
into account.

Taking the performed gap analysis into account, the MANUFACTURER will EVALUATE the potential
reduction in RISK resulting from the generation of the missing DELIVERABLES and associated
ACTIVITIES, and create a plan to perform ACTIVITIES and generate DELIVERABLES to close these
gaps.

Reduction of RISK should balance the benefit of applying the software development process
according to Clause 5 against the possibility that modification of the LEGACY SOFTWARE without
full knowledge of its development history could introduce new defects that increase the risk.
Some of the elements of Clause 5 may be assessed to have little to no reduction of RISK when
done after the fact. For example, detailed design and unit verification reduce RISK primarily
during the process of developing new software or refactoring existing software. If these
objectives are not planned, performing the ACTIVITIES in isolation may create documentation but
lead to no reduction in RISK.

At a minimum, the gap closure plan addresses missing SOFTWARE SYSTEM test records. If these
do not exist or are not suitable to support a rationale to continue use of the LEGACY SOFTWARE,
the gap closure plan should include creation of SOFTWARE SYSTEM requirements at a functional
level according to 5.2 and tests according to 5.7.

The documented rationale for continued use of the LEGACY SOFTWARE builds on the available
objective evidence and analysis obtained in the course of assessing the RISK and creating a
gap closure plan appropriate for the context of LEGACY SOFTARE reuse.

The rationale makes a positive case for the safe and reliable performace of the LEGACY
SOFTWARE in the planned reuse context, taking into account both the post-production records
available for the LEGACY SOFTWARE and the RISK CONTROL MEASURES affected by filling process
gaps.

After LEGACY SOFTWARE has been re-used according to 4.4, those parts of the LEGACY
SOFTWARE for which gaps in DELIVERABLES remain, continue to be LEGACY SOFTWARE and may
be considered for further re-use again according to 4.4. When gaps in deliverables are closed
by changing the LEGACY SOFTWARE, the changes should be performed according to Clauses 4
to 9 of this standard.

B.5 Software development PROCESS

B.5.1 Software development planning

The objective of this ACTIVITY is to plan the software development TASKS to reduce RISKS
caused by software, communicate procedures and goals to members of the development team,
and ensure that SYSTEM quality requirements for the MEDICAL DEVICE SOFTWARE are met.

The software development planning ACTIVITY can document TASKS in a single plan or in multiple
plans. Some MANUFACTURERS might have established policies and procedures that apply to the

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 47 –
+AMD1:2015 CSV  IEC 2015

development of all their MEDICAL DEVICE SOFTWARE. In this case the plan can simply reference
the existing policies and procedures. Some MANUFACTURERS might prepare a plan or set of
plans specific to the development of each MEDICAL DEVICE SOFTWARE that spell out in detail
specific ACTIVITIES and reference general procedures. Another possibility is that a plan or set of
plans is tailored for the development of each MEDICAL DEVICE SOFTWARE. The planning should
be specified at the level of detail necessary to carry out the development PROCESS and should
be proportional to the RISK. For example, SYSTEMS or items with higher RISK would be subject to
a development PROCESS with more rigor and TASKS should be spelled out in greater detail.

Planning is an iterative ACTIVITY that should be re-examined and updated as development
progresses. The plan can evolve to incorporate more and better information as more is
understood about the SYSTEM and the level of effort needed to develop the SYSTEM. For
example, a SYSTEM’s initial software safety classification can change as a result of exercising
the RISK MANAGEMENT PROCESS and development of the software ARCHITECTURE. Or it might be
decided that a SOUP be incorporated into the SYSTEM. It is important that the plan(s) be updated
to reflect current knowledge of the SYSTEM and the level of rigor needed for the SYSTEM or
items in the SYSTEM to enable proper control over the development PROCESS.

B.5.2 Software requirements analysis

This ACTIVITY requires the MANUFACTURER to establish and verify the software requirements for
the MEDICAL DEVICE SOFTWARE. Establishing verifiable requirements is essential for determining
what is to be built, for determining that the MEDICAL DEVICE SOFTWARE exhibits acceptable
behaviour, and for demonstrating that the completed MEDICAL DEVICE SOFTWARE is ready for
use. To demonstrate that the requirements have been implemented as desired, each
requirement should be stated in such a way that objective criteria can be established to
determine whether it has been implemented correctly. If the device RISK MANAGEMENT PROCESS
imposes requirements on the software to control identified RISKS, these requirements are to be
identified in the software requirements in such a way as to make it possible to trace the RISK
CONTROL measures to the software requirements. All software requirements should be
identified in such a way as to make it possible to demonstrate TRACEABILITY between the
requirement and SOFTWARE SYSTEM testing. If regulatory approval in some countries requires
conformance to specific regulations or international standards, this conformance requirement
should be documented in the software requirements. Because the software requirements
establish what is to be implemented in the software, an evaluation of the requirements is
required before the requirements analysis ACTIVITY is complete.

An area of frequent confusion is the distinction between customer needs, design inputs,
software requirements, software functional specifications, and software design specifications.
Design inputs are the interpretation of customer needs into formally documented MEDICAL
DEVICE requirements. Software requirements are the formally documented specifications of
what the software does to meet the customer needs and the design inputs. Software functional
specifications are often included with the software requirements and define in detail what the
software does to meet its requirements even though many different alternatives might also
meet the requirements. Software design specifications define how the software will be
designed and decomposed to implement its requirements and functional specifications.

Traditionally, software requirements, functional specifications, and design specifications have
been written as a set of one or more documents. It is now feasible to consider this information
as data items within a common database. Each item would have one or more attributes that
would define its purpose and linkage to other items in the database. This approach allows
presentation and printing of different views of the information best suited for each set of
intended users (e.g., marketing, MANUFACTURERS, testers, auditors) and supports TRACEABILITY
to demonstrate adequate implementation and the extent to which test cases test the
requirements. Tools to support this approach can be as simple as a hypertext document using
HTML hyperlinks or as complex and capable as computer aided software engineering (CASE)
tools and requirements analysis tools.

The SYSTEM requirements PROCESS is out of scope of this standard. However, the decision to
implement MEDICAL DEVICE functionality with software is normally made during SYSTEM design.
Some or all of the SYSTEM requirements are allocated to be implemented in software. The

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 48 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

software requirements analysis ACTIVITY consists of analyzing the requirements allocated to
software by the SYSTEM requirements PROCESS and deriving a comprehensive set of software
requirements that reflect the allocated requirements.

To ensure the integrity of the SYSTEM, the MANUFACTURER should provide a mechanism for
negotiating changes and clarifications to the SYSTEM requirements to correct impracticalities,
inconsistencies or ambiguities in either the parent SYSTEM requirements or the software
requirements.

The PROCESS of capture and analysis of SYSTEM and software requirements can be iterative.
This standard does not intend to require the PROCESSES to be rigidly segregated into two
layers. In practice, SYSTEM ARCHITECTURE and software ARCHITECTURE are often outlined
simultaneously and the SYSTEM and software requirements are subsequently documented in a
layered form.

B.5.3 Software ARCHITECTURAL design

This ACTIVITY requires the MANUFACTURER to define the major structural components of the
software and identify their key responsibilities, their externally visible properties, and the
relationship among them. If the behaviour of a component can affect other components, that
behavior should be described in the software ARCHITECTURE. This description is especially
important for behaviour that can affect components of the MEDICAL DEVICE that are outside the
software (see 5.3.5 and B.4.3). ARCHITECTURAL decisions are extremely important for
implementing RISK CONTROL measures. Without understanding (and documenting) the
behaviour of a component that can affect other components, it will be nearly impossible to
show that the SYSTEM is safe. A software ARCHITECTURE is necessary to ensure the correct
implementation of the software requirements. The software ARCHITECTURE is not complete
unless all software requirements can be implemented by the identified SOFTWARE ITEMS.
Because the design and implementation of the software is dependent on the ARCHITECTURE, the
ARCHITECTURE is VERIFIED to complete this ACTIVITY. VERIFICATION of the ARCHITECTURE is
generally done by technical EVALUATION.

The software safety classification of SOFTWARE ITEMS during the software ARCHITECTURE
ACTIVITY creates a basis for the subsequent choice of software PROCESSES. The records of
classification are placed under change control as part of the RISK MANAGEMENT FILE.

Many subsequent events might invalidate the classification. These include, for example:
– changes of SYSTEM specification, software specification or ARCHITECTURE;
– discovery of errors in the RISK ANALYSIS, especially unforeseen HAZARDS; and
– discovery of the infeasibility of a requirement, especially a RISK CONTROL measure;

Therefore, during all ACTIVITIES following the design of the software ARCHITECTURE, the
classification of the SOFTWARE SYSTEM and SOFTWARE ITEMS should be re-EVALUATED and might
need to be revised. This would trigger rework to apply additional PROCESSES to a SOFTWARE
ITEM as a result of its upgrading to a higher class. The software configuration management
PROCESS (Clause 8) is used to ensure that all necessary rework is identified and completed.

B.5.4 Software detailed design

This ACTIVITY requires the MANUFACTURER to refine the SOFTWARE ITEMS and interfaces defined
in the ARCHITECTURE to create SOFTWARE UNITS and their interfaces. Although SOFTWARE UNITS
are often thought of as being a single function or module, this view is not always appropriate.
This standard has defined SOFTWARE UNIT to be a SOFTWARE ITEM that is not subdivided into
smaller items. SOFTWARE UNITS can be tested separately. The MANUFACTURER should define the
level of detail of the SOFTWARE UNIT. Detailed design specifies algorithms, data representations,
interfaces among different SOFTWARE UNITS, and interfaces between SOFTWARE UNITS and data
structures. Detailed design must also be concerned with the packaging of the SOFTWARE
PRODUCT. It is necessary to define the design of the SOFTWARE UNITS and the interfaces in
sufficient detail to permit its SAFETY and effectiveness to be objectively VERIFIED where this can
be ensured using other requirements or design documentation. It should be complete enough

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 49 –
+AMD1:2015 CSV  IEC 2015

that the programmer is not required to make ad hoc design decisions. Detailed design must
also be concerned with the architecture of the MEDICAL DEVICE SOFTWARE.

A SOFTWARE ITEM can be decomposed so that only a few of the new SOFTWARE ITEMS
implement the SAFETY-related requirement of the original SOFTWARE ITEM. The remaining
SOFTWARE ITEMS do not implement SAFETY-related functions and can be reclassified into a
lower software safety class. However, the decision to do this is in itself part of the RISK
MANAGEMENT PROCESS, and is documented in the RISK MANAGEMENT FILE.

Because implementation depends on detailed design, it is necessary to verify the detailed
design before the ACTIVITY is complete. VERIFICATION of detailed design is generally done by a
technical EVALUATION. Subclause 5.4.4 requires the MANUFACTURER to verify the outputs of the
detailed design ACTIVITIES. The design specifies how the requirements are to be implemented.
VERIFICATION of the design provides assurance that it implements the software ARCHITECTURE
and is free from contradiction with the software ARCHITECTURE.

If the design contains defects, the code will not implement the requirements correctly.

When present in the design, the MANUFACTURER should verify design characteristics which the
MANUFACTURER believes are important for SAFETY. Examples of these characteristics include:

– implementation of the intended events, inputs, outputs, interfaces, logic flow, allocation of
CPU, allocation of memory resources, error and exception definition, error and exception
isolation, and error recovery;

– definition of the default state, in which all faults that can result in a hazardous situation are
addressed, with events and transitions;

– initialization of variables, memory management; and
– cold and warm resets, standby, and other state changes that can affect the RISK CONTROL

measures.

B.5.5 SOFTWARE UNIT implementation and verification

This ACTIVITY requires the MANUFACTURER to write and verify the code for the SOFTWARE UNITS.
The detailed design is to be translated into source code. Coding represents the point where
decomposition of the specifications ends and composition of the executable software begins.
To consistently achieve the desirable code characteristics, coding standards should be used to
specify a preferred coding style. Examples of coding standards include requirements for
understandability, language usage rules or restrictions, and complexity management. The code
for each unit is VERIFIED to ensure that it functions as specified by the detailed design and that
it complies with the specified coding standards.

Subclause 5.5.5 requires the MANUFACTURER to verify the code. If the code does not implement
the design correctly, the MEDICAL DEVICE SOFTWARE will not perform as intended.

B.5.6 Software integration and integration testing

This ACTIVITY requires the MANUFACTURER to plan and execute integration of SOFTWARE UNITS
into aggregate SOFTWARE ITEMS as well as integration of SOFTWARE ITEMS into higher
aggregated SOFTWARE ITEMS and to verify that the resulting SOFTWARE ITEMS behave as
intended.

The approach to integration can range from non-incremental integration to any form of
incremental integration. The properties of the SOFTWARE ITEM being assembled dictate the
chosen method of integration.

Software integration testing focuses on the transfer of data and control across a SOFTWARE
ITEM’s internal and external interfaces. External interfaces are those with other software,
including operating system software, and MEDICAL DEVICE hardware.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 50 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

The rigor of integration testing and the level of detail of the documentation associated with
integration testing should be commensurate with the RISK associated with the device, the
device’s dependence on software for potentially hazardous functions, and the role of specific
SOFTWARE ITEMS in higher RISK device functions. For example, although all SOFTWARE ITEMS
should be tested, items that have an effect on SAFETY should be subject to more direct,
thorough, and detailed tests.

As applicable, integration testing demonstrates program behaviour at the boundaries of its
input and output domains and confirms program responses to invalid, unexpected, and special
inputs. The program’s actions are revealed when given combinations of inputs or unexpected
sequences of inputs, or when defined timing requirements are violated. The test requirements
in the plan should include, as appropriate, the types of white box testing to be performed as
part of integration testing.

White box testing, also known as glass box, structural, clear box and open box testing, is a
testing technique where explicit knowledge of the internal workings of the SOFTWARE ITEM being
tested are used to select the test data. White box testing uses specific knowledge of the
SOFTWARE ITEM to examine outputs. The test is accurate only if the tester knows what the
SOFTWARE ITEM is supposed to do. The tester can then see if the SOFTWARE ITEM diverges from
its intended goal. White box testing cannot guarantee that the complete specification has been
implemented since it is focused on testing the implementation of the SOFTWARE ITEM. Black box
testing, also known as behavioural, functional, opaque-box, and closed-box testing, is focused
on testing the functional specification and it cannot guarantee that all parts of the
implementation have been tested. Thus black box testing is testing against the specification
and will discover faults of omission, indicating that part of the specification has not been
fulfilled. White box testing is testing against the implementation and will discover
faults of commission, indicating that part of the implementation is faulty. In order to fully test
MEDICAL DEVICE SOFTWARE both black and white box testing might be required.

The plans and test documentation identified in 5.6 and 5.7 can be individual documents tied to
specific phases of development or evolutionary prototypes. They also might be combined so a
single document or set of documents covers the requirements of multiple subsections. All or
portions of the documents could be incorporated into higher level project documents such as a
software or project quality assurance plan or a comprehensive test plan that addresses all
aspects of testing for hardware and software. In these cases, a cross reference should be
created that identifies how the various project documents relate to each of the software
integration TASKS.

Software integration testing can be performed in a simulated environment, on actual target
hardware, or on the full MEDICAL DEVICE.

Subclause 5.6.2 requires the MANUFACTURER to verify the output of the software integration
ACTIVITY. The output of the software integration ACTIVITY is the integrated SOFTWARE ITEMS.
These integrated SOFTWARE ITEMS must function properly for the entire MEDICAL DEVICE
SOFTWARE to function correctly and safely.

B.5.7 SOFTWARE SYSTEM testing

This ACTIVITY requires the MANUFACTURER to verify the software’s functionality by verifying that
the requirements for the software have been successfully implemented.

SOFTWARE SYSTEM testing demonstrates that the specified functionality exists. This testing
VERIFIES the functionality and performance of the program as built with respect to the
requirements for the software.

SOFTWARE SYSTEM testing focuses on functional (black box) testing, although it might be
desirable to use white box (see previous section) methods to more efficiently accomplish
certain tests, initiate stress conditions or faults, or increase code coverage of the qualification
tests. The organization of testing by types and test stage is flexible, but coverage of

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 51 –
+AMD1:2015 CSV  IEC 2015

requirements, RISK CONTROL, usability, and test types (e.g., fault, installation, stress) should be
demonstrated and documented.

SOFTWARE SYSTEM testing tests the integrated software and can be performed in a simulated
environment, on actual target hardware, or on the full MEDICAL DEVICE.

When a change is made to a SOFTWARE SYSTEM (even a small change), the degree of
REGRESSION TESTING (not just the testing of the individual change) should be determined to
ensure that no unintended side effects have been introduced. This REGRESSION TESTING (and
the rationale for not fully repeating SOFTWARE SYSTEM testing) should be planned and
documented. (See B.6.3).

SOFTWARE SYSTEM test responsibilities can be dispersed, occurring at different locations and
being conducted by different organizations. However, regardless of the distribution of TASKS,
contractual relations, source of components, or development environment, the device
MANUFACTURER retains ultimate responsibility for ensuring that the software functions properly
for its intended use.

If ANOMALIES uncovered during testing can be repeated, but a decision has been made not to
fix them, then these ANOMALIES need to be EVALUATED in relation to the RISK analysis to verify
that they do not affect the SAFETY of the device. The root cause and symptoms of the
ANOMALIES should be understood, and the rationale for not fixing them should be documented.

Subclause 5.7.4 requires the results of the SOFTWARE SYSTEM testing be EVALUATED to ensure
that the expected results were obtained.

B.5.8 Software release

This ACTIVITY requires the MANUFACTURER to document the VERSION of the MEDICAL DEVICE
SOFTWARE being released, specify how it was created, and follow appropriate procedures for
release of the software.

The MANUFACTURER should be able to show that the software that was developed using the
development PROCESS is the software that is being released. The MANUFACTURER should also
be able to retrieve the software and the tools used for its generation in case it is needed in the
future and should store, package, and deliver the software in a manner that minimizes the
software from being damaged or misused. Defined procedures should be established to ensure
that these TASKS are performed appropriately and with consistent results.

B.6 Software maintenance PROCESS

B.6.1 Establish software maintenance plan

The software maintenance PROCESS differs from the software development PROCESS in two
ways:
– The MANUFACTURER is permitted to use a smaller PROCESS than the full software

development PROCESS to implement rapid changes in response to urgent problems.
– In responding to software PROBLEMS REPORTS relating to released product, the

MANUFACTURER not only addresses the problem but also satisfies local regulations (typically
by running a pro-active surveillance scheme for collecting problem data from the field and
communicating with users and regulators about the problem).

Subclause 6.1 requires these PROCESSES to be established in a maintenance plan.

This ACTIVITY requires the MANUFACTURER to create or identify procedures for implementing
maintenance ACTIVITIES and TASKS. To implement corrective actions, control changes during
maintenance, and manage release of revised software, the MANUFACTURER should document
and resolve reported problems and requests from users, as well as manage modifications to

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 52 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

the MEDICAL DEVICE SOFTWARE. This PROCESS is activated when the MEDICAL DEVICE SOFTWARE
undergoes modifications to code and associated documentation because of either a problem or
the need for improvement or adaptation. The objective is to modify released MEDICAL DEVICE
SOFTWARE while preserving its integrity. This PROCESS includes migration of the MEDICAL
DEVICE SOFTWARE to environments or platforms for which it was not originally released. The
ACTIVITIES provided in this clause are specific to the maintenance PROCESS; however, the
maintenance PROCESS might use other PROCESSES in this standard.

The MANUFACTURER needs to plan how the ACTIVITIES and TASKS of the maintenance PROCESS
will be performed.

B.6.2 Problem and modification analysis

This ACTIVITY requires the MANUFACTURER to analyze feedback for its effect; verify reported
problems; and consider, select, and obtain approval for implementing a modification option.
Problems and other requests for changes can affect the performance, SAFETY, or regulatory
clearance of a MEDICAL DEVICE. An analysis is necessary to determine whether any effects exist
because of a PROBLEM REPORT or whether any effects will result from a modification to correct a
problem or implement a request. It is especially important to verify through trace or regression
analysis that the RISK CONTROL measures built into the device are not adversely changed or
modified by the software change that is being implemented as part of the software
maintenance ACTIVITY. It is also important to verify that the modified software does not cause a
HAZARDOUS SITUATION or mitigate a RISK in software that previously did not cause a HAZARDOUS
SITUATION or mitigate RISKS. The software safety classification of a SOFTWARE ITEM might have
changed if the software modification now can cause a HAZARD or mitigate a RISK.

It is important to distinguish between software maintenance (Clause 6) and software problem
resolution (Clause 9).

The focus of the software maintenance PROCESS is an adequate response to feedback arising
after release of the MEDICAL DEVICE SOFTWARE. As part of a MEDICAL DEVICE, the software
maintenance PROCESS needs to ensure that:
– SAFETY-related PROBLEM REPORTS are addressed and reported to appropriate regulatory

authorities and affected users;
– MEDICAL DEVICE SOFTWARE is re-validated and re-released after modification with formal

controls that ensure the rectification of the problem and the avoidance of further problems;
– the MANUFACTURER considers what other MEDICAL DEVICE SOFTWARE might be affected and

takes appropriate action.

The focus of software problem resolution is the operation of a comprehensive control system
that:
• analyses PROBLEM REPORTS and identifies all the implications of the problem;
• decides on a number of changes and identifies all their side-effects;
• implements the changes while maintaining the consistency of the software CONFIGURATION

ITEMS including the RISK MANAGEMENT FILE;
• VERIFIES the implementation of the changes.

The software maintenance PROCESS uses the software problem resolution PROCESS. The
software maintenance PROCESS handles the high-level decisions about the PROBLEM REPORT
(whether a problem exists, whether it has a significant effect on SAFETY, what changes are
needed and when to implement them), and uses the software problem resolution PROCESS to
analyse the PROBLEM REPORT to discover all the implications and to generate possible CHANGE
REQUESTS which identify all the CONFIGURATION ITEMS that need to be changed and all the
VERIFICATION steps that are necessary.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 53 –
+AMD1:2015 CSV  IEC 2015

B.6.3 Modification implementation

This ACTIVITY requires that the MANUFACTURER use an established PROCESS to make the
modification. If a maintenance PROCESS has not been defined, the appropriate development
PROCESS TASKS can be used to make the modification. The MANUFACTURER should also ensure
that the modification does not cause a negative effect on other parts of the MEDICAL DEVICE
SOFTWARE. Unless the MEDICAL DEVICE SOFTWARE is treated as a new development, analysis of
the effect of a modification on the entire MEDICAL DEVICE SOFTWARE is necessary. Regression
analysis and testing are employed to provide assurance that a change has not created
problems elsewhere in the MEDICAL DEVICE SOFTWARE. Regression analysis is the determination
of the impact of a change based on review of the relevant documentation (e.g., software
requirements specification, software design specification, source code, test plans, test cases,
test scripts, etc.) in order to identify the necessary regression tests to be run. Regression
testing is the rerunning of test cases that a program has previously executed correctly and
comparing the current result to the previous result in order to detect unintended effects of a
software change. A rationale must be made that justifies the amount of REGRESSION TESTING
that will be performed to ensure that the portions of the MEDICAL DEVICE SOFTWARE not being
modified still perform as they did before the modification was made.

B.7 Software RISK MANAGEMENT PROCESS

Software RISK MANAGEMENT is a part of overall MEDICAL DEVICE RISK MANAGEMENT and cannot be
adequately addressed in isolation. This standard requires the use of a RISK MANAGEMENT
PROCESS that is compliant with ISO 14971. RISK MANAGEMENT as defined in ISO 14971 deals
specifically with a framework for effective management of the RISKS associated with the use of
MEDICAL DEVICES. One portion of ISO 14971 pertains to control of identified RISKS associated
with each HAZARD identified during the RISK ANALYSIS. The software RISK MANAGEMENT PROCESS
in this standard is intended to provide additional requirements for RISK CONTROL for software,
including software that has been identified during the RISK ANALYSIS as potentially contributing
to a hazardous situation, or software that is used to control MEDICAL DEVICE RISKS. The software
RISK MANAGEMENT PROCESS is included in this standard for two reasons.

a) the intended audience of this standard needs to understand minimum requirements for RISK
CONTROL measures in their area of responsibility—software;

b) the general RISK MANAGEMENT standard, ISO 14971, provided as a normative reference in
this standard, does not specifically address the RISK CONTROL of software and the
placement of RISK CONTROL in the software development life cycle.

Software RISK MANAGEMENT is a part of overall MEDICAL DEVICE RISK MANAGEMENT. Plans,
procedures, and documentation required for the software RISK MANAGEMENT ACTIVITIES can be a
series of separate documents or a single document, or they can be integrated with the MEDICAL
DEVICE RISK MANAGEMENT ACTIVITIES and documentation as long as all requirements in this
standard are met.

B.7.1 Analysis of software contributing to hazardous situations

It is expected that the device HAZARD analysis will identify hazardous situations and
corresponding RISK CONTROL measures to reduce the probability and/or severity of those
hazardous situations to an acceptable level. It is also expected that the RISK CONTROL
measures will be assigned to software functions that are expected to implement those RISK
CONTROL measures.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 54 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

However, it is not expected that all device hazardous situations can be identified until the
software ARCHITECTURE has been produced. At that time it is known how software functions will
be implemented in software components, and the practicality of the RISK CONTROL measures
assigned to software functions can be EVALUATED. At that time the device HAZARD analysis
should be revised to include:
• revised hazardous situations;
• revised RISK CONTROL measures and software requirements;
• new hazardous situations arising from software, for example hazardous situations related

to human factors.

The software ARCHITECTURE should include credible strategies for segregating software
components so that they do not interact in unsafe ways.

B.8 Software configuration management PROCESS

The software configuration management PROCESS is a PROCESS of applying administrative and
technical procedures throughout the software life cycle to identify and define SOFTWARE ITEMS,
including documentation, in a SYSTEM; control modifications and releases of the items; and
document and report the status of the items and CHANGE REQUESTS. Software configuration
management is necessary to recreate a SOFTWARE ITEM, to identify its constituent parts, and to
provide a history of the changes that have been made to it.

B.8.1 Configuration identification

This ACTIVITY requires the MANUFACTURER to uniquely identify software CONFIGURATION ITEMS and
their VERSIONS. This identification is necessary to identify the software CONFIGURATION ITEMS
and the VERSIONS that are included in the MEDICAL DEVICE SOFTWARE.

B.8.2 Change control

This ACTIVITY requires the MANUFACTURER to control changes of the software CONFIGURATION
ITEMS and to document information identifying CHANGE REQUESTS and providing documentation
about their disposition. This ACTIVITY is necessary to ensure that unauthorized or unintended
changes are not made to the software CONFIGURATION ITEMS and to ensure that approved
CHANGE REQUESTS are implemented fully and verified.

CHANGE REQUESTS can be approved by a change control board or by a manager or technical
lead according to the software configuration management plan. Approved CHANGE REQUESTS
are made traceable to the actual modification and VERIFICATION of the software. The
requirement is that each actual change be linked to a CHANGE REQUEST and that documentation
exists to show that the CHANGE REQUEST was approved. The documentation might be change
control board minutes, an approval signature, or a record in a database.

B.8.3 Configuration status accounting

This ACTIVITY requires the MANUFACTURER to maintain records of the history of the software
CONFIGURATION ITEMS. This ACTIVITY is necessary to determine when and why changes were
made. Access to this information is necessary to ensure that software CONFIGURATION ITEMS
contain only authorized modifications.

B.9 Software problem resolution PROCESS

The software problem resolution PROCESS is a PROCESS for analyzing and resolving the
problems (including non-conformances), whatever their nature or source, including those
discovered during the execution of development, maintenance, or other PROCESSES. The
objective is to provide a timely, responsible, and documented means to ensure that discovered
problems are analyzed and resolved and that trends are recognized. This PROCESS is

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 55 –
+AMD1:2015 CSV  IEC 2015

sometimes called “defect tracking” in software engineering literature. It is called “problem
resolution” in ISO/IEC 12207 [9] and IEC 60601-1-4 [2], Amendment 1. We have chosen to call
it “software problem resolution” in this standard.

This ACTIVITY requires that the MANUFACTURER use the software problem resolution PROCESS
when a problem or non-conformance is identified. This ACTIVITY is necessary to ensure that
discovered problems are analyzed and EVALUATED for possible relevance to SAFETY (as
specified in ISO 14971).

Software development plan(s) or procedures, as required in 5.1, are to address how problems
or non-conformances will be handled. This includes specifying at each stage of the life cycle
the aspects of the software problem resolution PROCESS that will be formal and documented as
well as when problems and nonconformities are to be entered into the software problem
resolution PROCESS.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 56 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

Annex C
(informative)

Relationship to other standards

C.1 General

This standard applies to the development and maintenance of MEDICAL DEVICE SOFTWARE. The
software is considered a subsystem of the MEDICAL DEVICE or is itself a MEDICAL DEVICE. This
standard is to be used together with other appropriate standards when developing a MEDICAL
DEVICE.

MEDICAL DEVICE management standards such as ISO 13485 [8] (see C.2 and Annex D) and ISO
14971 (see Annex C.3) provide a management environment that lays a foundation for an
organization to develop products. Safety standards such as IEC 60601-1 [1] (see Annex C.4)
and IEC 61010-1 [5] (see Annex C.5) give specific direction for creating safe MEDICAL DEVICES.
When software is a part of these MEDICAL DEVICES, IEC 62304 provides more detailed direction
on what is required to develop and maintain safe MEDICAL DEVICE SOFTWARE. Many other
standards such as ISO/IEC 12207 [9] (see Annex C.6), IEC 61508-3 [4] (see Annex C.7) and
ISO/IEC 90003 [15] can be looked to as a source of methods, tools and techniques that can be
used to implement the requirements in IEC 62304. Figure C.1 shows the relationship of these
standards.

Where clauses or requirements from other standards are quoted, defined terms in the quoted
items are terms that are defined in the other standard, not defined terms in this standard.

Figure C.1 – Relationship of key MEDICAL DEVICE standards to IEC 62304

IEC

Medical device product
standards
IEC 60601-1
IEC 61010-1
IEC 82304-1

affects

Medical device
management standards
ISO 14971
ISO 13485

Other sources of
information
IEC/ISO 12207
IEC 61508-3
IEC/ISO 90003, ...

inspires

Gives additional guidelines,
techniques, etc that may be
used

Gives specific direction for
creation of a safe medical
device

Lays out a foundation to
develop a medical device

Gives detailed direction
how to develop and
maintain safe software
system

Medical device process
standards
IEC 62304
IEC 62366-1

Implementation
of medical

device software

re
qu

ire
s

affectsaffects

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 57 –
+AMD1:2015 CSV  IEC 2015

C.2 Relationship to ISO 13485

This standard requires that the MANUFACTURER employs a quality management system. When
a MANUFACTURER uses ISO 13485 [8], the requirements of ISO 62304 directly relate to some of
the requirements of ISO 13485 as shown in Table C.1.

Table C.1 – Relationship to ISO 13485:2003

IEC 62304 clause Related clause of ISO 13485:2003

5.1 Software development planning 7.3.1 Design and development planning

5.2 Software requirements analysis 7.3.2 Design and development inputs

5.3 Software ARCHITECTURAL design

5.4 Software detailed design

5.5 SOFTWARE UNIT implementation and verification

5.6 Software integration and integration testing

5.7 SOFTWARE SYSTEM testing 7.3.3 Design and development outputs
7.3.4 Design and development review

5.8 Software release 7.3.5 Design and development verification
7.3.6 Design and development validation

6.1 Establish software maintenance plan 7.3.7 Control of design and development changes

6.2 Problem and modification analysis

6.3 Modification implementation 7.3.5 Design and development verification
7.3.6 Design and development validation

7.1 Analysis of software contributing to hazardous
situations

7.2 RISK CONTROL measures

7.3 VERIFICATION of RISK CONTROL measures

7.4 RISK MANAGEMENT of software changes

8.1 Configuration identification 7.5.3 Identification and TRACEABILITY

8.2 Change control 7.5.3 Identification and TRACEABILITY

8.3 Configuration status accounting

9 Software problem resolution PROCESS

C.3 Relationship to ISO 14971

Table C.2 shows the areas where IEC 62304 amplifies requirements for the RISK MANAGEMENT
PROCESS required by ISO 14971.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 58 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

Table C.2 – Relationship to ISO 14971:2007

ISO 14971:2007 clause Related clause of IEC 62304

4.1 RISK ANALYSIS process

4.2 Intended use and identification of
characteristics related to the SAFETY of the MEDICAL
DEVICE

4.3 Identification of HAZARDS 7.1 Analysis of software contributing to
 HAZARDOUS SITUATIONS

4.4 Estimation of the RISK(S) for each
 HAZARDOUS SITUATION

4.3 Software safety classification

5 RISK evaluation

6.1 RISK reduction

6.2 RISK CONTROL option analysis 7.2.1 Define RISK CONTROL measures

6.3 Implementation of RISK CONTROL measures 7.2.2 RISK CONTROL measures implemented in
 software

7.3.1 Verify RISK CONTROL measures

6.4 RESIDUAL RISK evaluation

6.5 RISK/benefit analysis

6.6 RISKS arising from RISK CONTROL MEASURES 7.3.2 Document any new sequences of events

6.7 Completeness of RISK CONTROL

7 Evaluation of overall RESIDUAL RISK acceptability

8 RISK MANAGEMENT report 7.3.3 Document TRACEABILITY

9 Production and post-production information 7.4 RISK MANAGEMENT of software changes

C.4 Relationship to PEMS requirements of IEC 60601-1:2005
+ IEC 606011:2005/AMD1:2012

C.4.1 General

Requirements for software are a subset of the requirements for a programmable electrical
medical system (PEMS). This standard identifies requirements for software which are in
addition to, but not incompatible with, the requirements of IEC 60601-1:2005 + IEC 60601-
1:2005 /AMD1:2012 [1] for PEMS. Because PEMS include elements that are not software, not
all of the requirements of IEC 60601-1:2005 + IEC 60601-1:2005/AMD1:2012 for PEMS are
addressed in this standard. With the publication of IEC 60601-1:2005 + IEC 60601-
1:2005 /AMD1:2012, IEC 62304 is now a normative reference of IEC 60601-1 and compliance
with Clause 14 of IEC 60601-1:2005 + IEC 60601-1:2005/AMD1:2012 (and thus compliance
with the standard) requires compliance with parts of IEC 62304 (not with the whole of
IEC 62304 because IEC 60601-1:2005 + IEC 60601-1:2005/AMD1:2012 does not require
compliance with post-production and maintenance requirements of IEC 62304). Finally, it is
important to remember that IEC 60601-1:2005 + IEC 60601-1:2005/AMD1:2012 is only used if
the software is part of a PEMS and not if the software is itself a MEDICAL DEVICE.

C.4.2 Software relationship to PEMS development

By using the V-model illustrated in Figure C.2 to describe what occurs during a PEMS
development, it can be seen that the requirements of this software standard apply at the PEMS
component level, from the specification of the software requirements to the integration of the
SOFTWARE ITEMS into a SOFTWARE SYSTEM. This SOFTWARE SYSTEM is a part of a programmable
electrical subsystem (PESS), which is a part of a PEMS.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 59 –
+AMD1:2015 CSV  IEC 2015

Software ARCHITECTURE specification

PEMS
requirements capture

Software unit
VERIFICATION

(unit VERIFICATION)

Software detailed
design

(unit design)

Software
architectural design
(component design)

PEMS validation

Software integration
& SOFTWARE SYSTEM

VERIFICATION
(component
integration &
verification)

PEMS requirement
specifications

PEMS architecture specification,
Subsystem (e.g. PESS)

requirements specifications

Software requirements specifications
(component requirements)

Verified code

Validated PEMS

Verified Subsystem

Verified PEMS

PEMS validation plan

PEMS test specification

Subsystem test specification

Software test specifications

Requirem
ents Decom

position,

Risk Analysis

PE
M

S
In

te
gr

at
io

n,

VE
RI

FI
CA

TI
O

N
of

 R
IS

K
CO

NT
RO

L

User needs

Verified software subsystem (component)

PEMS
architectural design

Subsystem (e.g.
PESS)

architectural design

PEMS integration &
VERIFICATION

Subsystem (e.g.
PESS) integration &

VERIFICATION

PEMS VERIFICATION Plan

Unit VERIFICATION
results

Software
 integration and

VERIFICATION
results

Subsystem
 VERIFICATION

results

PEMS
 VERIFICATION

results

PEMS
 validation

results

Software unit
implementation

Key:
Boxes represent typical development lifecycle activities
Solid Arrows indicate typical deliverables transfered into/out of activities
Dotted arrows indicate deliverables just to the Risk Management File

Outputs from problem resolution process

Inputs to problem resolution process

Portion of PEMS
V-model included
in IEC 62304

Figure C.2 – Software as part of the V-model

C.4.3 Development PROCESS

Compliance with the software development PROCESS of this standard (Clause 5) requires that a
software development plan be specified and then followed; it does not require that any
particular life cycle model is used, but it does require that the plan include certain ACTIVITIES
and have certain attributes. These requirements relate to the PEMS requirements in
IEC 60601-1 for development life cycle, requirement specification, ARCHITECTURE, design and
implementation, and VERIFICATION. The requirements in this standard provide greater detail
about software development than those in IEC 60601-1.

C.4.4 Maintenance PROCESS

Compliance with the software maintenance PROCESS of this standard (Clause 6) requires that
procedures be established and followed when changes to software are made. These require-
ments correspond to the requirement in IEC 60601-1 for modification of a PEMS. The
requirements in this standard for software maintenance provide greater detail about what
must be done for software maintenance than the requirements for PEMS modification in
IEC 60601-1.

C.4.5 Other PROCESSES

The other PROCESSES in this standard specify additional requirements for software beyond the
similar requirements for PEMS in IEC 60601-1. In most cases, there is a general requirement for
PEMS in IEC 60601-1, which the PROCESSES in this standard expand upon.

The software RISK MANAGEMENT PROCESS in this standard corresponds to the additional RISK
MANAGEMENT requirements identified for PEMS in IEC 60601-1.

IEC 726/06

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 60 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

The software problem resolution PROCESS in this standard corresponds to the problem
resolution requirement for PEMS in IEC 60601-1.

The software configuration management PROCESS in this standard specifies additional
requirements that are not present for PEMS in IEC 60601-1 except for documentation.

C.4.6 Coverage of PEMS requirements in IEC 60601-1:2005
+ IEC 606011:2005 /AMD1:2012

Table C.3 shows the PEMS requirements of IEC 60601-1 and the corresponding requirements
in this standard.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 61 –
+AMD1:2015 CSV  IEC 2015

Table C.3 – Relationship to IEC 60601-1

PEMS requirements from IEC 60601-1:2005 Requirements of IEC 62304 relating to the software
subsystem of a PEMS

14.1 General
The requirements in 14.2 to 14.12 (inclusive) shall
apply to PEMS unless:
– none of the PROGRAMMABLE ELECTRONIC

SUBSYSTEMS (PESS) provides functionality
necessary for BASIC SAFETY or ESSENTIAL
PERFORMANCE; or

– the application of RISK MANAGEMENT as described
in 4.2 demonstrates that the failure of the PESS
does not lead to an unacceptable RISK.

The requirements in 14.13 are applicable to any
PEMS intended to be incorporated into an IT-
NETWORK whether or not the requirements in 14.2
to 14.12 apply.
When the requirements in 14.2 to 14.13 apply,
the requirements in subclause 4.3, Clause 5,
Clause 7, Clause 8 and Clause 9 of
IEC 62304:2006 shall also apply to the
development or modification of software for each
PESS.

4.3 Software safety classification
The PEMS requirements of IEC 60601-1 would only apply to
software safety classes B and C. This standard includes some
requirements for software safety class A.

The software development PROCESS required for compliance
with IEC 60601-1 does not include the post production
monitoring and maintenance required by Clause 6 of
IEC 62304:2006.

14.2 Documentation
The documents required by Clause 14 shall be
reviewed, approved, issued and changed in
accordance with a formal document control
procedure.

5.1 Software development planning
In addition to the specific requirements in the software
development planning ACTIVITY, documents that are part of the
RISK MANAGEMENT FILE are required to be maintained by ISO
14971. In addition, for documents that are required by the
quality system, ISO 13485 [8] requires control of the
documents.

14.3 RISK MANAGEMENT PLAN
The RISK MANAGEMENT plan required by 4.2.2 shall
also include a reference to the PEMS VALIDATION plan
(see 14.11).

Not specifically required.
There is no specific software validation plan. The PEMS
validation plan is at the SYSTEM level and thus is outside the
scope of this software standard. This standard does require
TRACEABILITY from HAZARD to specific software cause to RISK
CONTROL measure to VERIFICATION of the RISK CONTROL
measure (see 7.3)

14.4 PEMS DEVELOPMENT LIFE-CYCLE
A PEMS DEVELOPMENT LIFE-CYCLE shall be
documented.

5.1 Software development planning
5.1.1 Software development plan
The items addressed by the software development plan
constitute a SOFTWARE DEVELOPMENT LIFE CYCLE.

The PEMS DEVELOPMENT LIFE-CYCLE shall contain
a set of defined milestones.

At each milestone, the ACTIVITIES to be
completed and the VERIFICATION methods to be
applied to those activities shall be defined.

5.1.6 Software VERIFICATION planning
VERIFICATION TASKS, milestones and acceptance criteria must
be planned.

Each activity shall be defined including its inputs
and outputs.

5.1.1 Software development plan
ACTIVITIES are defined in this standard. Documentation to be
produced is defined in each ACTIVITY.

Each milestone shall identify the RISK
MANAGEMENT ACTIVITIES that must be completed
before that milestone.

The PEMS DEVELOPMENT LIFE-CYCLE shall be
tailored for a specific development by making
plans which detail ACTIVITIES, milestones and
schedules.

5.1.1 Software development plan
This standard allows the development life cycle to be
documented in the development plan. This means the
development plan contains a tailored development life cycle.

The PEMS DEVELOPMENT LIFE-CYCLE shall include
documentation requirements.

5.1.1 Software development plan
5.1.8 Documentation planning

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 62 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

PEMS requirements from IEC 60601-1:2005 Requirements of IEC 62304 relating to the software
subsystem of a PEMS

14.5 Problem resolution

Where appropriate, a documented system for
problem resolution within and between all phases
and ACTIVITIES of the PEMS DEVELOPMENT LIFE-
CYCLE shall be developed and maintained.

9 Software problem resolution PROCESS

Depending on the type of product, the problem
resolution SYSTEM may:
− be documented as a part of the PEMS

DEVELOPMENT LIFE-CYCLE;
− allow the reporting of potential or existing

problems affecting BASIC SAFETY or
ESSENTIAL PERFORMANCE;

− include an assessment of each problem for
associated RISKS;

− identify the criteria that must be met for the
issue to be closed;

− identify the action to be taken to resolve
each problem.

5.1.1 Software development plan

9.1 Prepare PROBLEM REPORTS

14.6 RISK MANAGEMENT PROCESS 7 Software RISK MANAGEMENT PROCESS

14.6.1 Identification of known and foreseeable
HAZARDS

When compiling the list of known or foreseeable
HAZARDS, the MANUFACTURER shall consider
those HAZARDS associated with software and
hardware aspects of the PEMS including those
associated with the incorporation of the PEMS into
an IT-NETWORK, components of third-party origin
and legacy subsystems.

7.1 Analysis of software contributing to HAZARDOUS
SITUATIONS

This standard does not mention network/data coupling
specifically

14.6.2 RISK CONTROL

Suitably validated tools and PROCEDURES shall
be selected and identified to implement each
RISK CONTROL measure. These tools and
PROCEDURES shall be appropriate to assure that
each RISK CONTROL measure satisfactorily
reduces the identified RISK(S).

5.1.4 Software development standards, methods and tools
planning

This standard requires the identification of specific tools and
methods to be used for development in general, not for each
RISK CONTROL measure.

14.7 Requirements specification

For the PEMS and each of its subsystems (e.g.
for a PESS) there shall be a documented
requirement specification.

5.2 Software requirements analysis

This standard deals only with the software subsystems of a
PEMS.

The requirement specification for a system or
subsystem shall include and distinguish any
ESSENTIAL PERFORMANCE and any RISK CONTROL
measures implemented by that system or
subsystem.

5.2.1 Define and document software requirements from SYSTEM
requirements.
5.2.2 Software requirements content
5.2.3 Include RISK CONTROL measures in software requirements

This standard does not require that the requirements related to
essential performance and RISK CONTROL measures be
distinguished from other requirements, but it does require that
all requirements be uniquely identified. Cop

yri
gh

ted
 do

cu
men

t, n
o r

ep
rod

uc
tio

n o
r c

irc
ula

tio
n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 63 –
+AMD1:2015 CSV  IEC 2015

PEMS requirements from IEC 60601-1:2005 Requirements of IEC 62304 relating to the software
subsystem of a PEMS

14.8 ARCHITECTURE
For the PEMS and each of its subsystems, an
ARCHITECTURE shall be specified that shall satisfy
the requirements specification.

5.3 Software ARCHITECTURAL design

Where appropriate, to reduce the RISK to an
acceptable level, the architecture specification
shall make use of:
a) COMPONENTS WITH HIGH-INTEGRITY

CHARACTERISTICS;
b) fail-safe functions;
c) redundancy;
d) diversity;
e) partitioning of functionality;
f) defensive design, e.g. limits on potentially

hazardous effects by restricting the available
output power or by introducing means to limit
the travel of actuators.

5.3.5 Identify segregation necessary for RISK CONTROL
Partitioning is the only technique identified, and it is only
identified because there is a requirement to state how the
integrity of the partitioning is assured.

The ARCHITECTURE specification shall take into
consideration:
a) allocation of RISK CONTROL measures to

subsystems and components of the PEMS;
b) failure modes of components and their

effects;
c) common cause failures;
d) systemic failures;
e) test interval duration and diagnostic

coverage;
f) maintainability;
g) protection from reasonably foreseeable

misuse;
h) the IT-NETWORK specification, if applicable.

This is not included in this standard.

14.9 Design and implementation
Where appropriate, the design shall be
decomposed into subsystems, each having both
a design and test specification.

5.4 Software detailed design
5.4.2 Develop detailed design for each SOFTWARE UNIT
This standard does not require a test specification for detailed
design.

Descriptive data regarding the design
environment shall be included in the
documentation.

5.4.2 Develop detailed design for each SOFTWARE UNIT

14.10 VERIFICATION
VERIFICATION is required for all functions that
implement BASIC SAFETY, ESSENTIAL
PERFORMANCE or RISK CONTROL measures.

5.1.6 Software VERIFICATION planning
VERIFICATION is required for each ACTIVITY

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

 – 64 – IEC 62304:2006
 +AMD1:2015 CSV  IEC 2015

PEMS requirements from IEC 60601-1:2005 Requirements of IEC 62304 relating to the software
subsystem of a PEMS

A VERIFICATION plan shall be produced to show
how these functions shall be verified. The plan
shall include:
− at which milestone(s) VERIFICATION is to be

performed on each function;
− the selection and documentation of

VERIFICATION strategies, ACTIVITIES,
techniques, and the appropriate level of
independence of the personnel performing the
VERIFICATION;

− the selection and utilization of VERIFICATION
tools;

− coverage criteria for VERIFICATION.

5.1.6 Software VERIFICATION planning
Independence of personnel is not included in this standard. It
is considered covered in ISO 13485.

The VERIFICATION shall be performed according to
the VERIFICATION plan. The results of the
VERIFICATION activities shall be documented.

VERIFICATION requirements are in most of the ACTIVITIES.

14.11 PEMS VALIDATION
A PEMS VALIDATION plan shall include the validation
of BASIC SAFETY and ESSENTIAL PERFORMANCE.

This standard does not cover software validation. PEMS
validation is a SYSTEM level ACTIVITY and is outside the scope
of this standard.

Methods used for PEMS VALIDATION shall be
documented

This standard does not cover software validation. PEMS
validation is a SYSTEM level ACTIVITY and is outside the scope
of this standard.

The PEMS VALIDATION shall be performed according
to the PEMS VALIDATION plan. The results of the
PEMS VALIDATION activities shall be documented.

This standard does not cover software validation. PEMS
validation is a SYSTEM level ACTIVITY and is outside the scope
of this standard.

The person having the overall responsibility for the
PEMS VALIDATION shall be independent of the
design team. The MANUFACTURER shall document
the rationale for the level of independence.

This standard does not cover software validation. PEMS
validation is a SYSTEM level ACTIVITY and is outside the scope
of this standard.

No member of a design team shall be responsible
for the PEMS VALIDATION of their own design.

This standard does not cover software validation. PEMS
validation is a SYSTEM level ACTIVITY and is outside the scope
of this standard.

All professional relationships of the members of
the PEMS VALIDATION team with members of the
design team shall be documented in the RISK
MANAGEMENT FILE.

This standard does not cover software validation. PEMS
validation is a SYSTEM level ACTIVITY and is outside the scope
of this standard.

A reference to the methods and results of the PEMS
VALIDATION shall be included in the RISK
MANAGEMENT FILE.

This standard does not cover software validation. PEMS
validation is a SYSTEM level ACTIVITY and is outside the scope
of this standard.

14.12 Modification
If any or all of a design results from a modification
of an earlier design then either all of this clause
applies as if it were a new design or the continued
validity of any previous design documentation shall
be assessed under a documented
modification/change PROCEDURE.

6 Software maintenance PROCESS
This standard takes the approach that software maintenance
should be planned and that implementation of modifications
should use the software development PROCESS or an
established software maintenance PROCESS.

When software is modified, the requirements in
subclause 4.3, Clause 5, Clause 7, Clause 8 and
Clause 9 of IEC 62304:2006 shall also apply to the
modification.

 Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

IEC 62304:2006 – 65 –
+AMD1:2015 CSV  IEC 2015

PEMS requirements from IEC 60601-1:2005 Requirements of IEC 62304 relating to the software
subsystem of a PEMS

14.13 PEMS intended to be incorporated into an
IT-NETWORK

If the PEMS is intended to be incorporated into an
IT-NETWORK that is not validated by the PEMS
MANUFACTURER, the MANUFACTURER shall make
available instructions for implementing such
connection including the following

a) the purpose of the PEMS’S connection to an IT-

NETWORK;

b) the required characteristics of the IT-NETWORK
incorporating the PEMS;

c) the required configuration of the IT-NETWORK
incorporating the PEMS;

d) the technical specifications of the network
connection of the PEMS including security
specifications;

e) the intended information flow between the
PEMS, the IT-NETWORK and other devices on the
IT-NETWORK, and the intended routing through
the IT-NETWORK; and
NOTE 1 This can include aspects of
effectiveness and data and system security as
related to BASIC SAFETY and ESSENTIAL
PERFORMANCE (see also Clause H.6 and IEC
80001-1:2010).

f) list the HAZARDOUS SITUATIONS resulting from a
failure of the IT-NETWORK to provide the
characteristics required to meet the purpose of
the PEMS connection to the IT-NETWORK.

In the ACCOMPANYING DOCUMENTS, the
MANUFACTURER shall instruct the RESPONSIBLE
ORGANIZATION that:
− connection of the PEMS to an IT-NETWORK that

includes other equipment could result in
previously unidentified RISKS to PATIENTS,
OPERATORS or third parties;

− the RESPONSIBLE ORGANIZATION should identify,
analyze, evaluate and control these RISKS;

Requirements for incorporation into an IT-network are not
included in this standard.

Cop
yri

gh
ted

 do
cu

men
t, n

o r
ep

rod
uc

tio
n o

r c
irc

ula
tio

n

For
rev

iew
 by

 TC M
DQM on

ly

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

30
4 W

G/AMD1 C
SV:20

15

https://iecnorm.com/api/?name=58595da6d1e2a6aca6f81fc107a34804

	Redline version
	CONTENTS
	FOREWORD
	INTRODUCTION
	INTRODUCTION to Amendment 1
	1 Scope
	1.1 * Purpose
	1.2 * Field of application
	1.3 Relationship to other standards
	1.4 Compliance

	2 * Normative references
	3 * Terms and definitions
	4 * General requirements
	4.1 * Quality management system
	4.2 * Risk management
	4.3 * Software safety classification
	4.4 * Legacy software

	5 Software development process
	5.1 * Software development planning
	5.2 * Software requirements analysis
	5.3 * Software architectural design
	5.4 * Software detailed design
	5.5 * Software unit implementation
	5.6 * Software integration and integration testing
	5.7 * Software system testing
	5.8 * Software release for utilization at a system level

	6 Software maintenance process
	6.1 * Establish software maintenance plan
	6.2 * Problem and modification analysis
	6.3 * Modification implementation

	7 * Software risk management process
	7.1 * Analysis of software contributing to hazardous situations
	7.2 Risk control measures
	7.3 Verification of risk control measures
	7.4 Risk management of software changes

	8 * Software configuration management process
	8.1 * Configuration identification
	8.2 * Change control
	8.3 * Configuration status accounting

	9 * Software problem resolution process
	9.1 Prepare problem reports
	9.2 Investigate the problem
	9.3 Advise relevant parties
	9.4 Use change control process
	9.5 Maintain records
	9.6 Analyse problems for trends
	9.7 Verify software problem resolution
	9.8 Test documentation contents

	Annex A (informative) Rationale for the requirements of this standard
	Annex B (informative) Guidance on the provisions of this standard
	Annex C (informative) Relationship to other standards
	Annex D (informative) Implementation
	Bibliography
	Index of defined terms
	Figures
	Figure 1 – Overview of software development processes and activities
	Figure 2 – Overview of software maintenance processes and activities
	Figure 3 – Assigning software safety classification
	Figure B.2 – Pictorial representation of the relationship of hazard, sequence of events, hazardous situation, and harm – from ISO 14971:2007 Annex E
	Figure B.1 – Example of partitioning of software items
	Figure C.1 – Relationship of key medical device standards to IEC 62304
	Figure C.2 – Software as part of the V-model
	Figure C.3 – Application of IEC 62304 with IEC 61010-1

	Tables
	Table A.1 – Summary of requirements by software safety class
	Table B.1 – Development (model) strategies as defined in ISO/IEC 12207
	Table C.1 – Relationship to ISO 13485:2003
	Table C.2 – Relationship to ISO 14971:2007
	Table C.3 – Relationship to IEC 60601-1
	Table C.5 – Relationship to ISO/IEC 12207:2008
	Table D.1 – Checklist for small companies without a certified QMS

	Final version
	CONTENTS
	FOREWORD
	INTRODUCTION
	INTRODUCTION to Amendment 1
	1 Scope
	1.1 * Purpose
	1.2 * Field of application
	1.3 Relationship to other standards
	1.4 Compliance

	2 * Normative references
	3 * Terms and definitions
	4 * General requirements
	4.1 * Quality management system
	4.2 * Risk management
	4.3 * Software safety classification
	4.4 * Legacy software

	5 Software development process
	5.1 * Software development planning
	5.2 * Software requirements analysis
	5.3 * Software architectural design
	5.4 * Software detailed design
	5.5 * Software unit implementation
	5.6 * Software integration and integration testing
	5.7 * Software system testing
	5.8 * Software release for utilization at a system level

	6 Software maintenance process
	6.1 * Establish software maintenance plan
	6.2 * Problem and modification analysis
	6.3 * Modification implementation

	7 * Software risk management process
	7.1 * Analysis of software contributing to hazardous situations
	7.2 Risk control measures
	7.3 Verification of risk control measures
	7.4 Risk management of software changes

	8 * Software configuration management process
	8.1 * Configuration identification
	8.2 * Change control
	8.3 * Configuration status accounting

	9 * Software problem resolution process
	9.1 Prepare problem reports
	9.2 Investigate the problem
	9.3 Advise relevant parties
	9.4 Use change control process
	9.5 Maintain records
	9.6 Analyse problems for trends
	9.7 Verify software problem resolution
	9.8 Test documentation contents

	Annex A (informative) Rationale for the requirements of this standard
	Annex B (informative) Guidance on the provisions of this standard
	Annex C (informative) Relationship to other standards
	Annex D (informative) Implementation
	Bibliography
	Index of defined terms
	Figures
	Figure 1 – Overview of software development processes and activities
	Figure 2 – Overview of software maintenance processes and activities
	Figure 3 – Assigning software safety classification
	Figure B.1 – Example of partitioning of software items
	Figure B.2 – Pictorial representation of the relationship of hazard, sequence of events, hazardous situation, and harm – from ISO 14971:2007 Annex E
	Figure C.1 – Relationship of key medical device standards to IEC 62304
	Figure C.2 – Software as part of the V-model
	Figure C.3 – Application of IEC 62304 with IEC 61010-1

	Tables
	Table A.1 – Summary of requirements by software safety class
	Table B.1 – Development (model) strategies as defined in ISO/IEC 12207
	Table C.1 – Relationship to ISO 13485:2003
	Table C.2 – Relationship to ISO 14971:2007
	Table C.3 – Relationship to IEC 60601-1
	Table C.5 – Relationship to ISO/IEC 12207:2008
	Table D.1 – Checklist for small companies without a certified QMS

